PH103: Physics-I [3-1-0-8]


         Course OveRVIEW

The pre mid-semester part of Physics 103 deals with Newtonian formulation of Classical Mechanics. In addition, a primer on fundamentals of wave phenomena is also discussed. In general, 'mechanics' attempts to understand the motion of 'objects' in terms of the forces acting on it. These objects can come in a variety of sizes and can travel with a wide range of speeds. The prefix 'Classical' simplifies the physical scenario to systems where: (i) the involved speeds are 'slow' compared to the speed of light, and (ii) the 'objects' are having sizes 'large' compared to atoms and molecules. This thus addresses the realm of everyday life where classical mechanics is applicable.  The post mid-semester portion provides a detailed account of the phenomena of Waves followed by basic Quantum Mechanics.                                                                                   


 [Facebook page]


           Class Schedule

                10:00-10:55 on Monday, Wednesday and Friday (G1; R102 Tutorial Block)
                11:00-11:55 on Monday, Wednesday and Friday (G2; R104 Tutorial Block)
                Tutorial 09:00-09:55 on Thursday (CS-R102; EE-R104; CB&CE-R107; ME-R109)

NOTE: Office contact hours (R217-BlockIV for PH101 are as follows: 

            (a) Wednesday 12:00-13:00 (G2)

            (b) Friday 12:00-13:00 (G1)




               

         Contact:

                isphysicsfun@gmail.com

        handouts

 
Lecture Notes Tutorials/Problem Sets/Quizzes
 Physics: What, Why and How-I? Tutorial 0 ( August 9, 2018)
 Physics: What, Why and How-II? Tutorial 1 (August 16, 2018)
 Approximation Techniques Tutorial 2 (August 23, 2018)
 Recap on Vectors Tutorial 3 (August 30, 2018)
 Newton's Laws: Applications Tutorial 4 (September 6, 2018) 
 More applications Quiz-I (September 15, 2018)
 Harmonic Oscillators-I Tutorial 5 (September 20, 2018)
 Harmonic Oscillators-II  Mid-Semester Exam (September 24, 2018)
 System of Particles Tutorial 6 (October 11, 2018)
 Variable Mass/Rockets etc Tutorial 7 (October 18, 2018)
 Non-inertial Frames Tutorial 8 (October 25, 2018)
 Central Force-I Tutorial 9 (November 06, 2018)
 Central Force-II
 Rigid Bodies: Eulers Equations  
 Rigid Bodies: Examples
 Coupled Pendulum
 Normal Modes-I  
 Normal Modes-II
 Primer:Related Matrix Maths

  QM-preliminaries-I
  QM-preliminaries-II
  Bound and Scattering states  Recommended: D. J. Griffith, Introduction to Quantum Mechanics
(sufficient copies have been kept in the central library)
 M-matrix and S-matrix
  QM-Harmonic Oscillators
  Hydrogen-atom
  Potential Step, finite Well, etc

         Notice(s):

            1. Quiz-I on September 15, 2018

            2. Joint discussion session (G1+G2): September 21, 2018, !4:00 onward, Senate Hall

            3. Mid-Semester Examination: September 24, 2018 (as per md-sem schedule)

            4. Viewing Mid-Semester corrected paper, October 4, 2018, 9AM, Tutorial Room.

         COURSE GOALS

       There is a twofold aim of the course: 

                                        •        (a) Convey and demonstrate physicists approach to understand nature and explain its working in a                       domain applicable to daily life. The techniques and methods learnt in the process apply to a wide                   variety of practical engineering problems.

           (b) Elaborate the method of science whereby empirical results and mathematical representations are                   clubbed together to formulate testable scientific hypothesis. The general validity of these hypothesis             leads to the development of scientific theories and a deeper understanding of nature.

      As a budding engineer, this will equip you to: (i) logically understand the basic ingredients of the problem       at hand, (ii) coherently write the problem statement, (iii) develop a model to capture the essential                 features of the problem, (iv) solve the model (wherever possible), and (v) interpret the results.




       Textbooks


                1. An Introduction to Classical Mechanics, Daniel Kleppner and Robert Kolenkow, Special Indian Edition, McGraw Hill Education (India) Pvt. Ltd. (2013).

                2. Waves, Berkeley Physics Course Volume 1, Frank S. Crawfor Jr., Special Indian Edition, Tata McGraw Hill, New Delhi (2011).

                3. Introduction to Quantum Mechanics, David J. Griffiths, 2nd Edition, Pearson India Education Services Pvt. Ltd. (2005).


       Reference Books


                1. Introduction to Classical Mechanics, David Morin, Cambridge University Press, New York (2007).

                2. Classical Mechanics, R. Douglas Gregory, Cambridge University Press, New York (2006).

                3. Mechanics, Berkeley Physics Course Volume 1, C. Kittel, W. D. Knight, M. A. Ruderman, C. A. Helmholz, B. J. Moyer, Tata McGraw Hill, New Delhi (2008).

                4. Classical Mechanics, J. E. Hasbun, Jones and Barlett Student Edition (2010).

                5. Quantum Physics, Berkeley Physics Course Volume 4, Eyvind H. Wichman,Tata McGraw Hill, New Delhi (2012).

                6. Feynman Lectures on Physics, Vol. 1 and 3, Richard P. Feynman, Robert B. Leighton, Matthew Sands, Addison-Wesley WSS (1977).