भारतीय प्रौद्योगिकी संस्थान पटना INDIAN INSTITUTE OF TECHNOLOGY PATNA

PH103 (Physics-I)
Tutorial-III (August 30, 2018)

1. A projectile of mass m is fired from the origin at speed v_{0} and angle θ. It is attached to the origin by a spring with spring constant k and relaxed length zero.
(a) Find $x(t)$ and $y(t)$.
(b) Verify that for small $\omega \equiv \sqrt{\frac{k}{m}}$, the trajectory reduces to normal projectile motion.
(c) Verify that for large ω, the trajectory reduces to simple harmonic motion, i.e., oscillatory motion along a line (at least before the projectile smashes back into the ground!).
(d) Physically interpret "small" and "large".
(e) What value should ω take so that the projectile hits the ground when it is moving straight downward?
2. Alternate derivation of T : For small oscillations, the period of a pendulum is approximately $T \approx 2 \pi \sqrt{\frac{l}{g}}$ independent of the amplitude, θ_{0}. In class we used a perturbative approach for estimating the corrections to T when amplitude θ_{0} becomes large. In this tutorial problem, an alternate method for solving the same problem is illustrated.
(a) Using $d t=\frac{d x}{v}$, show that the exact expression for T is

$$
T=\sqrt{\frac{8 l}{g}} \int_{0}^{\theta_{0}} \frac{\mathrm{~d} \theta}{\sqrt{\cos \theta-\cos \theta_{0}}}
$$

(b) Making use of the identity $\cos \phi=1-2 \sin ^{2} \frac{\phi}{2}$, write T in terms of sines [why!]. Make a suitable change of variables,

$$
\sin x \equiv \frac{\sin \frac{\theta}{2}}{\sin \frac{\theta_{0}}{2}}
$$

Now expand the integrand in powers of θ_{0} and evaluate the resulting integrals to show that

$$
T \approx 2 \pi \sqrt{\frac{l}{g}}\left(1+\frac{\theta_{0}^{2}}{16}+\cdots\right)
$$

3. Alternate derivation of $z_{\max }$: In class we worked out the problem where an object of mass m was thrown upwards with an initial speed u and in between obtained an expression for the time t required to attain a velocity v. There was a drag force due to the surrounding atmosphere which was proportional to the mass and velocity of the object with κ as the proportionality constant). Using expression for t, show that:
$v=u e^{-\kappa t}-\frac{g}{\kappa}\left(1-e^{-\kappa t}\right)$.
Starting from expression for v thus obtained, find $z_{\max }$ (the maximum height attained by the object).

भारतीय प्रौद्योगिकी संस्थान पटना
 INDIAN INSTITUTE OF TECHNOLOGY PATNA

4. A body is released from rest and moves under uniform gravity in a medium that exerts a resistance force proportional to the square of its speed and in which the bodys terminal speed is V_{T}. Show that the time taken for the body to fall a distance H is $\frac{V_{\mathrm{T}}}{g} \cosh ^{-1}\left(e^{\frac{g H}{V_{\mathrm{T}}^{2}}}\right)$.
5. A ball is thrown with speed v_{0} at an angle θ. Let the drag force from the air take the form $F_{\mathrm{d}}=-\beta v=-m \alpha v$. (a) Find $x(t)$ and $y(t)$. (b) Assume that the drag coefficient takes the value that makes the magnitude of the initial drag force equal to the weight of the ball. If your goal is to have x be as large as possible when y achieves its maximum value, show that θ should satisfy $\sin \theta=\frac{\sqrt{5}-1}{2}$ (inverse of the golden mean!).
