भारतीय प्रौद्योगिकी संस्थान पटना INDIAN INSTITUTE OF TECHNOLOGY PATNA

PH103 (Physics-I)

Tutorial-VI (October 11, 2018)

1. Estimate the de Broglie wavelength for: (a) a proton of kinetic energy 100 MeV kinetic energy, and, (b) a 100 g bullet moving at $1 \mathrm{~km}-\mathrm{s}^{-1}$.
2. Ultraviolet light with wavelengths $\lambda_{1}=80 \mathrm{~nm}$ and $\lambda_{1}=100 \mathrm{~nm}$ (incident on a sheet of lead) produce photoelectrons with maximum energies 11.390 eV and 7.154 eV , respectively.
(a) Obtain Plancks constant based on above data.
(b) Make an estimation of work function, cut-off frequency and cut-off wavelength for lead.
3. Obtain the following commutators: (a) $\left[x, p_{x}\right]$, (b) $\left[x^{2}, p_{x}\right]$, (c) $\left[x, p_{x}^{2}\right]$, (d) $\left[x^{2}, p_{x}^{2}\right]$.
4. Normalize the following wavefunction: $\Psi(x, t)=\sin \left(\frac{\pi x}{a}\right) e^{\frac{i}{\hbar} E_{1} t}$ for, $-a \leq x \leq a$, and, $\Psi(x, t)=0$, otherwise.
5. "The rotational motion of a rigid body is stable about the axis about which the moment of inertia is either a maximum or a minimum. Prove this. [Hint: Use conservation of energy and angular momentum.]
6. (Done as a special topic in Class) Obtain the equations of motion for a 1D-Simple Harmonic Oscillator (1D-SHO) within the Lagrangian and Hamiltonian formalism. Using suitable operators for position and momentum, convert the classical Hamiltonian for the (1D-SHO) into a quantum mechanical Hamiltonian. Please repeat the steps in the tutorial class and demonstrate the same to your tutor.
