भारतीय प्रौद्योगिकी संस्थान पटना INDIAN INSTITUTE OF TECHNOLOGY PATNA

PH103 (Physics-I)

Tutorial-VII (October 18, 2018) [Quantum Mechanics]

- 1. Consider a particle whose normalized wave function is given by $\Psi(x) = 2\alpha \sqrt{\alpha} x e^{-\alpha x}$ for x > 0 and zero otherwise.
 - (a) Obtain the probability density and find the value of x for which it is maximum.
 - (b) Calculate the expectation values $\langle x \rangle$ and $\langle x^2 \rangle$.
 - (c) Estimate the probability for the particle to be found between x = 0 and $x = 1/\alpha$.
 - (d) Obtain the corresponding momentum space wave function $\phi(p_x)$. Find the expectation values $\langle p_x \rangle$ and $\langle p_x^2 \rangle$.
 - (e) Using the above results, estimate Δx and Δp_x , and show that $\Delta x \cdot \Delta p_x \ge \hbar/2$.
- 2. Consider the probability density of a normalized Gaussian wave function: $\rho(x) = Ae^{-\lambda(x-a)^2}$, where, A, a, and λ are constants.
 - (a) Determine A.
 - (b) Obtain $\langle x \rangle$, $\langle x^2 \rangle$ and Δx .
 - (c) Sketch $\rho(x)$ and interpret the results.
- 3. A particle of mass m is in the state $\psi(x,t) = Ae^{-a[(mx^2/\hbar)+it]}$, where, A and a are positive real constants.
 - (a) Obtain A.
 - (b) Find the potential energy function V(x) for which $\psi(x,t)$ satisfies the corresponding Schrödinger equation.