भारतीय प्रौद्योगिकी संस्थान पटना INDIAN INSTITUTE OF TECHNOLOGY PATNA

PH103 (Physics-I)
Tutorial-VII (October 18, 2018)
[Quantum Mechanics]

1. Consider a particle whose normalized wave function is given by $\Psi(x)=2 \alpha \sqrt{\alpha} x e^{-\alpha x}$ for $x>0$ and zero otherwise.
(a) Obtain the probability density and find the value of x for which it is maximum.
(b) Calculate the expectation values $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$.
(c) Estimate the probability for the particle to be found between $x=0$ and $x=1 / \alpha$.
(d) Obtain the corresponding momentum space wave function $\phi\left(p_{x}\right)$. Find the expectation values $\left\langle p_{x}\right\rangle$ and $\left\langle p_{x}^{2}\right\rangle$.
(e) Using the above results, estimate Δx and Δp_{x}, and show that $\Delta x \cdot \Delta p_{x} \geq \hbar / 2$.
2. Consider the probability density of a normalized Gaussian wave function: $\rho(x)=A e^{-\lambda(x-a)^{2}}$, where, A, a, and λ are constants.
(a) Determine A.
(b) Obtain $\langle x\rangle,\left\langle x^{2}\right\rangle$ and Δx.
(c) Sketch $\rho(x)$ and interpret the results.
3. A particle of mass m is in the state $\psi(x, t)=A e^{\left.-a\left[m x^{2} / \hbar\right)+i t\right]}$, where, A and a are positive real constants.
(a) Obtain A.
(b) Find the potential energy function $V(x)$ for which $\psi(x, t)$ satisfies the corresponding Schrödinger equation.
