भारतीय प्रौद्योगिकी संस्थान पटना INDIAN INSTITUTE OF TECHNOLOGY PATNA

PH103 (Physics-I)
Tutorial-II (August 23, 2018)

1. In class we discussed about curvilinear coordinate systems and also learnt the methods for obtaining the scale parameters. To practice your Physics drawing skills, make a sketch of the elemental volume $d \tau$ for: (a) Spherical polar coordinates, and (b) Cylindrical polar coordinates. Also write down the expressions for these elemental volumes.
2. One quick way to quickly check if a particular force (\vec{F}) is conservative in nature is to see if $\nabla \times \vec{F}=0$ (if it is so, the force is conservative). Find out if the following forces are conservative in nature: (a) $\vec{F}_{1}=-2 x \hat{i}-2 y \hat{j}-2 z \hat{k}$, and (b) $\vec{F}_{2}=y \hat{i}-x \hat{j}$.
3. For $\vec{F}=3 m \dot{r} \dot{\theta} \hat{\theta}$, show that, $\dot{r}= \pm \sqrt{A r^{4}+B}$, where A and B are arbitrary constants.
4. A particle is sliding along a smooth radial groove in a circular turntable which is rotating with constant angular speed Ω. The distance of the particle from the rotation axis at time t is observed to be $r=b \cosh (\Omega t)$ for $t \geq 0$, where b is a positive constant. Find the speed of the particle (relative to a fixed reference frame) at time t, and also find the magnitude and direction of the acceleration.
Note: $\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$.
5. The luckless Daniel (D) is thrown into a circular arena of radius a containing a lion (L). Initially the lion is at the centre O of the arena while Daniel is at the perimeter. Daniels strategy is to run with his maximum speed u around the perimeter. The lion responds by running at its maximum speed U in such a way that it remains on the (moving) radius OD. (i) Set up the differential equation satisfied by r (the distance of L from O). (ii) Find r as a function of t . (iii) If $U \geq u$, show that Daniel will be caught, and find how long this will take. (iv) Show that the path taken by the lion is a circle. (v) For the special case in which $U=u$, sketch the path taken by the lion and find the point of capture.
6. A bee flies on a trajectory such that its polar coordinates at time t are given by $r=\frac{b t}{\tau^{2}}(2 \tau-t)$ and $\theta=\frac{t}{\tau} ;(0 \leq t \leq 2 \tau)$
where b and τ are positive constants. Find the velocity vector of the bee at time t. Show that the least speed achieved by the bee is b / τ. Find the acceleration of the bee at this instant.
