

PH103 (Physics-I)

Tutorial-II (August 23, 2018)

- 1. In class we discussed about curvilinear coordinate systems and also learnt the methods for obtaining the scale parameters. To practice your Physics drawing skills, make a sketch of the elemental volume $d\tau$ for: (a) Spherical polar coordinates, and (b) Cylindrical polar coordinates. Also write down the expressions for these elemental volumes.
- One quick way to quickly check if a particular force (*F*) is conservative in nature is to see if ∇ × *F* = 0 (if it is so, the force is conservative). Find out if the following forces are conservative in nature: (a) *F*₁ = −2*xi* − 2*yj* − 2*zk*, and (b) *F*₂ = *yi* − *xj*.
- 3. For $\vec{F} = 3m\dot{r}\dot{\theta}\hat{\theta}$, show that, $\dot{r} = \pm\sqrt{Ar^4 + B}$, where A and B are arbitrary constants.
- 4. A particle is sliding along a smooth radial groove in a circular turntable which is rotating with constant angular speed Ω . The distance of the particle from the rotation axis at time t is observed to be $r = b \cosh(\Omega t)$ for $t \ge 0$, where b is a positive constant. Find the speed of the particle (relative to a fixed reference frame) at time t, and also find the magnitude and direction of the acceleration. Note: $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$.
- 5. The luckless Daniel (D) is thrown into a circular arena of radius a containing a lion (L). Initially the lion is at the centre O of the arena while Daniel is at the perimeter. Daniels strategy is to run with his maximum speed u around the perimeter. The lion responds by running at its maximum speed U in such a way that it remains on the (moving) radius OD. (i) Set up the differential equation satisfied by r (the distance of L from O). (ii) Find r as a function of t. (iii) If $U \ge u$, show that Daniel will be caught, and find how long this will take. (iv) Show that the path taken by the lion is a circle. (v) For the special case in which U = u, sketch the path taken by the lion and find the point of capture.
- 6. A bee flies on a trajectory such that its polar coordinates at time t are given by $r = \frac{bt}{\tau^2}(2\tau t)$ and $\theta = \frac{t}{\tau}$; $(0 \le t \le 2\tau)$

where b and τ are positive constants. Find the velocity vector of the bee at time t. Show that the least speed achieved by the bee is b/τ . Find the acceleration of the bee at this instant.