

## PH103 (Physics-I) Tutorial-VIII (October 25, 2018)

[Note: The following tutorial questions are based primarily on unsolved problems from the excellent textbook on 'Introduction to Quantum Mechanics' by David J. Griffiths. Students are recommended to read the book.]

1. (a) If the wavefunction corresponding to E = 0 is given by  $\psi(x) = \frac{A}{x^2 + a^2}$ , (where, a is a constant and A is the normalization factor), obtain the corresponding potential V(x).

(b) The wavefunction for a potential  $V(x) = \alpha^2 x^2$  is given by  $\psi(x) = exp(-\sqrt{\frac{m\alpha^2}{2\hbar^2}x^2})$ . Obtain the corresponding energy eigenvalue.

- 2. For a particle constrained to move in  $0 \le x \le L$ , the wavefunction is given by  $\psi(x) = \sqrt{\frac{2}{L}} sin(\frac{n\pi x}{L})$ . Obtain  $\langle p_x \rangle$  and  $\langle p_x^2 \rangle$ .
- 3. In class we proved the first Ehrenfest's theorem  $\left(\frac{d < x >}{dt} = \frac{< p_x >}{m}\right)$ . Prove Ehrenfest's second theorem:  $\frac{d < p_x >}{dt} = < -\frac{\partial V}{\partial x} >$ .
- 4.  $P_{ab}(t)$  is the probability of finding a quantum mechanical object in the range  $a \le x \le b$  at a time t. Show that  $\frac{dP_{ab}}{dt} = J(a,t) J(b,t)$ . Here J is the probability current as defined in class [Hint: Use continuity equation connecting probability density and probability current density as discussed in the class.]
- 5. Show that  $\frac{d}{dt} \int_{-\infty}^{\infty} \Psi_1^* \Psi_2 dx = 0$ , for any two (normalizable) solutions to the Schrödinger equation,  $\Psi_1$  and  $\Psi_2$ .