PH101: Physics-I


         Course OveRVIEW

The pre mid-semester part of Physics 101 gives an introduction to Classical Mechanics. In general, 'mechanics' attempts to understand the motion of 'objects' in terms of the forces acting on it. These objects can come in a variety of sizes and can travel with a wide range of speeds. The prefix 'Classical' simplifies the physical scenario to systems where: (i) the involved speeds are 'slow' compared to the speed of light, and (ii) the 'objects' are having sizes 'large' compared to atoms and molecules. This thus addresses the realm of everyday life where classical mechanics is applicable.                                                                                    

       [Facebook page]             [Video Demos, Matlab Codes, PH101 survival kit, etc  :-)]



NOTE: Office contact hours for PH101 are as follows: 

            (a) Wednesday 15:00-16:00 (G1-G2)

            (b) Friday 10:00-11:00 (G3-G4)



        handouts

 
 Lecture 1 (July 23, 2014)
 Lecture 2ALecture 2B (July 24, 2014)  Tutorial 1 (July 28, 2014)
 Lecture 3 (July 30, 2014)
 Lecture 4  (July 31, 2014)  Tutorial 2 ( August 4, 2014)
 Lecture 5 (August 7, 2014)  
 Lecture 6 (August 13, 2014)  Tutorial 3 (August 11, 2014) 
 Lecture 7 (August 14, 2014)
 Lecture 8 (August 20, 2014)  Tutorial 4 (August 18, 2014)
 Lecture 9 (August 21, 2014)
 Lecture 10 (August 27, 2014)  Tutorial 5 (August 25, 2014)  
 Lecture 11 (August 28, 2014)
 Lecture 12 (September 3, 2014)  Tutorial 6 (September 1, 2014)
 Lecture 13 (September 4, 2014)
 Lecture 14 (September 10, 2014)  Tutorial 7 (September 8, 2014)
 Lecture 15 (September 11, 2014)

         COURSE GOALS

       There is a twofold aim of the course: 

                                        •        (a) Convey and demonstrate physicists approach to understand nature and explain its working in a                       domain applicable to daily life. The techniques and methods learnt in the process apply to a wide                   variety of practical problems.

           (b) Elaborate the method of science whereby empirical results and mathematical representations are                   clubbed together to formulate testable scientific hypothesis. The general validity of these hypothesis             leads to the development of scientific theories and a deeper understanding of nature.

      As a budding engineer, this will equip you to: (i) logically understand the basic ingredients of the problem       at hand, (ii) coherently write the problem statement, (iii) develop a model to capture the essential                 features of the problem, (iv) solve the model (wherever possible), and (v) interpret the results.




       Textbooks/References


                1. An Introduction to Classical Mechanics, Daniel Kleppner and Robert Kolenkow, Special Indian Edition, McGraw Hill Education (India) Pvt. Ltd. (2013).

                2. Introduction to Classical Mechanics, David Morin, Cambridge University Press, New York (2007).

                3. Classical Mechanics, R. Douglas Gregory, Cambridge University Press, New York (2006).

                4. Mechanics, Berkeley Physics Course Volume 1, C. Kittel, W. D. Knight, M. A. Ruderman, C. A. Helmholz, B. J. Moyer, Tata McGraw Hill, New Delhi (2008).

                5. Classical Mechanics, J. E. Hasbun, Jones and Barlett Student Edition (2010).