भारतीय प्रौद्योगिकी संस्थान पटना
 INDIAN INSTITUTE OF TECHNOLOGY PATNA

PH101 (Physics-I)
Tutorial-VI (September 1, 2014)
[Noninertial Frames, Rotational Motion, etc]*

1. A mass is dropped from a point directly above the equator. Consider the moment when the object has fallen a distance d. If we consider only the centrifugal force, then the correction to $g_{\text {eff }}$ at this point (relative to the release point) is an increase by $\omega^{2} d$. There is, however, also a second-order Coriolis effect. What is the sum of these corrections?
2. A uniform thin rod of length L and mass M is pivoted at one end. The pivot is attached to the top of a car accelerating at rate a_{0}.
(a) What is the equilibrium value of the angle θ between the rod and the top of the car?
(b) Suppose that the rod is displaced a small angle ϕ from equilibrium. What is its motion for small ϕ ?
3. A high speed hydrofoil races across the ocean at the equator at a speed of $200 \mathrm{mi} / \mathrm{h}$. Let the acceleration of gravity for an observer at rest on the earth be g. Find the fractional change in gravity, $\frac{\Delta g}{g}$, measured by a passenger on the hydrofoil when the hydrofoil heads in the following directions:
(a) East
(b) West
(c) South
(d) North
[^0]
[^0]: *Note: Please follow the strategies for "Problem Solving" explained in the class.

