भारतीय प्रौद्योगिकी संस्थान पटना
 INDIAN INSTITUTE OF TECHNOLOGY PATNA

PH101 (Physics-I)

Tutorial-III (August 11, 2014)
[Motion]*

1. A projectile of mass m is fired from the origin at speed v_{0} and angle θ. It is attached to the origin by a spring with spring constant k and relaxed length zero.
(a) Find $x(t)$ and $y(t)$.
(b) Verify that for small $\omega \equiv \sqrt{\frac{k}{m}}$, the trajectory reduces to normal projectile motion.
(c) Verify that for large ω, the trajectory reduces to simple harmonic motion, i.e., oscillatory motion along a line (at least before the projectile smashes back into the ground!).
(d) Physically interpret "small" and "large ".
(e) What value should ω take so that the projectile hits the ground when it is moving straight downward?
2. For small oscillations, the period of a pendulum is approximately $T \approx 2 \pi \sqrt{\frac{l}{g}}$ independent of the amplitude, θ_{0}. In class we used a perturbative approach for estimating the corrections to T when amplitude θ_{0} becomes large. In this tutorial problem, an alternate method for solving the same problem is illustrated.
(a) Using $d t=\frac{d x}{v}$, show that the exact expression for T is

$$
T=\sqrt{\frac{8 l}{g}} \int_{0}^{\theta_{0}} \frac{\mathrm{~d} \theta}{\sqrt{\cos \theta-\cos \theta_{0}}}
$$

(b) Making use of the identity $\cos \phi=1-2 \sin ^{2} \frac{\phi}{2}$, write T in terms of sines [why!]. Make a suitable change of variables,

$$
\sin x \equiv \frac{\sin \frac{\theta}{2}}{\sin \frac{\theta_{0}}{2}}
$$

Now expand the integrand in powers of θ_{0} and evaluate the resulting integrals to show that

$$
T \approx 2 \pi \sqrt{\frac{l}{g}}\left(1+\frac{\theta_{0}^{2}}{16}+\cdots\right)
$$

3. Consider the Atwood's machine shown in the figure. Note that the axle of the bottom pulley has two strings attached to it. Obtain the accelerations of the masses.

[^0]

Figure 1: An Atwood's machine.

[^0]: *Note: Please follow the strategies for "Problem Solving" explained in the class.

