भारतीय प्रौद्योगिकी संस्थान पटना
 INDIAN INSTITUTE OF TECHNOLOGY PATNA

$\overline{\text { PH101 (Physics-I) }}$
Tutorial-II (August 4, 2014)

[Newtons laws]*

1. An object is dropped from the top of a building and is in view for time T_{0} while passing a window of height H_{W} located at a certain altitude. Estimate the distance travelled by the object before it appears across the window? [Neglect air drag.]
2. A body is released from rest and moves under uniform gravity in a medium that exerts a resistance force proportional to the square of its speed and in which the bodys terminal speed is V_{T}. Show that the time taken for the body to fall a distance H is $\frac{V_{T}}{g} \cosh ^{-1}\left(e^{\frac{g H}{V_{T}^{2}}}\right)$.
3. A ball is thrown with speed v_{0} at an angle θ. Let the drag force from the air take the form $F_{\mathrm{d}}=-\beta v=-m \alpha v$. (a) Find $x(t)$ and $y(t)$. (b) Assume that the drag coefficient takes the value that makes the magnitude of the initial drag force equal to the weight of the ball. If your goal is to have x be as large as possible when y achieves its maximum value, show that θ should satisfy $\sin \theta=\frac{\sqrt{5}-1}{2}$ (inverse of the golden mean!).
4. A particle is sliding along a smooth radial groove in a circular turntable which is rotating with constant angular speed Ω. The distance of the particle from the rotation axis at time t is observed to be $r=b \cosh (\Omega t)$ for $t \geq 0$, where b is a positive constant. Find the speed of the particle (relative to a fixed reference frame) at time t, and also find the magnitude and direction of the acceleration.
5. The luckless Daniel (D) is thrown into a circular arena of radius a containing a lion (L). Initially the lion is at the centre O of the arena while Daniel is at the perimeter. Daniels strategy is to run with his maximum speed u around the perimeter. The lion responds by running at its maximum speed U in such a way that it remains on the (moving) radius OD. (i) Set up the differential equation satisfied by r (the distance of L from O). (ii) Find r as a function of t . (iii) If $U \geq u$, show that Daniel will be caught, and find how long this will take. (iv) Show that the path taken by the lion is a circle. (v) For the special case in which $U=u$, sketch the path taken by the lion and find the point of capture.
6. A bee flies on a trajectory such that its polar coordinates at time t are given by $r=\frac{b t}{\tau^{2}}(2 \tau-t)$ and $\theta=\frac{t}{\tau} ;(0 \leq t \leq 2 \tau)$
where b and τ are positive constants. Find the velocity vector of the bee at time t. Show that the least speed achieved by the bee is b / τ. Find the acceleration of the bee at this instant.
[^0]
[^0]: *Note: Please follow the strategies for "Problem Solving" explained in the class.

