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I. DESCRIPTION OF CHOSEN DATASETS

Please note that we have considered microarray gene expres-
sion data which contains numeric features (downloaded from
www.ncbi.nlm.nih.gov/geo/). Our proposed method Auto-
MODE can be successfully applied on any other real life
datasets where features are numeric. However, there are several
real life categorical attribute based biological datasets available
in UCI Machine Learning Repository 1. Our proposed cluster-
ing algorithm can work on them too with some preprocessing.
For any dataset, containing categorical attributes can be con-
verted first to numeric values on which our proposed method
can be applied successfully.

A. GSE16473

It is the analysis to evaluate the role of miRNAs in skeletal
muscle regeneration. Hence, global miRNA expression is
measured during muscle cell growth and differentiation. This
data set contains 231 miRNAs and 7 time points.

B. GSE17155

It is the analysis to test the hypothesis that there is a specific
miRNA expression signature which characterizes male breast
cancers. The miRNA microarray analysis was performed in
a series of male breast cancers and compared them to cases
of male gynecomastia and female breast cancers.This data set
contains 774 miRNAs and 38 time points.

C. GSE29495

The miRNA profiling of kidney tissue from C57BL/6 mice
that received a 30 minute is chemic injury compared with
control kidney tissue from mice that received sham operation
only has been conducted. The number of miRNAs and the
time points are 574 and 17, respectively.

II. CHOSEN CLUSTER VALIDITY MEASURES

Those are described as follows,
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1http://www.ics.uci.edu/ mlearn/MLRepository.html

Fig. 1: Chromosome Representation of Proposed Differential
Evolution Based Multiobjective Clustering Technique (Auto-
MODE) for miRNA Classification

A. Silhouette index

Silhouette index [1] is an internal cluster validity index
which we have used in this article to measure the goodness
of clustering solutions. It is a function of cluster compactness
and separation. Suppose,
x= average distance of a particular point from other points of
the same cluster in which that point resides.
y= minimum of average distance of that point to other points
of other clusters.
Then the Silhouette width, Sil, for a particular point can be
defined as,

Sil =
(x− y)

max(x, y)
(1)

Silhouette index is computed as average of Silhouette width
of all data points of a given data set. It can vary from -1 to 1
and a good clustering solution posses higher Silhouette index
value.

B. DB index

Davies-Bouldin index or DB index [2] is an internal cluster
validity index to measure the goodness of the formed clusters.
It is expressed as,
(Summation of within-cluster separation / the between-cluster
separation)
Separation within the ith cluster Si is calculated as Si =
[
∑

x∈Ci
de(x, ci)]/ni where ni denotes the number of points

present in cluster Ci, and de(x, ci) is the Euclidean distance
between the point x and the center ci of the ith cluster, Ci.
The distance between clusters Ci and Cj , denoted by dij , is
defined as dij = de(ci, cj). Then, DB index is defined as,
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DB =

∑K
i=1 Ri

K
(2)

here,
Ri = maxj,j 6=i(Si + Sj)/dij .

If the obtained clusters are compact in shape and also well
separated from each other then the DB index value will be
the lowest. A good clustering solution corresponds to the
minimum value of DB-index.

III. PREPROCESSING OF DATASETS

Before applying our proposed clustering algorithm on
miRNA datasets we have done some preprocessing to normal-
ize the data. As the raw microRNA datasets contain numerical
attributes of both high and low ranges, in order to remove the
bias-ness at first all expression values are log transformed.
Then each miRNA is normalized to have mean 0 and variance
1. All of the proposed experiments are performed on the
normalized miRNA datasets.

IV. INITIALIZING INPUT PARAMETERS FOR PROPOSED
ALGORITHM

The parameter combinations used for Auto-MODE are as
follows: population size: 100, maximum number of genera-
tions: 30, CR = 0.04 and F = 0.8. The parameter combination
is derived after conducting a thorough sensitivity study. As the
DE algorithm is highly sensitive to it’s parameters, therefore a
thorough sensitivity study has been performed to determine the
appropriate values of different parameters. During sensitivity
study, the following ranges are kept for different parameters:
• number of generations = {20, 30, 40, 50}.
• CR is varied in the range of 0.1 to 1.
• F is varied between 0.5 to 1.

Finally the combination of parameter values for which the
best results are obtained are reported above. The proposed
approach is executed 10 times on each dataset. The average
values of the best results obtained are reported in Table 1 of
main manuscript.

V. PROPOSED ENTIRE PROCESS

The basic steps of the proposed algorithm, Auto-MODE, are
furnished below:

1) Create initial population of size N by randomly generat-
ing Weights and Cluster Centers vectors of individual
chromosome (as described in Section II.B of main
manuscript).

2) Run FCM algorithm five times on each chromosome to
identify the initial partitionings.

3) For each vector, two objective functions, XB and I
indices are calculated (as described in Section II.D of
main manuscript).

4) Perform non-dominated sorting and crowding distance
operations [3] on the solutions of current population.

5) Perform mutation operation on Weights and Cluster
Centers components of the individual chromosomes of
the population.

6) Perform classical crossover operation on Weights and
Cluster Centers components of the individual chromo-
somes of the population.

7) The XB and I index based objective measures are cal-
culated for all the chromosomes of the new population
of size N.

8) Merge two populations : parent population(N) and off-
spring population(N) to get a population of size 2N.

9) Perform non-dominated sorting and crowding distance
operations to rank merged population.

10) Apply selection operation to select best N number of
chromosomes from the merged population of size 2N .

11) Repeat the steps 5-10 until the maximum number of
generations is reached.

12) Measure the values of Silhouette index [1] for all the
generated non-dominated solutions on the final popula-
tion.

13) Select the solution with highest value of Silhouette index
[1].

VI. COMPLEXITY ANALYSIS OF PROPOSED Auto-MODE
ALGORITHM

In this section the time complexity of the proposed Auto-
MODE clustering algorithm is analyzed. Let us assume that:
n: number of points and d: number of features, MaxLen:
maximum number of clusters, N : total population size, XB
and I are the times taken to compute the XB and I index
of a single chromosome, respectively, tolIndex: total num-
ber of objective functions, maxgen: number of generations,
chromLength: length of chromosome which is (MaxLen×
d) + d .

Below we have analyzed the complexities of different steps
of the proposed algorithm:

1) Initialization of population takes O(N×chromLength).
2) Membership calculation for one chromosome takes

O(n × MaxLen) time. For the whole population the
total time required for this step is O(N×n×MaxLen).

3) Calculation of objective functions for all chromosomes
of population takes O(N × tolIndex× (XB + I)).

4) Non-dominated sorting takes O(tolIndex× (2N)2).
5) Crowding distance assignment takes O(tolIndex ×

2N log(2N)).
6) Selection step of Auto-MODE needs O(N ×

chromLength) time.
7) Mutation and crossover operations require O(N ×

chromLength).
Summarizing the above complexities, overall complexity

of the Auto-MODE algorithm becomes O(N × tolIndex ×
(XB + I)). As, the computational time of XB / I index is
O(n2), therefore the time complexity of proposed Auto-MODE
becomes O(n2N). For maximum maxgen number of genera-
tions the total time complexity becomes O(n2N ×maxgen).

VII. OBTAINED PARETO OPTIMAL FRONTS

In order to show the set of final trade-off/non-dominated
solutions, the final Pareto front obtained by our proposed
approach Auto-MODE for three datasets are plotted. These
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Fig. 2: Pareto front of obtained five solutions for GSE16473
data set

Fig. 3: Pareto front of obtained four solutions for GSE29495
data set

are shown in Figures 2, 3, 4, respectively. Each of the points
on the final Pareto front represents one complete clustering
solution. Each of these non-dominated solutions corresponds
to a complete assignment of all data-points of chosen data set
to different clusters. For a particular data set all solutions on
Pareto front are non-dominating to each other and are equally
good. These figures demonstrate the conflicting nature of the
chosen objective functions.

VIII. BIOLOGICCAL SIGNIFICANCE TEST RESULTS FOR
FOUR REST CLUSTERS FROM GSE29495 DATASET

The outcomes of biological significance test for four rest
obtained clusters for GSE29495 dataset are shown in Table I,
II, III, IV.

Fig. 4: Pareto front of obtained six solutions for GSE17155
data set

GO term Module % Genome %
regulation of cellular process: 77% 46%

GO:0050794
macromolecule metabolic process : 69% 27%

GO:0043170
regulation of macromolecule biosynthetic process: 57% 16%

GO:0010556
single-organism process : 91% 54%

GO:0044699
macromolecule metabolic process : 47% 27%

GO:0043170
cellular component organization or biogenesis: 54% 21%

GO:0071840
response to chemical: 43% 14%

GO:0042221

TABLE I: Significant GO terms shared by genes of cluster 2
for GSE29495 dataset

GO term Module % Genome %
regulation of primary metabolic process: 43% 23%

GO:0080090
single-organism process: 54% 20%

GO:0044699
cellular response to stimulus: 65% 27%

GO:0051716
nitrogen compound metabolic process: 52% 30%

GO:0006807
developmental process: 47% 23%

GO:0032502
single-organism developmental process: 47% 23%

GO:0044767
single-organism cellular process: 68% 38%

GO:0044763

TABLE II: Significant GO terms shared by genes of cluster 3
for GSE29495 dataset

GO term Module % Genome %
regulation of biological quality: 48% 15%

GO:0065008
regulation of cell communication: 54% 12%

GO:0010646
positive regulation of cellular process: 52% 21%

GO:0048522
localization: 44% 20%
GO:0051179

establishment of localization: 45% 16%
GO:0051234

cellular macromolecule metabolic process: 53% 24%
GO:0044260

single organism signaling: 53% 22%
GO:0044700

multicellular organismal process: 59% 31%
GO:0032501

TABLE III: Significant GO terms shared by genes of cluster
4 for GSE29495 dataset

GO term Module % Genome %
anatomical structure development: 54% 21%

GO:0048856
regulation of primary metabolic process: 64% 23%

GO:0080090
anatomical structure morphogenesis: 38% 9%

GO:0009653
animal organ development: 45% 12%

GO:0048513
response to chemical: 43% 14%

GO:0042221
positive regulation of metabolic process: 38% 14%

GO:0009893
regulation of macromolecule metabolic process: 44% 23%

GO:0060255
regulation of nucleobase-containing compound metabolic process: 33% 16%

GO:0019219
regulation of nucleic acid-templated transcription: 31% 13%

GO:1903506

TABLE IV: Significant GO terms shared by genes of cluster
5 for GSE29495 dataset
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