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I. CHOSEN CLUSTERING ALGORITHMS

A. AMOSA based clustering algorithm

Here the problem of clustering a given gene data set
is addressed by simultaneously optimizing a set of cluster
validity indices capturing different cluster qualities. In order
to make this simultaneous optimization feasible, and also to
identify a set of trade-off solutions, the search capability of
a popular multi-objective optimization or MOO technique,
AMOSA (Archived Multi Objective Simulated Annealing )
[3] is accomplished. It has been shown in the literature that
AMOSA excels in the field of MOO as compared to several
other existing multi-objective evolutionary algorithms. The
steps of AMOSA based proposed clustering technique are
mentioned below,

1) String Representation and Archive Initialization
AMOSA [3] utilizes the concept of string to represent a

particular solution. At the beginning of execution it initializes
the archive with some random solutions. Each archive member
represents one complete clustering solution. The length of the
archive member varies over a range. Suppose our chosen data
set contains n number of genes and each gene has d number
of total GO terms (for biological process, cellular component,
molecular function). n and d are specific to a data set.

Let us assume that archive member i represent the centroids
of Ki clusters. Then the array or archive member has length
li where li = d ∗Ki.

Each data point represents a gene of d number of total GO
terms and each cluster centroid ck is defined by a vector of d
GO terms.

Each centroid used in string encoding is atomic in nature
i.e., during mutation if we insert one centroid then all the
contained annotation values will be inserted. Similarly if we
perform deletion during mutation, all annotation values of the
chosen centroid will be deleted.

The number of centroids, Ki, encoded in a string i is chosen
randomly between two limits Kmin and Kmax. The following
equation is utilized to determine this value:

Ki = (rand()mod(Kmax − 1)) +Kmin (1)

Here, rand() is a function returning a random integer number
and Kmax is the upper-limit of the number of clusters. The
minimum number of clusters (Kmin) is assumed to be 2.
The number of whole clusters present in a particular string/

member of archive can therefore vary in the range of 2
to Kmax. For the initialization purpose, these Ki cluster
centroids represented in a string are some randomly generated
genes from the cancer data set.

2) Assignment of Points and Computation of Objective
Functions

After the initialization of archive members with some ran-
domly generated cluster centroids, assignment of n genes or
data points (where n = total number of genes in a particular
data set) to different clusters is performed. Next, we compute
two cluster quality measures, XB index[14], PBM index[2],
which are used as two objective functions for each solution or
string. Thereafter using the search methodology of AMOSA
we simultaneously optimize these two objective functions.

1) Membership of Genes to Different Clusters:
In this part, the assignment is done based on any one
of our proposed and existing semantic similarity or
distance measures (as mention in Section II and IV). For
a particular dataset the gene-gene similarity/ distance
measure can be found from generated corresponding
similarity matrices as described in Section V.A.3). A
maximum similarity value between a point (here gene)
and a cluster center results in assigning that point to the
given cluster. Please note that here the cluster center is
one of the points in the dataset itself.

2) Objective Functions:
To measure the quality of each solution, two objective
functions are calculated. Both are functions of cluster
compactness and separation which are shown in Fig-
urecompact. To get some optimized solutions, value of
XB index corresponding to a particular solution should
be minimized and the value of PBM index should be
maximized. These two objective functions are optimized
simultaneously using the search capability of AMOSA.
The mathematical formulations of these objective func-
tions are given below,

• XB index: Xie and Beni[14] proposed a cluster
validity index (XB) which is a function of
compactness and separation. Low value of
compactness and high value of separation indicate
good quality, well separated clusters. Hence,
the most desirable partitioning is obtained by
minimizing the XB index for k=2....Kmax.
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XB =

∑Kmax

i=1

∑n
j=1 µ

2
ij‖xj − ci‖2

n(mini 6=k‖ci − ck‖2)
(2)

where, Kmax = total number of clusters in a solu-
tion.
n = total number of data points to be clustered.
µij= membership of data point i with respect to
cluster j (computed as described in Section I-A2).
xj = jth data point.
ci = ith cluster.

• PBM index: The PBM index (acronym constituted
of the initials of the names of its authors, Pakhira,
Bandyopadhyay and Maulik)[2] is calculated using
the distances between the points and their centroids
and the distances among the centroids themselves.
It is an Euclidean distance based cluster validity
index which should be maximized for obtaining the
correct number of clusters. It is defined as given
below:

PBM(K) = (
1

K
× E1
EK
×DK)p (3)

where K = number of clusters
Here EK =

∑K
k=1

∑nk

j=1 de(ck, x
k
j )

and DK = maxKi,j=1 de(ci, cj)
where cj = Center of the jth cluster,
xkj = jth point of the kth cluster.
nk = total number of data points of the kth cluster.
The power p is used to control the contrast between
different cluster configurations. In this article we
have kept p = 2.

Difference between these two objective functions is that
these two capture different aspects of cluster compact-
ness and separation.

3) Search Operators
Performing perturbation operation on clustering solutions

helps to explore the search space properly. Therefore, we have
used three different mutation operations which are mentioned
as follows:

A clustering solution can be changed in three different ways,
• One randomly chosen cluster center encoded in the

solution can be replaced by another data point. Among
all data points of a dataset one data point (here point
means gene) with respect to which the average similarity
of all the members of the selected cluster is maximum is
nominated to replace the existing center of that cluster.

• A number of encoded clusters in a solution can be
decreased by one. This is done by deleting a randomly
selected cluster center from the given solution.

• A number of encoded clusters in a solution can be
increased by one. This is done by randomly selecting a
point from the dataset as the new cluster center and then
inserting this in the solution.

1) Mutation 1: This is used to replace cluster center by a
new center. Suppose center of cluster Ci is selected for
this mutation operation. Then the new cluster center of

Fig. 1: Three types of mutation operations applied on a string

cluster Ci is chosen according to any of the following
equations.

j = argminj

∑
∀Gj 6∈Ci

∑
k=1...p d(Gj , CiGk

)

|Ci|
(4)

j = argmaxj

∑
∀Gj 6∈Ci

∑
k=1...p S(Gj , CiGk

)

|Ci|
(5)

Where, CiGk
represents kth gene, Gk, of cluster Ci. p

is the number of data points in cluster Ci. d(Gj , CiGk
)

is the distance between gene Gj and CiGk
according

to any of our chosen distance measures in this article.
S(Gj , CiGk

) is the similarity between gene Gj and CiGk

according to any of our chosen similarity measures in
this article.
According to Equations 4 and 5, the center of cluster Ci

gets replaced by gene Gj .
2) Mutation 2: In this type of mutation the size of the

string is decreased by one. From the string a cluster
center is chosen randomly and then deleted. As each
cluster center is considered to be indivisible, so by
deleting a cluster center all of its dimensional values
are removed.

3) Mutation 3: This mutation is used to increase the size
of the string by one. This is performed by inserting a
new center in the string. Similar to 2nd type of mutation
here also each center is considered to be indivisible.

In order to illustrate the process further, in Figure 1 we have
shown the effect of mutation operations on a particular string.
Here GCi is the center of ith cluster of a particular string.
The final length of the string varies with the type of mutation
operation applied.

4) Selecting Best Clustering Solution from the Pareto Op-
timal Front

A set of non dominated solutions is produced by any
MOO technique [1] on its Pareto optimal front. Each of
the points on the final Pareto optimal front represents one
complete clustering solution. Each of these non-dominated
solutions corresponds to a complete assignment of all data-
points of chosen data set to different clusters. In the absence of
additional information, any of those solutions can be selected
as the optimal solution. In this approach we have selected
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Fig. 3: Binary gene-GO term annotation matrix representation

the best solution using one internal cluster validity index, i.e.,
Silhouette index [13]. The solution having highest Silhouette
index value is selected as the best solution.

B. NSGA-II based clustering

Non-dominated Sorting Genetic Algorithm-II or NSGA-II
[6] is a popular multi-objective evolutionary algorithm. Ex-
isting literature also suggests that NSGA-II can perform well
while optimizing up to four objective functions simultaneously.
Motivated by this, in [7] authors have developed a NSGA-
II based clustering framework. We have utilized the same
framework with the set of objective functions (XB index
and PBM index) as used in AMOSA based clustering to
automatically cluster the given gene data set using various
gene-gene similarity matrices.

C. K-means clustering algorithm

K means clustering algorithm was developed by J. McQueen
and then by J. A. Hartigan and M. A. Wong around 1979
[9]. It is one of the simplest unsupervised learning algorithms
that solves the well known clustering problem [10], [12]. The
procedure follows a simple and easy way to partition a given
data set into a certain number of clusters (assume ‘K’ clusters)
fixed a priori. The value of ‘K’ is chosen according to Section
VI.A.3 and Table I of main manuscript. The steps of K-means
are mentioned below in brief,

1) Select ‘K’ points randomly from the set of available
points. These points represent initial group centroids.

2) Assign each object to the closest centroid using some
distance measure.

3) When all objects have been assigned, recalculate the
positions of the ‘K’ centroids.

4) Repeat Steps 2 and 3 until the centroids no longer
move. This produces a separation of the objects into
groups from which the metric to be minimized can be
calculated.

D. K-medoids clustering algorithm

The K-medoid algorithm is a clustering algorithm related to
the K-means algorithm and the medoid shift algorithm. Both
K-means and K-medoid algorithms are partitional (breaking
the dataset into several groups) in nature. K-means attempts to
minimize the total squared error, while K-medoids minimizes
the sum of dissimilarities between points which are in a single
cluster with respect to the medoid, a point designated as the
center of that cluster. In contrast to the K-means algorithm,
K-medoids chooses any real data point from the existing
cluster as the center. In K-medoids, ‘K’ is chosen apriori

as chosen in K-means algorithm. It is more robust to noise
and outliers as compared to K-means because it minimizes a
sum of general pairwise dissimilarities instead of a sum of
squared Euclidean distances. The most common realisation
of K-medoid clustering is the Partitioning Around Medoids
(PAM) algorithm and the corresponding steps are summarized
as follows:

1) Initialize: randomly select ‘K’ of the n data points as
the medoids.

2) Associate each data point to the closest medoid (”clos-
est” here is defined using any valid similarity/distance
measure, in this work we have used seven different
similarity and distance measures).

3) For each medoid m:
For each non-medoid data point o:
Swap m and o and compute the total cost of the config-
uration (sum of distances of points to their medoids).

4) Select the configuration with the lowest cost.
5) Repeat steps 2 to 4 until there is no change in the

medoid.

E. Hierarchical clustering algorithm

Given a set of N items to be clustered, and an N*N
distance (or similarity) matrix, the basic process of hierarchical
clustering (defined by S.C. Johnson in 1967) [11] is as follows:

1) Start by assigning each item to a cluster, so that initially
we have N number of clusters where N is the total
number of data points. The initial similarity matrix
between clusters is same as the initial similarity matrix
of the data points.

2) Find the closest (most similar) pair of clusters and merge
them into a single cluster, so that the number of clusters
is reduced by one.

3) Update the distance matrix between clusters after com-
puting distances (similarities) between the new cluster
and each of the old clusters.

4) Repeat steps 2 and 3 until all items are clustered into a
single cluster of size N.

Step 3 can be done in different ways, based on which there
are three types of hiearchical clustering techniques: single-
linkage, complete-linkage and average-linkage clustering. In
single-linkage clustering (also called the connectedness or
minimum method), the distance between two clusters is kept
equal to the shortest distance between any two points belong-
ing to two different clusters. If similarities between clusters
are given as input instead of distances, the similarity between
two clusters is considered as the highest similarity between
two points belonging to two different clusters. In complete-
linkage clustering (also called the diameter or maximum
method), the distance between two clusters is kept equal to
the largest distance between two points belonging to two
different clusters. In average-linkage clustering, the distance
between two clusters is kept equal to the average distance
between all pairs of points belonging to two different clusters.
A variation of average-link clustering is the UCLUS method
of R. D’Andrade (1978) [4] which uses the median distance.
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Fig. 2: Flowchart of the proposed framework

This helps to detect the outliers easily compared to the average
distance.

F. DBSCAN
Density-based spatial clustering of applications with noise

(DBSCAN) is a data clustering algorithm proposed by Martin
Ester, Hans-Peter Kriegel, Jrg Sander and Xiaowei Xu in 1996
[8]. It utilizes the concepts of density to identify regions of
higher densities separated by regions of low densities. The
core idea of this algorithm is to identify three sets of points :
outliers (which are not part of any cluster), core points (which
are the major components of a particular cluster), border points
(which are not the core points but density connected with the
core points). DBSCAN is one of the most common clustering
algorithms and also most cited in scientific literature. Another
advantage of it is the automatic determination of the number of
clusters. But the algorithm heavily suffers from the problem of
improper selection of its parameters which can lead to wrong
results.

II. CHOSEN CLUSTER VALIDITY MEASURES

In order to evaluate goodness of clustering solutions ob-
tained by several clustering techniques, some external or
internal cluster validity measures can be used. As true par-
titioning information of our chosen dataset is not available
so we have utilized two internal cluster validity measures,
namely Silhouette index [13] and DB index [5], to quantify
the goodness of the partitionings.

These are described as follows:

A. Silhouette index

Silhouette index [13] is an internal cluster validity index
which we have used in this article to measure the goodness
of clustering solutions. It is a function of cluster compactness
and separation. Suppose,
x= average distance of a particular point from other points of
the same cluster in which that point resides.
y= minimum of average distance of that point to other points
of other clusters.
Then the Silhouette width, Sil, can be defined as,

Sil =
(x− y)
max(x, y)

(6)

Silhouette index is computed as average of Silhouette width
of all data points of a given data set. It can vary from -1 to
1 and a good clustering solution possesses higher Silhouette
index value.

B. DB index

DaviesBouldin index or DB index [5] is an internal cluster
validity index to measure the goodness of the formed clusters.
It is expressed as,
(Summation of within-cluster separation / the between-cluster
separation)
Separation within the ith cluster, Si, is calculated as Si =
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[
∑

x∈Ci
de(x, ci)]/ni where ni denotes the number of points

present in cluster Ci, and de(x, ci) is the Euclidean distance
between the point x and the center ci of the ith cluster, Ci.
The distance between clusters Ci and Cj , denoted by dij , is
defined as dij = de(ci, cj). Then, DB index is defined as,

DB =

∑K
i=1Ri

K
(7)

here, Ri = maxj,j 6=i(Si + Sj)/dij . If the obtained clusters
are compact in shape and also well separated from each
other then the DB index value would be the lowest. A good
clustering solution would minimize the DB index value as
much as possible.

GO term Module % Genome %
transmembrane transport 47.49% 27.32%

GO:0055085
cellular response to DNA damage stimulus 53.11% 35.30%

GO:0006974
response to chemical 57.73% 38.39%

GO:0042221
ion transport 49.73% 36.39%
GO:0006811

mitotic cell cycle 58.05% 35.77%
GO:0000278

rRNA processing 57.28% 25.44%
GO:0006364

carbohydrate metabolic process 46.90% 34.90%
GO:0005975

TABLE III: Significant GO terms shared by genes of cluster
2 for Yeast dataset produced by AMOSA- clustering

GO term Module % Genome %
transcription from RNA polymerase II promoter 49.71% 28.16%

GO:0006366
cellular response to DNA damage stimulus 47.55% 25.30%

GO:0006974
chromatin organization 46.83% 25.35%

GO:0006325
organelle fission 56.83% 24.62%

GO:0048285
DNA repair 56.83% 24.58%
GO:0006281

regulation of organelle organization 46.47% 24.89%
GO:0033043

TABLE IV: Significant GO terms shared by genes of cluster
3 for Yeast dataset produced by AMOSA- clustering

GO term Module % Genome %
transmembrane transport 58.92% 37.32%

GO:0055085
carbohydrate metabolic process 47.38% 34.90%

GO:0005975
organelle fission 57.38% 34.62%

GO:0048285
cytoskeleton organization 46.46% 23.94%

GO:0007010
cell wall organization or biogenesis 55.54% 24.65%

GO:0071554

TABLE V: Significant GO terms shared by genes of cluster 4
for Yeast dataset produced by AMOSA- clustering

GO term Module % Genome %
cellular response to DNA damage stimulus 46.22% 35.30%

GO:0006974
cellular amino acid metabolic process 45.85% 33.95%

GO:0006520
organelle fission 45.67% 34.62%

GO:0048285
protein phosphorylation 24.75% 13.63%

GO:0006468
peptidyl-amino acid modification 24.39% 23.41%

GO:0018193

TABLE VI: Significant GO terms shared by genes of cluster
5 for Yeast dataset produced by AMOSA- clustering

GO term Module % Genome %
generation of precursor metabolites and energy 43.50% 23.02%

GO:0006091
monocarboxylic acid metabolic process 43.50% 32.96%

GO:0032787
sporulation 43.72% 22.73%

GO:0043934
chromosome segregation 34.60% 23.46%

GO:0007059
cofactor metabolic process 34.81% 13.35%

GO:0051186

TABLE VII: Significant GO terms shared by genes of cluster
6 for Yeast dataset produced by AMOSA- clustering
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p values
Proximity measures NSGA-II clustering K-means K-medoids Hier-single Hier-average Hier-complete DBSCAN

distJiang 2.321E-172 2.273E-185 2.563E-231 2.573E-236 2.178E-315 2.754E-126 2.432E-214
simShen 1.732E-243 2.1596E-285 2.455E-083 1.464E-237 2.167E-094 2.464E-218 2.273E-194
simNTO 1.253E-163 2.187E-298 1.678E-247 1.574E-216 2.579E-186 2.679E-245 2.636E-217
simLin 2.412E-252 1.234E-291 3.123E-092 2.184E-021 2.54E-341 1.984E-192 1.578E-316
InteGO 2.342E-156 3.166E-296 2.734E-172 2.583E-177 1.463E-426 2.562E-251 2.174E-287

G− SESAME 1.735E-261 2.183E-291 1.654E-235 2.182E-213 2.183E-73 1.732E-077 2.134E-148
A−DaGO − Fun 2.165E-183 2.856E-193 2.674E-231 1.738E-291 2.272E-193 2.73E-291 2.465E-201

SIMnorm−structdepth 2.173E-313 3.824E-382 3.213E-173 2.184E-328 3.876E-217 2.765E-182 2.684E-187
Multi-SIM 2.173E-292 2.363E-281 2.876E-195 2.653E-194 1.753E-052 3.15E-127 1.323E-183
Multi-DIST 2.153E-291 2.184E-371 2.543E-321 1.854E-218 2.753E-219 2.753E-092 2.262E-166

TABLE I: The p-values produced by t-test comparing DB index by AMOSA based clustering algorithm with other algorithms
for all the ten similarity/distance measures for Yeast dataset

p values
Clustering algorithms distJiang simShen simNTO simLin InteGO G− SESAME A−DaGO − Fun SIMnorm−structdepth

AMOSA clustering 2.546E-036 3.564E-173 3.218E-234 2.163E-435 2.334E-271 2.252E-183 2.124E-281 2.845E-382
NSGA-II clustering 1.366E-023 1.27E-092 1.382E-120 1.834E-092 1.284E-212 1.835E-095 2.398E-193 2.162E-183

K-means 2.136E-254 1.65E-193 2.502E-193 1.982E-218 2.184E-129 2.193E-216 1.367E-193 2.549E-367
K-medoids 2.173E-293 3.283E-184 3.273E-193 2.74E-193 2.935E-183 3.262E-269 1.856E-291 2.146E-292
Hier-single 1.546E-187 3.175E-379 2.764E-285 2.754E-317 2.368E-294 3.643E-295 1.272E-294 2.145E-183

Hier-Average 2.595E-196 2.785E-318 1.754E-219 2.368E-296 2.837E-193 2.183E-149 2.184E-295 2.173E-378
Hier-Complete 2.153E-272 3.183E-291 3.173E-347 3.175E-285 3.273E-193 2.193E-295 1.856E-292 2.173E-268

DBSCAN 3.173E-183 2.183E-083 1.366E-193 2.163E-193 2.181E-069 1.377E-282 2.471E-275 2.272E-173

TABLE II: The p-values produced by t-test comparing DB index by Multi-SIM measure with other measures for all of the
eight chosen clustering algorithms for Yeast dataset
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