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To describe the cellular functions of proteins and genes, a potential dynamic vocabulary is Gene Ontology (GO), which comprises
of three sub-ontologies namely, Biological-process, Cellular-component and Molecular-function. It has several applications in the field
of bioinformatics like annotating/measuring gene-gene or protein-protein semantic similarity, identifying genes/proteins by their GO
annotations for disease gene and target discovery etc. To determine semantic similarity between genes, several semantic measures
have been proposed in literature, which involve information content of GO-terms, GO tree structure or the combination of both.
But most of the existing semantic similarity measures do not consider different topological and information theoretic aspects of
GO-terms collectively. Inspired by this fact, in this article, we have first proposed three novel semantic similarity/distance measures
for genes covering different aspects of GO-tree. These are further implanted in the frameworks of well-known multi-objective and
single-objective based clustering algorithms to determine functionally similar genes. For comparative analysis, ten popular existing
GO based semantic similarity/distance measures and tools are also considered. Experimental results on Mouse genome, Yeast and
Human genome datasets evidently demonstrate the supremacy of multi-objective clustering algorithms in association with proposed
multi-factored similarity/distance measures. Clustering outcomes are further validated by conducting some biological/statistical
significance tests.

Index Terms—Gene Ontology (GO), Gene clustering, Semantic similarity/distance measure, Gene-gene similarity matrix, Multi-
objective clustering.

I. INTRODUCTION

GENE Ontology (GO) is a controlled and consistent
global database where knowledge about gene functions

for several world’s major organisms for plant, animal and
microbial genomes are stored in the form of directed acyclic
graphs [2]. The overall biological knowledge is stored in
the form of three controlled taxonomies - Biological Process
(BP), Molecular Function (MF), and Cellular Component
(CC). Each of them is a complete ontology containing several
processes and sub-processes which are referred as GO-terms
having direct and indirect relationships with each other. For
various organism databases, their genes are annotated with a
specific set of GO-terms (under BP, MF and CC) and this an-
notation information can be downloaded from the GO website
(http://www.geneontology.org/). GO is used to serve different
purposes like analysing gene products and their functionalities
across different organisms. One such emerging application
of GO is finding semantic similarity between genes. Two
genes which are semantically related, represent that they are
functionally connected and are involved in similar biological,
molecular and cellular functions. GO annotation information
and term similarities can intuitively measure the functional
similarity between genes.
Here, one trivial question arises, Why estimation of functional
similarity between genes is needed? In the post-genomic
era, one of the important goals is to discover functions of
genes. DNA microarray technology helps in monitoring the
expression levels of thousands of genes during important
biological processes and over the collection of related samples.
Automatically uncovering functionally related genes, is a basic

building block to solve various problems related to functional
genomics [4]. But with the increasing number of genes,
analysis of data has become a challenging task. To meet
with this challenge, a potential alternative is to discover the
interesting patterns lying within the dataset and this process
can be assisted by some clustering [1] or bi-clustering [19]
techniques. The effectiveness or accuracy of any clustering/bi-
clustering technique highly depends on the underlying sim-
ilarity/distance measure used. But automatically determining
the suitable similarity measure/distance function for clustering
of genes remains an open problem in the field of functional
genomics.
The aim behind clustering of gene expression data is to find
co-regulated genes or genes having similar expression values
i.e., genes exhibiting similar functions. Though clustering of
gene expression data over a set of samples helps in finding the
co-regulated genes, but this does not consider the semantic
relationships exist between them. Motivated by this, in the
past, several researches have been carried out on developing
various semantic similarity measures using GO to determine
functionally similar genes. But most of the existing measures
do not consider some important properties of GO-terms and
GO. In this paper, we have identified various mutually exclu-
sive GO-term properties and then developed two novel seman-
tic similarity and a novel semantic distance measure utilizing
different GO properties. These newly developed measures in
turn help in correctly detecting groups of similar genes.

The main contributions of the current work are listed
below:
1. We have proposed a new topological level based semantic
similarity measure named as SIMnorm−structdepth .
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2. Two new multi-factored semantic similarity and distance
measures, namely Multi-SIM and Multi-DIST, respectively
are also proposed. These are called ‘multi-factored’,
as they consider multiple information theoretic and
topological/structural aspects of GO.
3. In order to show the efficacy of the newly developed
similarity or distance measures, seven existing GO based
similarity / distance measures and tools are considered for
comparison.
4. Finally, these ten (out of which three are our proposed
and rest seven are existing) proximity measures are used in
association with two multi-objective and six single-objective
based clustering algorithms to identify functionally similar
genes from three benchmark gene datasets.

II. EXISTING WORKS ON IDENTIFYING FUNCTIONALLY
SIMILAR GENES

There are a number of existing semantic similarity measures
proposed in the past literature. In this section, we will discuss
some of them which are relevant to our work. A number of
information theory based approaches exist in the literature
to measure the semantic similarity between GO-terms. All
of them try to maximize the similarity between two GO-
terms which share more information. Therefore, to measure
the shared information between GO-terms, the information
content (IC) subsumed by them from GO can be utilized. For
any GO-term t, p(t) denotes probability to find a child of t
in GO. Thus, according to principle of information theory, the
Information content (IC) of term t is denoted by −log(p(t)).

One such existing information theory based similarity mea-
sure was proposed by Resnik [23]. According to this model
the similarity between terms ti and tj is given as follows:

simResnik(ti, tj) = maxt∈S(ti,tj)[−log(p(t))]] (1)

where S(ti, tj) denotes the set of parents GO-terms shared
by both ti and tj . max is the maximum operator. Here,
simResnik(ti, tj) ∈ [0,∞]. This measure provides the IC of
Lowest Common Ancestor (LCA) of both terms ti and tj .

Another information-theory based similarity measure was
proposed by Lin [13]. Here also similarity between two
terms is calculated based on parent commonality. But here
an additional information i.e., ICs of the query terms are also
included in the similarity measure. Thus, given terms, ti and
tj , their similarity may be calculated as:

simLin(ti, tj) =
2×maxt∈S(ti,tj)[log(p(t))]

log(p(ti)) + log(p(tj))
(2)

Here simLin(ti, tj) ∈ [0, 1]. Lin’s measure is normalized
version of Equation 1.

One drawback of Resnik measure is that, it does not
consider the distance of two terms from their LCA. As a
result, pairs of terms that share the same LCA but reside
in different levels of the GO tree will have same semantic
similarity. But this is not a correct measure. Again in Lin’s
similarity measure, the relative distance of two terms from
their LCA is taken into account but depth of LCA is not
considered. To overcome the limitation of both Resnik and
Lin’s similarity measure, Schlicker et al. [25] proposed a

similarity measure as defined below.

simSchlicker(ti, tj) =
2×maxt∈S(ti,tj)[log(p(t))]

log(p(ti)) + log(p(tj))
×(1−GLCA

G
)

(3)
Where, GLCA and G are sets of genes annotated to corre-
sponding LCA of ti and tj , and root of GO-term, respectively.
The first part of the Equation 3 defines the relative distance of
terms, ti and tj , from their LCAs. The second part represents
the depth of LCA in the GO tree.

Similarity between terms can also be calculated in terms of
distance measures. The more similar two terms is, the closer
they would be in the distance space. Jiang’s distance [10] is
one such existing distance measure. It is defined as follows:

distJiang(ti, tj) =

2×maxt∈S(ti,tj)[log(p(t))]− [log(p(ti)) + log(p(tj))] (4)

The distJiang(ti, tj) ∈ [0,∞] and it reflects the semantic
dissimilarity or distance between two terms, ti and tj . The
correlation between gene expression values and gene similarity
measures computed by Resnik’s, Jiang’s and Lin’s measures
of semantic similarity [10], [13], [23] were analysed in Ref.
[27]. More recently, authors of Ref. [26] proposed a IC based
measure to compute similarity between GO-terms present in a
GO, based on a combination of Lin’s and Resnik’s techniques.

Beside the above mentioned LCA based similarity/distance
measures, Wang et al. [8], [30] proposed a similarity measure,
which considers topological information of GO graph but does
not consider gene annotation data. This measure takes into
account all parent terms of two GO-terms instead of only
considering their LCAs. For a GO-term ti, let it’s one parent
be p. Then the semantic contribution of p to ti, denoted as
SCti,p measures the maximal semantic contribution of the
paths from ti to p. The semantic similarity between two GO-
terms is measured as follows:

simwang(ti, tj) =

∑
p∈Pi∩Pj

(SCti,p + SCtj ,p)∑
t∈Pi

SCti,t +
∑

t∈Pj
SCtj ,t

(5)

Where, Pi (or Pj) is the set of all parents of term ti (or
tj). Utilizing this measure, authors have developed an on-line
semantic similarity measurement tool named as G-SESAME
[8], [30]. Another set based method to measure similarity
between genes was proposed by Ref. [18], which is named as
normalized term-overlap method [18]. The term overlap score
of two genes g1 and g2 is calculated as the number of common
GO-terms between annotation sets of these two genes. Then
the term overlap score is divided by the annotation set size
of the gene with the lower number of GO annotations. It is
calculated as follows:

simNTO(g1, g2) =
simTO(g1, g2)

min(|annotg1 |, |annotg2 |)
(6)

Here, simNTO(g1, g2) ∈ [0, 1].
Utilizing the concept of Gloss Vector measure in natural
language processing (NLP), the authors of Ref. [22] developed
a semantic gene-gene similarity measure utilizing definitions
of GO-terms in GO. Their proposed measure, namely simDEF
- is an optimized version of Gloss Vector measure. Point wise
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mutual information (PMI) is employed for the purpose of
optimization. After constructing optimized definition-vectors
of all GO-terms, the cosine of the angle between term’s
definition-vectors represents the degree of similarity between
them.

Apart from the above discussed similarity measures, several
hybrid similarity measures also exist in the literature which
combine more than one aspect. For example in Shen et al.
[28], authors proposed a similarity measure that takes into
account both the path length between the terms as well as the
IC of the ancestor terms. The distance between two terms is
defined as:

distShen(ti, tj) =

arctan[
∑

t1∈pathi

1
IC[t1]

+
∑

t2∈pathj

1
IC[t2]

]

π/2
(7)

where pathi and pathj are the shortest paths that connect
the terms ti and tj to the lowest common ancestors between
them. As we move from more specific terms (higher IC)
to general terms (lower IC) along the paths, the value of∑

t1∈pathi

1
IC[t1]

+
∑

t2∈pathj

1
IC[t2]

increases and so does the
distance between two terms.

The corresponding semantic similarity between GO-terms
was defined by Shen [28] as follows:

simShen(ti, tj) = 1− distShen(ti, tj) (8)

Another hybrid similarity measure was proposed in Ref.
[20], named as NETSIM (network-based similarity measure).
This measure incorporates information from gene co-function
networks in addition of using the GO structures and anno-
tations. Here authors have shown that incorporation of gene
co-function network data clearly helps in improving the perfor-
mance of the GO-term similarity measures. Another integrative
approach to measure gene-gene similarity was proposed in
Ref. [21] and the developed tool by the authors is named as
InteGO. Here, the gene-gene similarity is measured by consid-
ering three well known existing similarity measures, namely,
Yu [33], Wang [30] and Schlicker [25] and by integrating
‘rank based gene-gene similarity’ based on those measures. It
automatically provides best integration policy (they named it
as seed measure integration) to compute the similarity between
given pair of genes. But in their proposed hybrid measure,
some important topological and structural information of GO-
terms are missing. For example, the weighted shortest path
length factor between GO-terms by Shen [28], the level
of GO-terms in GO tree (as considered by our proposed
SIMnorm−structdepth measure), annotation sets commonality
of genes [18] have not been considered by InteGO [21]. In the
current paper, our proposed measures overcome the limitations
of InteGO tool.

Another area of research in the field of bioinformatics is the
identification of co-regulated genes [32]. As the availability
of high throughput data like DNA microarray is increasing
rapidly, biologists get access to a large collection of data.
To get an insight of underlying biological processes, several
analysis, statistical, biological tests are performed on this large

volume of data. One of such broadly used analysis tech-
niques is performing clustering on microarray gene expression
data [1], [19]. The underlying hypothesis is that genes with
similar expression patterns are involved in similar biological
processes.

For any clustering algorithm, its efficiency majorly depends
on the adopted underlying proximity measure to determine
similarity between data points. Most of the existing works
like Ref. [1], [19] identify co-regulated genes based on similar
expression patterns. Here each gene is represented as a vector
of expression values over different conditions. Similarity be-
tween two genes is calculated by using any standard distance
measures like Euclidean, or symmetry based distance. Finding
out similar genes in this way does not consider semantic
relationships between genes. For this reason, in past few years,
researchers have worked on grouping functionally similar
genes based on known biological knowledge from GO.

In the field of gene clustering research using GO data, au-
thors of Ref. [14] developed a set of methods for gene and GO-
term analysis. In Ref. [9], authors proposed GOSim package
within R environment for similarity computations of genes
and for gene clustering. Here authors have represented genes
as feature vectors and during clustering the similarity between
feature vectors was considered as the normalized dot product
between the vectors. In their developed R package for gene
clustering, only hierarchical clustering can be applied on gene
feature vectors. Also in gene clustering, authors of Ref. [31]
used a graph based similarity measure (simUI implemented in
Bioconductor in R) for computing gene similarity, and then
PAM clustering algorithm is employed to group similar genes
into clusters [31].
In Ref. [16], [17], authors developed a web tool named
DaGO-Fun and later in Ref. [15] they developed its ad-
vanced version, namely, A-DaGO-Fun (ADaptable Gene On-
tology semantic similarity based Functional analysis), which
is a repository of python modules providing researchers
the freedom to choose the most relevant measure for their
specific application. It contains six main functions and
implements 101 different functional similarity measures.
Each of the eight annotation-based and three topology-
based approaches, namely Resnik, XGraSM-Resnik, Nunivers,
XGraSM-Nunivers, Lin, XGraSM-Lin, Relevance and Li et
al. (2010) [11], Wang et al. (2007) [30], Zhang et al. (2006)
[34], and GO-universal, is implemented with seven known
term pairwise-based functional similarity measures: Avg, Max,
ABM, BMA, BMM, HDF and VHDF. The tool IT-GOM
within A-DaGO-Fun module calculates semantic similarity
between GO-terms based on a selected semantic similarity
measure as defined above. From the obtained term-term simi-
larities using this tool, gene-gene similarities can be intuitively
measured. One advantage of this tool is, it is organism and
gene-ID independent. Another tool - GOSP-FuCT from A-
DaGO-Fun module allows the partitioning of a gene or protein
set into a set of biologically meaningful sub-classes using their
functional closeness based on a selected semantic similarity
measure as defined above. The tool has utilized three single-
objective well known clustering techniques- Hierarchical, K-
means and community detecting model [15], implemented
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within it for the purpose of clustering of genes. The tool
incorporates several measures (as mentioned above) within
it but they do not consider various important properties of
GO-terms collectively in a single measure. Also, as all of
the incorporated clustering algorithms are based on single-
objective optimization, therefore, GOSP-FuCT tool does not
explore the utility of multi-objective optimization based clus-
tering in identifying functionally similar genes.
In summary, different methodologies to measure similarity
between genes based on existing biological knowledge from
GO are available in the literature.

III. MOTIVATION

In the existing literature, as mentioned in section II,
to calculate semantic similarity or distance between two
genes, different authors have considered different GO-terms
properties of GO tree. Some of them have considered IC
based similarity/distance measures [10], [13], [23], [25].
No structural information of GO tree was considered in
these works for measuring GO-term similarity/distance. In
Ref. [28], to measure the similarity/distance, the shortest
path between GO-terms is adopted which is a topological
information of GO. In Ref. [18], a set based similarity
measure was proposed. Authors of Ref. [22] utilize a familiar
concept from NLP to measure semantic similarity between
GO-terms. They have neither used information theoretic nor
topological/structural information of GO tree while measuring
similarity. Collectively, all of these existing measures as
described in section II utilized different important properties
of GO-terms, which are complementary to each other.
But a single similarity measure which conjointly considers
different important mutually exclusive GO-terms and GO tree
properties is rare in the literature. There are limited attempts
reported in the literature where some hybrid similarity
measures are developed by considering various attributes
related to information theory and topological information
of GO [20], [21], [28]. But one or more important GO-
term properties are not considered in these existing hybrid
similarity measures.
Motivated by this fact, in the current paper firstly we have
identified a topological level based GO-term property which
has not been covered by any existing measure but plays an
important role in discovering semantic similarity between
GO-terms or genes. Next, along with our newly proposed
level based GO-term property, some more existing mutually
exclusive GO-term properties are combined to develop two
‘multi-factored’ semantic similarity and distance measures.

The existing works [25], [28] acknowledge that the depth
of LCA in the GO tree provides an important information
for measuring similarities between GO-terms. These works
consider the effect of depth of LCA in terms of gene
annotation count [25] or IC of GO-terms [28]. But while
measuring ‘depth’, the topological level of LCA in the GO
tree is also one important factor to be considered. If the
LCA of two GO-terms is located at higher level (or lower
level) of the GO tree, i.e., LCA is nearer to root, then the

GO-terms tend to have less common functional properties. It
is because they are separated at the higher level. The lower
level of LCA (higher depth) indicates that its descendant
GO-terms are more functionally similar. We have named this
topological level information of GO-term as ‘Structural-depth’
or in short structdepth. Inspired by this observation, in the
current work, we have proposed a normalized structdepth
based similarity measure. A possible good measure should
be a combination of structdepth information of different
GO-terms, their information contents and their annotation
sets commonality. Along these lines, efforts are made in the
current paper to develop a multi-factored semantic similarity
and multi-factored semantic distance measures. The proposed
similarity and distance measures are multi-factored because
of the consideration of multiple factors related to information
theory and topological structure of GO as given below:
1. IC based semantic similarity between GO-terms according
to Ref. [13] and semantic distance according to Ref. [10]. It
captures information theoretic properties of GO-terms.
2. Shortest weighted path distance based similarity between
GO-terms according to Ref. [28]. It captures distance based
topological information.
3. Term overlap based similarity between GO-terms according
to Ref. [18]. It captures annotation sets commonality of genes.
4. Our proposed normalized structdepth based similarity
between GO-terms. It captures topological level based
information.

Considering all the above mentioned GO-term properties
in the mentioned measures, we have proposed following three
similarity and distance measures.
1. Normalized structdepth based semantic similarity named
as SIMnorm−structdepth .
2. Multi-factored semantic similarity named as Multi-SIM.
3. Multi-factored semantic distance named as Multi-DIST.

Please note that, the GO structure and it’s organization
are getting updated and changed with the advent of new
GO-terms and their relationships with each other for different
organisms. Accordingly, GO database is also getting updated
periodically. Therefore, the properties of each GO-term like
IC, annotation data, depth, path length between GO-terms
etc., are biased because of data availability. So, for any
existing similarity measure which utilizes any of information
theoretic or structural properties of GO-terms in GO tree,
for example Ref. [23], Ref. [13], Ref. [25], Ref. [21] etc.,
the similarity score between two GO-terms or genes will be
changed/updated with the modernization of GO.

As our proposed SIMnorm−structdepth , Multi-SIM and
Multi-DIST measures also leverage the level or depth of GO-
terms, therefore, the gene-gene similarity values will also keep
on updated based on the amendments of GO. Note that with
the advancements of GO, the proposed similarity values will
be capable of capturing more fine grained information. The use
of depth factor in the similarity measure enables it capturing
the same. For the branches which are well-studied, the pro-
posed SIMnorm−structdepth , Multi-SIM and Multi-DIST mea-
sures will be able to extract the fine-grained similarity between
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two genes. Thus with the advancement in GO, developed
measures will become more robust and effective in capturing
gene-gene similarity. Our main motivation behind the proposed
measures is to consider different mutually exclusive properties
of GO-terms which contain different important information to
identify functionally co-related genes based on most recent
GO tree.

Utilizing our proposed three different similarity/distance
measures, three different gene-gene similarity matrices have
been generated corresponding to three chosen datasets, based
on which clustering has been performed on these datasets to
identify functionally similar genes. For that purpose, eight
clustering algorithms, among which two algorithms are multi-
objective based and rest six are single-objective optimization
based traditional clustering techniques, are deployed. Two
well known popular multi-objective optimization techniques
- AMOSA [3] and NSGA-II [7] have been utilized to develop
two clustering approaches. According to the existing literature
it has been observed that AMOSA or Archived Multi Objective
Simulated Annealing optimization technique [3] excels in the
field of multi-objective optimization with respect to other
existing optimization techniques. Also NSGA-II [7] is very
popular and widely used multi-objective optimization tech-
nique. Because of these reasons we have chosen AMOSA and
NSGA-II to develop clustering algorithms utilizing their opti-
mization capabilities. The six traditional single-objective clus-
tering algorithms selected for our experiments are K-means,
K-medoids, Single-linkage hierarchical algorithm, Complete-
linkage hierarchical algorithm, Average-linkage hierarchical
algorithm and DBSCAN clustering algorithm. Results reveal
that AMOSA [3] based clustering works best in associa-
tion with the proposed multi-factored similarity and distance
measures over other existing similarity/distance measures and
clustering techniques. To visualize the coherence between
genes produced by AMOSA based clustering, cluster profile
plots are also shown. The observations are further supported
by strong biological and statistical significance tests.

IV. PROPOSED SIMILARITY AND DISTANCE MEASURES

In this section we have mathematically described each of the
proposed similarity/distance measures in detail. The definitions
of proposed measures are provided below.

A. Normalized structdepth based semantic similarity

The notion of normalized structdepth based gene-gene
similarity can be understood using a simple example. In
Figure 1, a snapshot1 of sub-part of GO is shown. According
to the basic property of GO, the terms located nearby the
root (higher level) hold less specific information compared to
terms located nearby the leaves (lower level). Thus the level
of a GO-term in GO tree is an important parameter while
measuring semantic similarity between terms. If two GO-terms
get separated in higher level, it indicates that they share less
functional properties, whereas if they get separated in lower
level, it is an indication that they comparatively share more
functional properties.

1http://www.geneontology.org/page/ontology-structure

Fig. 1: A snapshot of sub graph of gene ontology

Thus the semantic similarity between two GO-terms is
dependent on the level of their lowest common ancestors
(LCA) in GO tree. We have named this level information of
a GO-term as structdepth or structural depth of the term.

For example in Figure 1 the semantic similarity between
regulation of molecular function and regulation of biological
process is less than the semantic similarity between regulation
of receptor binding and regulation of collagen binding. It is
because the LCA of regulation of molecular function and reg-
ulation of biological process, which is biological regulation,
is situated in higher level. Where as the LCA of regulation
of receptor binding and regulation of collagen binding, which
is regulation of protein binding, is located in lower level of
GO tree. So intuitively the functional similarity between terms
depends on positions of their LCAs in GO tree. Inspired by this
observation we have proposed a structdepth based semantic
similarity measure between genes. If there are two GO-terms
ti and tj , the normalised-structdepth based semantic similarity
is defined as,

simnorm−structdepth(ti, tj) =
structdepth(LCA(ti, tj))

structdepth(GO)− 1
(9)

Where,
structdepth(LCA(ti, tj)) is the lowest level of LCA of terms
ti and tj in GO tree.
To make the value normalized we divide the above mentioned
term by structdepth(GO) which is the lowest level or height
of the GO tree.
We assume that the level of root term in GO tree is 1. The
upper bound of simnorm−structdepth is 1. Highest similarity
value will be obtained between two GO-terms residing in the
leaf level of GO tree, having their lowest common ancestors
(LCA) residing in depth (structdepth(GO) − 1). The lowest
value of simnorm−structdepth > 0. Lowest similarity value
will be obtained between two GO-terms, when their LCA is
root of the GO tree itself.

If we want to measure it in terms of distance then the
above equation can be converted to the corresponding distance
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function as follows,

distnorm−structdepth(ti, tj) = 1− simnorm−structdepth(ti, tj)
(10)

Given two gene products gi and gj , which are annotated
by a set of terms Ai and Aj where Ai and Aj contain
m and n number of GO-terms, respectively, the normalized
structdepth based semantic similarity between genes gi and
gj , SIMnorm−structdepth(gi, gj) can be defined as the average
inter-set similarity between two terms, Ai and Aj :

SIMnorm−structdepth(gi, gj) =
( 1

m× n
)
×∑

tk∈Ai,tp∈Aj

simnorm−structdepth(tk, tp) (11)

Where, simnorm−structdepth(tk, tp) can be calculated using
Equation 9.

B. Multi-factored semantic similarity

We have named this proposed semantic similarity measure
as multi-factored as it covers different structural and
information-theoretic properties of GO-terms. These factors
are,
1. Shared IC based similarity between GO-terms according
to Lin’s model [13].
2. Shortest path based similarity between GO-terms based on
Shen’s model [28].
3. Normalized term overlap based similarity between genes
based on Mistry’s model [18].
4. Our proposed normalized structdepth based similarity
between GO-terms according to Equation 9 in section IV-A.

These factors are mutually exclusive to each other and
capture different structural and IC based aspects to mea-
sure similarity between GO-terms. Utilizing these factors the
proposed multi-factored semantic similarity measure between
term ti and term tj can be defined as,

Multi-sim(ti, tj) =
arctan[Y ]

π/2
(12)

Where, Y = [simLin(ti, tj) + simShen(ti, tj) +
simnorm−structdepth(ti, tj)].
simLin(ti, tj) is calculated according to Equation 2.
simShen(ti, tj) is calculated according to Equation 8.
simnorm−structdepth(ti, tj) is calculated according to
Equation 9.
The arctan function is used to make the value of
Multi-sim(ti, tj) normalized. Using the above equation
the semantic similarity between gene products gi and gj can
be defined as,

Multi-SIM(gi, gj) =
1

m×n
∑

tk∈Ai,tp∈Aj
Multi-sim(tk, tp) + simNTO(gi, gj)

2
(13)

Where, simNTO(gi, gj) is calculated according to Equation 6.
We have taken the average so that Multi-SIM(gi, gj) ∈ [0, 1].

C. Multi-factored semantic distance

Similar to multi-factored semantic similarity measurement
we have also proposed a multi-factored distance measure.
This is also a function of multiple factors like,
1. Shared IC based distance between GO-terms according to
Jiang’s model [10].
2. Shortest path based distance between GO-terms based on
Shen’s model [28].
3. Normalized term overlap based distance based on Mistry’s
model [18].
4. Normalized depth based distance between GO-terms
according to Equation 10 in section IV-A.

Mathematically it can be defined as follows,

Multi-dist(ti, tj) =
arctan[X]

π/2
(14)

Where,
X = [distJiang(ti, tj) + distShen(ti, tj) +
distnorm−structdepth(ti, tj)].
distJiang(ti, tj) is calculated according to Equation 4.
distShen(ti, tj) is calculated according to Equation 7.
distnorm−structdepth(ti, tj) is calculated according to
Equation 10.
Using the above equation, the multi-factored semantic
distance between gene products gi and gj is defined as,

Multi-DIST(gi, gj) =
1

m×n
∑

tk∈Ai,tp∈Aj
Multi-dist(tk, tp) + distNTO(gi, gj)

2
(15)

Where, distNTO(gi, gj) is the normalized term-overlap based
distance which can be calculated from Equation 6 as follows,

distNTO(gi, gj) = 1− simNTO(gi, gj) (16)

The value of Multi-DIST(gi, gj) ∈ [0, 1].

V. PROPOSED FRAMEWORK TO IDENTIFY FUNCTIONALLY
SIMILAR GROUPS OF GENES BASED ON SEMANTIC

SIMILARITY AND DISTANCE MEASURES

We have divided our proposed framework into two modules.
1) Module 1: In this module three tasks are performed as

follows,
• We have chosen three datasets for experiment.

The annotation information of all genes for all
of three datasets are collected from GO database
(http://www.geneontology.org/).

• Each dataset is represented as gene-GO-term anno-
tation matrix with the help of annotation information
collected from previous step.

• Utilizing the proposed three semantic similarity and
distance measures, for all of the three datasets,
corresponding gene-gene similarity matrices are ex-
tracted. We have also chosen seven existing similar-
ity and distance measures and tools for comparison
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purpose. For each of them, corresponding gene-
gene similarity matrices for all of three datasets are
generated too.

2) Module 2: Using the gene-gene similarity matrices
produced at module 1, to identify functionally similar
genes, clustering is performed on gene-GO-term anno-
tation matrices or datasets using some multi-objective
clustering algorithms (AMOSA [3] based clustering and
NSGA-II [7] based clustering) along with six traditional
single-objective clustering algorithms like K-means, K-
medoids, Single-linkage hierarchical, Complete-linkage
hierarchical, Average-linkage hierarchical and DBSCAN
clustering algorithm.

Finally, a comparative study has been performed among all
of the above chosen clustering algorithms utilizing existing
and proposed similarity and distance measures. The proposed
framework is shown in Figure 2 of supplementary file. Below
we have described the different tasks of module 1 in detail.

A. Module 1: Preparing gene-GO-term annotation matrices
and gene-gene similarity matrices based on existing and
proposed semantic similarity/distance measures

The different tasks performed in this module are described
as follows:

1) Task 1: Collecting annotation information from GO
We have chosen three datasets for experimental purpose

which are prepared as follows,

• Mouse genome dataset: We have chosen set of
genes randomly from Mouse genome as selected
by Ref. [18]. Genes which are mapped to one
or more GO-terms in Gene ontology Consortium
(http://www.geneontology.org/) are chosen for further
analysis. 14,599 number of such genes are mapped to one
or more terms under one or more of three gene ontologies
(BP, MF and CC). After genes get annotated by one
or more GO-terms, within Gene ontology Consortium,
there is provision to extract significant GO-terms having
p-value ≤ 0.05 from the set of all mapped GO-terms. p-
value is the probability or chance of seeing at least ‘x’
number of genes out of the total ‘n’ genes in the list
annotated by a particular GO-term, given the proportion
of genes in the whole genome that are annotated to that
GO-term. That is, the GO-terms shared by the genes in
the user’s list are compared to the background distribution
of annotation. The closer the p-value is to zero, the
more significant the particular GO-term associated with
the group of genes is (i.e., less likely the observed
annotation of the particular GO-term to a group of genes
occurs by chance). According to our chosen GO tool
(http://www.geneontology.org/), we have selected signifi-
cant GO-terms having p-value ≤ 0.05 in this experiment.
For Mouse genome dataset, the total number of significant
GO-terms obtained is 792 (number of GO-terms under
biological process is 539, under Molecular function is
122, and under cellular component is 131).

• Yeast dataset: We have also chosen the Yeast 2

dataset [29] for experiments. Similar to Mouse genome
dataset, genes of Yeast dataset also get mapped to
one or more GO-terms in Gene ontology Consor-
tium (http://www.geneontology.org/). Originally in Yeast
dataset 2260 number of genes are mapped to one or more
GO-terms under one or more ontologies (BP, MF and
CC). For Yeast dataset, the number of obtained significant
GO-terms is 166 (number of GO-terms under biological
process is 100, under Molecular function is 43, and under
cellular component is 23).

• Human genome dataset: Apart from Mouse genome and
Yeast dataset, we have also chosen Human genome 3

dataset for our experiments. Same strategy is followed
here like other two datasets to obtain gene annotation
information. From the original set of genes, 18,244
number of genes get mapped to one or more GO-terms of
Gene ontology Consortium under one or more ontologies
(BP, MF and CC). For this dataset, number of obtained
significant GO-term is 273 (number of GO-terms under
biological process is 172, under Molecular function is 35,
and under cellular component is 66).

Also we retrieve the full GO tree 4 containing all GO-terms
and their corresponding relationships from Gene ontology
Consortium. Among all types of GO relationships, we have
considered ‘is-a’ and ‘part-of’ relationships as they are most
dominating.

2) Task 2: Generating Binary gene-GO-term annotation
matrix corresponding to each datasets

After retrieving the annotation information of genes from
GO (previous task), it is utilized to generate binary gene-
GO-term annotation matrices for all three datasets. These
gene-GO-term annotation matrices are developed solely
based on available GO information. No gene expression
data is utilized for this experiment as that does not capture
semantic information about genes. The binary gene-GO-term
annotation matrices are generated in the following way:
Suppose for any of our chosen datasets, if there are n number
of annotated genes, the number of total significant GO-terms
for biological process, cellular component, molecular function
ontology are x, y and z, respectively. Then the size of the
gene-GO-term matrix will be n × (x + y + z). Here for
Mouse genome dataset, Yeast and Human genome dataset,
number of significant total GO-terms are 792, 166 and 273,
respectively. So the dimensions of gene-GO-term annotation
matrix for Mouse genome, Yeast and Human genome dataset
are 14, 599× 792, 2260× 166 and 18, 244× 273 respectively.
Entries in the matrix are binary values based on whether
the gene is mapped to that particular GO-term or not.
Mathematically it can be described as follows,
If ∃ n genes and x, y, z number of significant Biological
function GO-terms, Molecular function GO-terms and
Cellular component GO-terms, respectively, then |M | =
n× (x+ y + z).

2http://arep.med.harvard.edu.
3http://120.77.47.2:8081/download
4http://purl.obolibrary.org/obo/go/go-basic.obo
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Suppose Gi represents ith gene where i ∈ [1, n].
Bio GOk represents kth significant term of Biological
process ontology, where k ∈ [1, x].
MF GOl represents lth significant term of Molecular
function ontology, where l ∈ [1, y].
CC GOm represents mth significant term of Cellular
component ontology, where m ∈ [1, z].
Let M[n][x+y+z] be the binary annotation matrix of size
n× (x+ y + z).
The matrix is generated as follows,

M [i][Bio GOk] =

{
1, if Gi annotated with Bio GOk

0, otherwise

where i ∈ [1, n] and k ∈ [1, x].

M [i][MF GOl] =

{
1, if Gi annotated with MF GOl

0, otherwise

where i ∈ [1, n] and l ∈ [1, y].

M [i][CC GOm] =

{
1, if Gi annotated with CC GOm

0, otherwise

where i ∈ [1, n] and m ∈ [1, z]. In Figure 3 of supplementary
file, a sample binary gene-GO-term annotation matrix has been
shown.

3) Task 3: Generating gene-gene similarity matrices for all
three datasets

To perform clustering on genes of produced gene-GO-term
annotation datasets by task 2, similarity/distance is required
to be calculated between genes. For that, we have generated
gene-gene similarity/distance matrices based on which genes
are allocated to different groups. In addition to our proposed
similarity and distance measures, we have also chosen seven
existing state-of-the-art similarity and distance measures and
tools to measure gene-gene similarity and prepare similarity
matrix corresponding to each of them. The existing chosen
measures and tools are, Jiang’s distance measure [10], Lin’s
similarity measure [13], Shortest path based similarity mea-
sure by Shen [28], Normalized term overlap based similarity
measure by Mistry [18], InteGO [21], G-SESAME [30], IT-
GOM under A-DaGO-Fun package [15]. Within A-DaGO-Fun
package, as IT-GOM tool is independent of organisms and
gene-IDs, therefore, we have chosen this tool to measure term-
term similarities and hence from those intuitively gene-gene
similarities are calculated. Using IT-GOM, we have calcu-
lated term-term similarities using annotation based XGraSM-
Nunivers similarity measure approach. For InteGO [21], G-
SESAME [30], IT-GOM [15] tools, as gene-gene or term-term
similarity is calculated separately for each ontology (BP, MF,
CC), therefore, we have taken average similarity over three
ontologies to create final gene-gene similarity matrix.
In a dataset if there are n number of genes, then the dimension
of gene-gene similarity matrix corresponding to each of the
proposed and chosen similarity and distance measures is n×n.
Suppose S[n][n] is the similarity matrix of size n × n. For

our three proposed similarity/distance measures, the matrix is
generated as follows,

S[i][j] =



SIMnorm−structdepth(gi, gj),

if Normalized depth based semantic similarity
is used.
Multi-SIM(gi, gj),

if Multi-factored semantic similarity is used.
(1−Multi-DIST(gi, gj)),
if Multi-factored semantic distance is used.

where i ∈ [1, n] and j ∈ [1, n].
For, other chosen proximity measures, the corresponding

gene-gene similarity matrices are generated similarly.

B. Module 2: Application of clustering algorithms on gene-
GO-term annotation matrices using proposed and existing
similarity and distance measures

This is module 2 of our proposed framework where dif-
ferent clustering algorithms (both multi-objective and single-
objective) have been applied on gene-GO-term annotation
datasets utilizing their corresponding similarity/distance ma-
trices obtained from Module 1 to uncover functionally related
genes. Genes which are functionally similar with respect
to the proximity measures are clustered together. Existing
literature [1] proved the utility of multi-objective optimization
over single-objective optimization in solving different real-
life problems. Inspired by this, in recent years several multi-
objective optimization based clustering techniques are also
developed in the literature Ref. [1], [12]. These approaches
work better than their single-objective counter parts. Moti-
vated by this, in the current study we have executed two
multi-objective based clustering techniques on gene-GO-term
annotation matrices of all three chosen datasets utilizing ten
different similarity and distance measures (as mentioned in
Sections II and IV) to partition the set of available genes into
some functionally similar groups. Two popular multi-objective
optimization(MOO) strategies, AMOSA [3] and NSGA-II [7]
based clustering, along with six traditional single-objective
clustering techniques are utilized for this purpose. All of these
clustering algorithms are well-known and widely used in the
field of pattern recognition as well as bioinformatics. The
detailed descriptions of chosen clustering techniques are pro-
vided in Section I of supplementary file. We have conducted
a comparative study of the performance of these clustering
algorithms in the current context.

VI. RESULTS AND DISCUSSION

After application of all the selected clustering algorithms
on gene-GO-term annotation matrices for all of three datasets
by varying different similarity and distance measures (both of
our proposed and existing measures), we obtained different
clustering solutions. In this section we have analysed our
obtained solutions using two different performance metrics,
namely Silhouette index [24] and DB index [6], to quantify the
goodness of obtained partitions. A clustering solution having
higher Silhouette index and lower DB index is considered to
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have good quality. These validity measures are described in
detail in Section II of supplementary file.

A. Setting of input parameters for clustering algorithms

1) Input parameters of AMOSA based clustering
We have executed AMOSA based clustering technique with

the following parameter combinations:
Tmin = 0.0001, Tmax = 100, α = 0.9, HL = 50, SL = 100
and iter = 100. Kmin or minimum number of clusters = 2
and Kmax or maximum number of clusters =

√
n, where n

number of genes/points to be clustered.
The parameter values are determined after conducting a thor-
ough sensitivity study. The number of clusters is determined
automatically by the algorithm within given ranges.

2) Input parameters for NSGA-II based clustering
We have executed NSGA-II based clustering using follow-

ing parameter combinations:
Number of generation: 50. Population size: 50. Crossover
probability: 0.8. Mutation strength 0.2. Kmin or minimum
number of clusters = 2 and Kmax or maximum number of
clusters =

√
n, where n is the number of genes/points to

be clustered. Here also the number of clusters is determined
automatically within the given range.

3) Input parameters for K-means, K-medoids and hierar-
chical clustering

Unlike AMOSA or NSGA-II based clustering, for K-
means/K-medoids clustering technique, prior information
about the number of clusters (K) is needed. Also, we have
applied agglomerative type single, complete and average link-
age hierarchical clustering algorithms. Similar to K-means/K-
medoids, here also the number of clusters ‘K’ is required to
be initialized as terminating point during agglomeration. It is
known that if no information about the number of clusters is
given, then for n number of data points, the maximum number
of clusters can be chosen as

√
n [5]. According to that, for

Yeast, Mouse genome and Human genome datasets, the maxi-
mum number of clusters can be

√
2260 or 48,

√
14, 599 or 120

and
√
18, 244 or 135 , respectively. To determine the optimal

value of ‘K’, we have varied the value of K in the range 2 to
50 as shown in Table I. For Yeast, Mouse genome and Human
genome datasets the results were deteriorated rapidly with the
increase in the value of K above 20. Therefore, we stopped
the experiment with value of K beyond 50. The optimal value
of K for which best clustering solution is obtained is reported
in Table II for each clustering algorithms.

Datasets K
Yeast 2 3 4 5 6 7 8 9 10 15 20 30 40 50

Mouse genome 2 3 4 5 6 7 8 9 10 15 20 30 40 50
Human genome 2 3 4 5 6 7 8 9 10 15 20 30 40 50

TABLE I: Chosen K values for K-means, K-medoids and
Hierarchical clustering algorithms

4) Input parameters for DBSCAN
In DBSCAN, two parameters ξ or radius and minPts or

minimum points in a cluster are needed to be set at the begin-
ning of its execution. We have thoroughly done a sensitivity
study on the value of minPts and ξ in such a way so that total
number of outliers should be minimum.

B. Discussion on results

In Table II, we have reported our obtained results for Mouse
genome, Yeast and Human genome datasets. For each chosen
similarity measure, the best obtained Silhouette/DB index
values across all chosen clustering algorithms are highlighted
in bold font. Similarly, for each selected clustering algorithm,
the best of Silhouette/DB index values across all mentioned
similarity measures are highlighted with blue and pink box,
respectively. Beside each Silhouette index value, in bracket,
we have mentioned the optimal number of clusters (K) corre-
sponding to that clustering solution. The comparative results
are also graphically plotted in Figures 3, 4, 5.

Please note that we could not get results for Mouse genome
dataset using InteGO tool as the corresponding Mus musculus
organism is beyond the scope of available organisms in the
tool. The missing values are represented using ‘–’ in Table II.
While using IT-GOM tool under A-DaGO-Fun package, we
have calculated gene-gene similarities via calculating term-
term similarities using annotation based XGraSM-Nunivers
similarity measure.

We have carried out a thorough comparative analysis of the
obtained results as shown in Table II and Figures 3, 4 and
5. We observed that for Mouse genome dataset, for all nine
(except InteGO) chosen similarity measures (six of them are
existing and other three are our proposed measures), multi-
objective clustering algorithms, i.e., AMOSA and NSGA-II
based clustering algorithms perform better than other chosen
algorithms with respect to both Silhouette and DB index values
in almost all cases. Again, while comparing AMOSA based
clustering with NSGA-II based clustering, we have observed
that for almost all cases AMOSA based clustering performs
better than NSGA-II based clustering with respect to both
Silhouette and DB indices.

Also, the performance of the proposed and existing similar-
ity and distance measures can be compared with each other
with the help of the obtained results. It is quite clear from Ta-
ble II that all of the chosen clustering algorithms perform well
when any of our proposed Multi-SIM and Multi-DIST mea-
sures is considered as proximity measure in almost all cases.
It has been observed that, G-SESAME outperforms chosen
existing measures like distJiang , simShen, simNTO, simLin,
A-DaGO-Fun as well as our proposed SIMnorm−structdepth
measure, in most of the cases with respect to both Silhouette
index and DB index values, but both of our proposed multi-
factored proximity measures perform better than G-SESAME
for all the cases. The same trend has also been observed if
we compare outcomes of IT-GOM tool (under A-DaGO-Fun
package) with our proposed multi-factored measures. Though
SIMnorm−structdepth alone could not perform better than
most of the existing and proposed measures but considering
this factor in both Multi-SIM and Multi-DIST measures, makes
them superior to other measures. It proves that structdepth is
an important topological factor which should not be ignored
while determining functional similarity between genes.

We have also compared the efficiencies of Multi-SIM and
Multi-DIST measures with respect to each other and it was
found that both of them are complementary to each other,
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i.e., no one is better than the other. Investigations of overall
obtained results for Mouse genome dataset reveal that best
(with respect to Silhouette and DB index values) clustering
solutions are obtained when AMOSA based clustering is
applied in association with Multi-SIM or Multi-DIST as the
underlying proximity measure.

Similar to Mouse genome dataset, we have also thoroughly
analysed the results for Yeast dataset in Table II and Fig-
ure 4. Here also, the superiority of AMOSA based cluster-
ing over other multi and single-objective based clustering
techniques and the supremacy of proposed Multi-SIM and
Multi-DIST similarity measures over other chosen similar-
ity/distance measures are established based on the obtained
Silhouette and DB index values. Though the results of InteGO
tool are better than other existing measures like distJiang ,
simShen, simNTO, simLin, G-SESAME, A-DaGO-Fun and
also SIMnorm−structdepth , but it fails to defeat newly pro-
posed Multi− SIM and Multi−DIST measures.

For Human genome dataset also we have performed similar
analysis of the obtained results (reported in Table II and shown
in Figure 5). Here also, the superiority of AMOSA-based
clustering in association with all chosen similarity measures
over other clustering algorithms is conserved. Comparison
between capabilities of all ten (chosen and proposed) simi-
larity measures reveals that our proposed Multi− SIM and
Multi−DIST measures perform better than the others. Here
also, InteGO tool performs better than other chosen existing
measures as well as our proposed SIMnorm−structdepth , but
it is not able to defeat newly proposed Multi − SIM and
Multi − DIST measures. For all three chosen datasets,
the best clustering solution is obtained by AMOSA based
clustering algorithm with Multi-SIM or Multi-DIST as the
underlying proximity measure.

To validate the above observation through visualization,
we have shown the cluster profile plots of obtained clusters
for Yeast dataset. For this dataset, the number of clusters
obtained by AMOSA based clustering with Multi-SIM as the
underlying proximity measure is six (also indicated in Table
II). We have plotted expression profiles of the genes for first
two obtained clusters. The expression value of each gene is
extracted from gene expression dataset of Yeast. The plots are
shown in Figure 2. For each plot, the X-axis represents the
samples or time points of each gene, while Y-axis represents
the genes within the corresponding cluster. The log normalized
expression values of genes within a cluster for some given
time points are plotted. From this plot (shown in Figure 2) it
can be inferred that genes within the same cluster are nicely
coherent to each other. It signifies that they are strongly co-
related. Similarly, other clusters can also be plotted through
cluster profile plots. These plots also support our observations
from obtained results in Table II.

The major observations concluded from the obtained results
are summarized below:

1) Our proposed Multi − SIM and Multi − DIST
similarity measures can be treated as best proximity
measures in terms of their capability in identifying
functionally similar genes compared to other chosen

similarity/distance measures. The obtained Silhouette
and DB index values of Table II justify this observation.

2) AMOSA [3] based clustering performs the best in identi-
fying functionally similar groups of genes, compared to
other mentioned single and multi-objective based clus-
tering algorithms for all ten chosen similarity/distance
measures.

3) AMOSA based clustering with Multi − SIM or
Multi−DIST as the underlying proximity measure, are
two best combinations in terms of determining groups of
most functionally similar genes. The supremacies of the
clustering solutions produced by these two combinations
are established by the thorough experimental results
(presented in Table II and Figure 2).

C. Statistical significance test

In Table II, we have shown the results on all three datasets.
From the results the supremacy of AMOSA based clustering
and Multi − SIM and Multi − DIST measures were ob-
served. Now in order to prove these observations statistically,
a statistical significance test (with respect to DB index) is
conducted (also known as t-test) at 5% significance level
for Yeast dataset. Instead of DB index, Silhouette index also
could be chosen for this test. As null hypothesis we assume
that there are insignificant differences between mean values
of two groups. According to alternative hypothesis there are
significant differences in the mean values of two groups.

To prove the supremacy of AMOSA based clustering, eight
groups corresponding to eight chosen clustering algorithms are
formed for each chosen similarity/distance measure. The p-
values produced between each two groups(one corresponding
to AMOSA and other corresponding to any one of seven
other clustering algorithms) by t-tests for Yeast dataset are
reported in Table I of supplementary file. Similarly, to prove
superiority of Multi-SIM, nine groups corresponding to nine
similarity/distance measures(except Multi-DIST as we have
seen that Multi-DIST has equal potential to Multi-SIM) are
formed. In Table II of supplementary file, statistical superiority
of Multi-SIM over other existing similarity/distance measures
(except Multi-DIST) is shown. Similar to Table II, supremacy
of Multi-DIST can also be proved statistically.

From both of the tables, it can easily be seen that the p-
value in each case is less than 0.05. This outcome supports
the alternative hypothesis i.e., the supremacy of AMOSA
based clustering algorithm over other algorithms and Multi-
SIM over other measures (except Multi-DIST). Finally, the
superiority of AMOSA based clustering along with Multi-SIM
as underlying proximity measure is proved by this statistical
test. For Mouse genome and Human genome dataset similar
statistical significance tests can be performed.

D. Biological significance test

From Table II and Figure 3, 4 and 5, it is evident that the
performance of AMOSA based clustering with Multi-SIM or
Multi-DIST proximity measures was best among other possible
combinations. To support the obtained results statistically we
have also performed statistical significance test which is shown
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Fig. 2: Cluster profile plots for first two obtained clusters by AMOSA-Multi-SIM algorithm for Yeast dataset

Dataset Algorithms distJiang simShen simNTO simLin InteGO G-SESAME A-DaGOFun SIMnorm−structdepth Multi-SIM Multi-DIST
Sil DB Sil DB Sil DB Sil DB Sil DB Sil DB Sil DB Sil DB Sil DB Sil DB

Mouse

AMOSA - clus 0.61(8) 1.234 0.59(9) 1.19 0.55(8) 1.342 0.59(9) 1.245 – – 0.73(10) 0.99 0.69(10) 1.21 0.568(8) 1.278 0.7802(11) 0.9509 0.79(11) 0.99
NSGA-II - clus 0.56(7) 1.49 0.56(7) 1.19 0.57(7) 1.38 0.574(7) 1.27 – – 0.73(9) 1.08 0.68(10) 1.19 0.567(7) 1.31 0.75(9) 0.97 0.752(10) 0.98

K-means 0.48(5) 2.13 0.49(5) 2.3 0.48(5) 2.3 0.465(5) 2.3 – – 0.52(8) 1.98 0.59(8) 1.63 0.48(6) 2.005 0.58(6) 1.69 0.51(8) 1.61
K-medoids 0.49(5) 2.132 0.499(5) 2.31 0.48(5) 2.32 0.47(5) 2.3 – – 0.53(8) 1.9 0.59(8) 1.62 0.49(6) 2.002 0.6(8) 1.68 0.54(8) 1.6
Hie-single 0.52(6) 1.53 0.535(6) 1.2 0.516(6) 1.48 0.55(8) 1.42 – – 0.61(8) 1.36 0.6(8) 1.37 0.53(7) 1.29 0.65(10) 1.23 0.66(10) 1.21

Hie-average 0.54(6) 1.54 0.543(6) 1.19 0.537(6) 1.42 0.56(8) 1.4 – – 0.612(8) 1.21 0.61(8) 1.36 0.546(8) 1.3 0.657(10) 0.98 0.656(10) 1
Hie-complete 0.56(8) 1.56 0.546(6) 1.198 0.56(8) 1.35 0.57(8) 1.43 – – 0.63(10) 1.23 0.62(8) 1.35 0.58(9) 1.5 0.66(10) 0.982 0.659(10) 1.003

DBSCAN 0.53(6) 1.61 0.53(6) 1.52 0.5(8) 1.4 0.55(8) 1.44 – – 0.63(9) 1.39 0.61(8) 1.42 0.58(8) 1.54 0.634(9) 1.31 0.64(9) 1.33

Yeast

AMOSA - clus 0.599(5) 1.91 0.529(5) 1.86 0.476(4) 2.32 0.62(5) 1.97 0.78(6) 1.14 0.74(6) 1.21 0.73(6) 1.29 0.49(4) 1.65 0.81(6) 1.031 0.738(6) 0.99
NSGA-II - clus 0.594(5) 1.91 0.521(5) 1.88 0.47(4) 2.28 0.58(5) 1.99 0.72(6) 1.24 0.69(6) 1.28 0.73(6) 1.28 0.489(4) 1.68 0.78(6) 1.13 0.715(5) 1.109

K-means 0.579(8) 1.99 0.479(9) 2 0.393(10) 2.49 0.48(8) 2.03 0.6(5) 1.73 0.57(8) 1.9 0.56(8) 1.71 0.461(9) 1.79 0.59(5) 1.53 0.608(5) 1.62
K-medoids 0.581(8) 1.95 0.488(9) 1.99 0.398(10) 2.48 0.5(8) 2.01 0.62(5) 1.71 0.59(8) 1.8 0.57(8) 1.7 0.467(9) 1.78 0.61(5) 1.50 0.615(5) 1.618
Hie-single 0.589(8) 1.93 0.489(9) 1.91 0.418(9) 2.39 0.55(8) 1.99 0.62(5) 1.17 0.58(8) 1.2 0.6(8) 1.61 0.486(9) 1.69 0.628(5) 1.158 0.624(5) 1.032

Hie-average 0.593(8) 1.92 0.510(9) 1.89 0.428(9) 2.31 0.56(8) 1.98 0.62(5) 1.31 0.59(8) 1.38 0.62(8) 1.59 0.489(9) 1.67 0.620(5) 1.26 0.629(5) 1.12
Hie-complete 0.591(8) 1.93 0.499(9) 1.9 0.429(9) 2.29 0.57(8) 1.98 0.64(5) 1.4 0.62(8) 1.52 0.61(8) 1.6 0.479(9) 1.71 0.658(5) 1.3 0.649(5) 1.297

DBSCAN 0.578(8) 1.94 0.5(9) 2.03 0.417(9) 2.34 0.59(8) 2 0.63(5) 1.18 0.6(5) 1.21 0.59(8) 1.62 0.469(9) 1.67 0.63(7) 1.31 0.621(5) 1.32

Human

AMOSA - clus 0.67(14) 1.87 0.65(14) 1.88 0.58(16) 2.13 0.66(14) 1.93 0.76(13) 1.23 0.71(13) 1.64 0.73(13) 1.24 0.59(16) 2.03 0.87(11) 1.15 0.89(11) 1.09
NSGA-II - clus 0.66(14) 1.88 0.65(14) 1.89 0.59(15) 2.15 0.65(14) 1.91 0.75(14) 1.25 0.69(14) 1.63 0.72(13) 1.25 0.58(16) 2.05 0.87(11) 1.17 0.87(11) 1.1

K-means 0.56(15) 2.23 0.58(15) 2.27 0.49(20) 2.32 0.57(15) 2.27 0.68(15) 1.34 0.61(15) 1.78 0.64(15) 1.58 0.49(20) 2.19 0.77(10) 1.23 0.76(10) 1.2
K-medoids 0.57(15) 2.21 0.59(15) 2.26 0.51(20) 2.32 0.59(15) 2.25 0.68(15) 1.34 0.61(15) 1.76 0.65(15) 1.56 0.5(20) 2.15 0.79(10) 1.23 0.76(10) 1.21
Hie-single 0.6(15) 2.14 0.61(15) 2.21 0.52(20) 2.3 0.62(15) 2.23 0.7(10) 1.32 0.62(15) 1.72 0.67(15) 1.45 0.53(20) 2.12 0.83(10) 1.2 0.84(10) 1.24

Hie-average 0.61(15) 2.12 0.61(15) 2.19 0.52(20) 2.3 0.61(15) 2.22 0.71(10) 1.31 0.63(15) 1.7 0.69(15) 1.43 0.52(20) 2.07 0.83(10) 1.19 0.84(10) 1.22
Hie-complete 0.61(15) 2.13 0.62(15) 2.18 0.53(20) 2.29 0.62(15) 2.23 0.71(10) 1.3 0.62(15) 1.69 0.68(15) 1.43 0.52(20) 2.05 0.84(10) 1.19 0.83(10) 1.1

DBSCAN 0.6(15) 2.11 0.61(15) 2.18 0.51(20) 2.27 0.63(15) 2.21 0.7(10) 1.3 0.6(15) 1.68 0.68(15) 1.41 0.53(20) 2.07 0.82(10) 1.18 0.83(10) 1.12

TABLE II: The comparative results of different clustering algorithms applied with our proposed and existing similarity and
distance measures on Mouse genome, Yeast and Human genome datasets. ‘–’ represents missing values. The number of clusters
in optimal solution is mentioned within bracket beside the Silhouette index for each clustering technique.

Fig. 3: Comparative results for Mouse Genome dataset

in Tables I and II of supplementary file. In this section,
we have performed biological significance test to prove that
obtained clusters by AMOSA based clustering with Multi-
SIM or Multi-DIST proximity measures for Yeast dataset are
biologically enriched. We have performed the study with
the help of GOTERMMAPPER (http://go.princeton.edu/cgi-
bin/GOTermMapper) under Biological process category. The
best solution obtained for Yeast dataset after performing
AMOSA based clustering with Multi-SIM proximity measure

contains six clusters. For first cluster, the outcome of biological
significance test is shown in Table III. Similarly for other five
clusters we have performed the same test and the correspond-
ing result tables are give in supplementary file (Table III, IV,
V, VI, VII of supplementary file respectively). In each table
we have summarized significant GO-terms shared by genes of
corresponding cluster.

For each GO-term, the percentage of genes sharing that
term among the genes of that cluster and among the whole
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Fig. 4: Comparative results for Yeast dataset

Fig. 5: Comparative results for Human genome dataset

genome has been reported. Results clearly signify that genes
of the same cluster share the higher percentage of GO-terms
compared to the whole genome. This indicates that the genes
of a particular cluster are more involved in similar biological
processes compared to the remaining genes of the genome.

The clustering solutions obtained by performing AMOSA
based clustering using Multi-DIST proximity measure can
also be tested following the above mentioned steps of the
biological significance test. For Mouse genome and Human
genome dataset same tests also can be performed.

VII. CONCLUSIONS AND FUTURE WORK

In general, expression values available in the microarray
datasets are utilized for determining the similarity between
two given genes using traditional distance measures like
Euclidean, Pearson or symmetry based distance, which in turn
aids in identifying functionally similar genes. This process of
identification of functionally similar genes does not consider
semantic relationships present among these genes. Also, the
existing semantic similarity measurement techniques do not
consider some important GO-term properties in a single mea-
sure. In order to overcome these limitations, in the current
study, we have adopted an alternative way to represent genes

GO-term Module % Genome %
chromatin organization 49.59% 35.35%

GO:0006325
response to chemical 58.86% 38.39%

GO:0042221
lipid metabolic process 57.38% 25.32%

GO:0006629
cell wall organization or biogenesis 46.64% 24.65%

GO:0071554
cellular response to DNA damage stimulus 46.64% 25.30%

GO:0006974
cytoplasmic translation 55.54% 33.13%

GO:0002181

TABLE III: Significant GO-terms shared by genes of cluster
1 for Yeast dataset

and then defined some new hybrid measures of similarity
between them utilizing different mutually exclusive properties
of GO-terms in gene ontology database. The concept of
topological level based gene-gene similarity measure namely
SIMnorm−structdepth is quite unique and has not explored
in any existing technique. Using this measure along with
other GO-term properties we have also proposed two new
proximity measures, named as Multi-SIM and Multi-DIST.
Finally, the proposed semantic similarity and distance mea-
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sures have been utilized along with some well-known single
and multi-objective based clustering algorithms to determine
groups of similar genes. As a case study, three datasets Mouse
genome, Yeast and Human genome have been chosen. From the
obtained results, we have observed that the best (with respect
to Silhouette and DB index) clustering solutions are obtained
when AMOSA based clustering is applied with Multi-SIM or
Multi-DIST as the underlying proximity measure.

In future, we would like to develop a multi-view clustering
framework considering gene expression data matrix and gene-
GO-term annotation matrix as two different views. As the
underlying proximity measure, our proposed measures can be
used. Authors are currently working in this direction.
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