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Abstract—Classification of samples of gene expression profile
plays a significant role in prediction and diagnosis of diseases.
In the task of sample classification, a robust feature selection
algorithm is very much essential to identify the important genes
from the high dimensional gene expression data. This paper
explores the information of protein-protein interaction (PPI)
with a graph mining technique for finding a proper subset of
features (genes), which further takes part in sample classification.
Here, our contribution for feature selection is three-fold: firstly,
all the genes are grouped into different clusters based on the
integrated information of the gene expression values and their
protein interactions using a multi-objective optimization (MOO)
based clustering approach. Secondly, the confidence scores of the
protein interactions are incorporated in a popular graph mining
algorithm namely Goldberg algorithm to find out the relevant
features. These features are the topologically and functionally
significant genes, named as hub genes. Finally, these hub genes
are identified varying the degrees of the nodes, and those are
utilized for the sample classification task. Different machine
learning classifiers are exploited for this purpose, and the
classification performance is measured with respect to various
performance metrics namely accuracy, sensitivity, specificity,
precision, F-measure and Mathews coefficient correlation (MCC).
Comparative analysis with respect to two baselines and sev-
eral existing approaches proves the efficiency of the proposed
approach. Further, the robustness of the identified hub-gene
modules is endorsed using some strong biological significance
analysis.

Index Terms—Multi-objective optimization, Protein-protein in-
teraction (PPI), Hub gene, Goldberg algorithm, Feature selection.

Availability of codes and data: https://github.com/
sduttap16/GraphPPI

I. INTRODUCTION

A. Background

With the technical enhancement in genomics, analysis of
gene expression profiles leads to the discovery of some bio-
logically significant genes. In the field of biomedical research,
identification of informative genes is carried out in two ways;
(i) the genes are clustered into some homogeneous groups and
further analysis of these clusters gives the knowledge of the
informative genes; (ii) group the genes into different clusters
and from each cluster, extract a subset of informative genes
(features). This subset of genes can be further used for sample
classification.
∗ Department of Computer Science and Engineering, Indian Institute of

Technology, Patna (e-mail: pratik.pcs16@iitp.ac.in, sriparna@iitp.ac.in). Both
these authors have equally contributed for this work.
† Department of Chemical and Biochemical Engineering, IIT Patna.

In the current literature, the second method (i.e., infor-
mative feature extraction and sample classification) is used
for identifying disease related genes. For the grouping of
genes, clustering is a very popular unsupervised pattern clas-
sification method but that often gets stuck at local optima
depending on the initial values of centroids. To get rid of
these problems and also to optimize various cluster quality
measures simultaneously, multi-objective optimization (MOO)
based clustering approach has become popular. Unlike single-
objective optimization based techniques, in case of MOO-
based approaches, a set of non-dominated solutions are present
in the final solution set [1].

However, due to the presence of huge number of genes in
the microarray profiles, each cluster contains a large number of
similar genes. To reduce the redundancy and the complexity
of the high dimensional space, the immediate solution is to
select representative features (genes) from each cluster. Ex-
tracting the representative genes from a cluster using biological
knowledge is an emerging field of research in recent years. For
exploring the biological knowledge, protein-protein interaction
(PPI) network [2] is one of the enriched sources. Basically, the
topology of the PPI network maintains “scale-free” property
[3], i.e., a few number of proteins are strongly connected while
most of the proteins are loosely connected. These strongly
connected nodes are called hub proteins/genes [4]. As the hub
proteins possess influential characteristics, it is conceivable
that hub proteins can be considered as informative features
(genes).

B. Related Works & Motivation

There are several existing works related to the improvements
of feature selection algorithms as well as identification of
hub genes. In [5], Liu et al. proposed an integrated method
for feature (gene) selection that combines statistical similarity
measure and supervised learning named as recursive feature
addition (RFA). Recently, feature (gene) selection algorithm
utilizing different biological knowledge is gaining the interest
of the researchers. An unsupervised feature selection technique
utilizing biological knowledge extracted from gene ontology
(GO) is proposed by Acharya et al. [6].

In the literature, it has been found that the information
about disease gene associations obtained from the protein-
protein interaction leads to the higher classification accuracy in
informative gene selection [7]. In the PPI network, the nodes
which are strongly connected, play some significant roles in
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identifying drug targets and termed as hub proteins. Generally,
hub proteins have special biological properties compared to
non-hub proteins and may act as the informative features
in feature extraction algorithm. Recently, Xionglei et al.[8]
showed why hub proteins are fundamental components in the
protein networks. As there is no predefined rule for the cutoff
degree of the hub genes, it is very much necessary to calculate
the threshold degrees of the hub proteins. In [4], three different
methods are described to identify hub proteins from PPINs.

There are several available works on the themes of feature
selection and hub gene identification, separately; but utilizing
the characteristics of hub genes in feature selection algorithm
was not explored so much. Motivated by this fact, we have
proposed a graph-based feature (hub gene) selection method
utilizing the protein interaction information. Further the re-
duced set of genes are utilized in a MOO-based clustering
framework to group the samples into some reasonable cate-
gories.

II. PROPOSED METHODOLOGY

A. Multi-objective Clustering Architecture

In the proposed method, a new MOO-clustering technique
[9], where the goodness of clusters is validated by four
objective functions {f1, f2, f3, f4}, is used. First, all the genes
{Gi | i ∈ [1, N ]} of G, are normalized across the samples
[X1,X2, . . . ,XS ], i.e., the normalized value of X k

i|i∈[1,S] is

X̂ k
i =

max
k∈[1,N ]

{X k
i } − X k

i

max
k∈[1,N ]

{X k
i } − min

k∈[1,N ]
{X k

i }
(1)

Now, the new MOO-based clustering technique is applied on
this normalized gene expression profile Ĝ = {Ĝ1, Ĝ2, . . . , ĜN}
and produced a clustering solution (partitioning) π∗ aiming
that

ft(π
∗) = max

π∈Ω
ft(π) where t ∈ {1, 2, 3, 4} (2)

Where Ω is the set of all feasible clustering solutions, π∗

is the clustering solution that has optimized all t objective
functions. In the proposed approach, the four objective func-
tions are f1 := fuzzy partition coefficient (FPC), f2 := PBM
index, f3 := biological homogeneity index (BHI) and f4 :=
protein-protein interaction confidence score (PPICS). Here,
{f1, f2} are traditional cluster validity indices and {f3, f4}
are bio-oriented cluster validity indices. Among {f3, f4}, f3:=
BHI, which measures the biological or functional homogeneity
(similarity) of a particular cluster of genes and f4:= PPICS
[9], which is the newly developed cluster quality measure
calculated using confidence scores of the protein-protein in-
teractions.

The proposed MOO-based clustering technique utilizes
three genetic operators, namely crossover, mutation, and se-
lection.

1) Crossover: In the current study, we have used single
point crossover (with crossover probability pc) where the
crossover point is stochastically selected from the parent
chromosomes. The procedure for selecting the crossover

point ensures that the length of the offspring lies over a
range [2,

√
N ].

2) Mutation: For the mutation purpose, the three types
of mutations, e.g., Normal Mutation(ρn) (changing any
cluster center by a small amount), Insert Mutation(ρi)
(inserting a new cluster center) and Delete Mutation(ρd)
(deleting a center from the chromosome), are applied on
a chromosome at a particular time.

3) Selection: Lastly, to select the best chromosomes for the
next generation, a binary tournament selection operator is
used. Two individual chromosomes are randomly picked
up to play the tournament and winner is chosen after
considering their non-domination ranks and crowding
distances[1].

For our MOO-based clustering technique, the values of
different parameters are tabulated in Table-I of the Supple-
mentary material. Finally, this MOO-based clustering tech-
nique simultaneously optimizes {f1, f2, f3, f4} and generates
a Pareto front ΠP = {πP1 , πP2 , . . . , πPM}, where each of the
solutions of Pareto front is non-dominated to each other,
i.e., {πPi | ∄πPj ∈ ΠP : πPj ≻ πPi } where ≻ represents
the dominance relation. Figure-1 represents the schematic
flowchart of our proposed architecture.

B. Creation of Induced Network and Finding the Dense Sub-
graph (DSG)

From the obtained non-dominated solutions ΠP =
{πP1 , πP2 , . . . , πPM}, we picked a single partitioning (clustering
solution) πPM on the basis of the Silhouette Index s(C). As
the MOO-based clustering technique simultaneously optimizes
bio-oriented cluster validity indices{f3, f4}, the genes of
each cluster are functionally and biologically similar. Now to
identify the representative features from these similar sets of
genes, we utilize the characteristics of hub genes. Generally,
hub genes possess some special functional and topological
significance. The functional properties of genes are taken
care of by the MOO-based clustering technique (described
in the previous section). Now to understand the topological
significance of the genes, we explore the information of the
protein-protein interaction (PPI) network.

Let, the partitioning πPM contain a set of clusters
{C1, C2, . . . , CK}, and consider a PPI network N that is
defined by a triplet ⟨V,E,Φ⟩, where V = {G1,G2, . . . ,GZ}
is the set of proteins/genes, E = {e1, e2, . . . , em} ⊆ V XV is
the edges (links) between proteins and Φ = {ϕ1, ϕ1, . . . , ϕm}
where, ∀i : ϕi represents the confidence score of ei. In the
proposed feature selection technique, the confidence score (ϕi)
[10] acts as the edge weight of ei.

Now, a set of induced subgraphs I ′
= {N I1 ,N I2 , . . . ,N IK}

are generated by mapping each of the clusters {Ci : Ci ∈ πPM}
to N . Here {N Ii : i ∈ [1,K]} denoted by {(V Ii , EIi ) | ∀i :
(V Ii ⊂ V ∈ Ci)∧ (EIi ⊂ E)}. This mapping is basically per-
formed to acquire the topological or the structural information
of the genes. The generation of the induced network (N Ii ) is
carried out using Cytoscape [11]. Figure-2a shows an induced
network (N Ii ) generated from {Ci : Ci ∈ πPM} of B-CLL
dataset.
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Figure 1: Flowchart of Our Proposed Hub-genes Identification Framework based on the Multi-objective Optimization technique
and the Goldberg Algorithm, FPC: Fuzzy partition Coefficient, PBM: Pakhira-Bandyopadhyay-Maulik Index, BHI: Biological
Homogeneity Index

Here, all the nodes (genes/proteins) of any N Ii are function-
ally similar, but not all are strongly connected, i.e., topologi-
cally significant. To identify those intensely connected nodes,
the condensed part (region) of any N Ii is found by utilizing a
popular graph mining algorithm, named as Goldberg algorithm
[12]. In the proposed approach, the confidence score (ϕi) of
each edge (ei) is prudently incorporated into the Goldberg
algorithm during the search for dense part of each N Ii . The
modified Goldberg Algorithm is illustrated in Algorithm-1

The core part of the Goldberg algorithm is to generate
a network N ∗i from N Ii , which is described in line-6 to
line-19 of Algorithm-1. During the construction of N ∗i , the
confidence scores, Φ of the interactions (edges) are prudently
utilized (in line number-12 of Algorithm-1). This modified
Goldberg algorithm takes {N Ii : i ∈ [1,K]} and generates D
= {D1,D2, . . . ,DK}, where Di|i∈[1,K] = {∂Ii1, ∂Ii2, . . . , ∂Iid}
is the set of dense subgraphs (DSG) obtained using the
Algorithm-1. The time complexity of this modified Goldberg
algorithm is O(Knm[log(n)]2) (refer to section-I of the sup-
plementary material), where n and m are the number of nodes
(genes) and edges of any induced network (N ∗i ), respectively.
Different dense subgraph (DSG) modules obtained from the
induced network (illustrated in Figure-2a) are shown in Figure-
2b to Figure-2j .

C. Identifying Hub Proteins

Now, we have combined all the DSGs obtained from N Ii ,
to find all the genes, which belong to different dense sub-
graphs of N Ii . After combining, we get a set of topologically
significant genes, i.e., D∗i = {{∂Ii1} ∪ {∂Ii2} ∪ . . . {∂Iid}} =
{Gi1,Gi2, . . . ,GiF}. Similarly, from all other induced net-
works, we obtained topologically significant genes and finally
a set of all topologically significant genes is obtained, i.e., D∗
= {D∗1 ,D∗2 , . . . ,D∗K}

Now, to identify the hub genes from D∗i|[1,K], the degree
(δl|l∈[1,P ]) of the node (gene) Gil is considered. The degree of a
node (gene) represents the number of genes interacting to that
particular gene. As there is no consensus rule for the threshold
degree (δth) of the hub genes, we heuristically vary δth for
identifying the hub genes. Inspired by the recent literature [4],
we extracted the hub genes depending upon the value of δth ∈
{3, 5, 17, 33, 85}. Hence, the final hub gene set is defined by
HGz|z∈{3,5,17,33,55,85} = {H1

z ,H
2
z , . . . H

K
z }; where Hi

z =
{Gij|j∈[1,F ]: (Gij ∈ D∗i ) ∧ (δj > δth = z)}.

These hub genes (features) are both functionally (taken
care by MOO-based clustering technique) and topologically
(taken care by modified Goldberg algorithm) significant. Thus
HGz|z∈{3,5,17,33,85} can act as the informative features of the
feature space. Further to analyze the goodness of extracted
features, we have shown the utility of the subset of features



JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 4

(a)

(b) DSG-I

(c) DSG-II

(d) DSG-III

(e) DSG-IV (f) DSG-V (g) DSG-VI (h) DSG-VII (i) DSG-VIII (j) DSG-IX

Figure 2: Visualization of generated induced network and dense-subgraphs using the Cytoscape; (a) Induced network (N Ii )
generated from {Ci : Ci ∈ πPM} of B-CLL dataset. (b)-(j) DSG-I to DSG-IX generated from N Ii after application of Algorithm-
1; blue nodes have higher degrees and color of the nodes changes to orange if the degree of the node reduces.

on sample classification task. The sample classification task is
briefly described in the following section.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Datasets

In the current experiment, two types of datasets are used:
gene expression datasets and PPI datasets. In case of mi-
croarray datasets, six NCBI’s GEO datasets, i.e., B-CLL, ILD,
Prostate dataset, GDS3268, GDS3795 and GDS4206 are used.
Also, we have used three simulated datasets with different
noise levels and sample sizes. The brief description of all these
datasets is provided in Table-IV of the supplementary material.
The protein-protein interaction(PPI) network is obtained after
merging three PPI databases, i.e., Human Protein Reference
Database(HRPD), Molecular Interaction database(MINT) and
IntAct database.

B. Selection of Evaluation Metrics

The choice of cluster validity indices plays a crucial role
in multi-objective clustering technique. In this regard, we
have applied an interactive approach [13] to find out the best
set of cluster validity indices. After applying this interactive

approach, we found that {FPC,PBM,BHI, PPICS} is
one of the best set of objective functions for gene clustering by
utilizing their molecular functionalities. The Silhouette score is
used as a prioritize criteria among the non-dominated solutions
because it has been widely used to understand the goodness
of gene clustering.

C. Analysis of DSG as the Extracted Features

To analyze the goodness of the extracted features (hub
genes), sample classification is done by utilizing four well-
known classifiers, namely k-NN(k=3), random forest, support
vector machine(SVM) and artificial neural network (ANN).
As all the datasets contain two types of samples (tumour and
normal), we perform the binary classification. The parameter
values of these four binary classifiers are tabulated in Table-
II of the supplementary material. Here, the extracted features
are termed as hub gene modules (HGz|z∈{3,5,17,33,55,85}). We
have obtained the average results after conducting 10 times 10-
fold cross-validation and the results are evaluated using five
performance metrics, namely sensitivity [14], specificity [14],
precision [14], F-measure[14] and Mathews coefficient corre-
lation (MCC) [15]. The performance metrics of the extracted
features and the dense subgraphs of three real-life datasets
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Algorithm 1 Modified Goldberg algorithm
linenosize=

Input: NI
i = (V I

i , EI
i )

Output: Di = {∂I
i1, ∂

I
i2, . . . , ∂

I
id} ▷ A set of dense subgraphs (DSG)

1: procedure GOLDBERG(NI
i )

2: temp← 0; counter = 0 ▷ Initialization
3: temp1 ← m =

∣∣∣EI
i

∣∣∣ ; temp2 ← n :=
∣∣∣V I

i

∣∣∣
4: while

(
(temp1 − temp) ≥ 1

temp2(temp2−1)

)
do

5: g ← temp+temp1
2

6: Construct a network N∗
i = (V ∗

i , E∗
i ) from NI

i

7: V ∗
i ← V I

i ∪ {s, t} ▷ Add two vertices source (s) and sink (t)
8: E∗

u = {}
9: for k ∈ [1, 2, . . . , temp1] do

10: if ek ∈ (Gα,Gβ) then
11: E∗

u = E∗
u ∪ {e⃗α,β , e⃗β,α} ▷ Replace an undirected edge by two

directed edges
12: w(e⃗α,β) = w(e⃗β,α) = ϕk ▷ w(e⃗α,β) is the weight or capacity

of e⃗α,β

13: E∗
s = {}; E∗

t = {}
14: for ∀Gk ∈ {V I

i } do
15: Generate e⃗s,Gk

and e⃗Gk,t

16: w(e⃗s,Gk
) = m;E∗

s = E∗
s ∪ (e⃗s,Gk

)
17: w(e⃗Gk

, t) = m + 2g − dk;E
∗
t = E∗

t ∪ (e⃗Gk,t) ▷ dk is the
degree of Gk

18: E∗
i = {E∗

u ∪ E∗
s ∪ E∗

t }
19: V1 = {} ▷ Make an empty list that will contain the nodes (genes) of the

DSG obtained from N∗
i

20: FIND MIN-CUT(S,T)
21: if S = {s} then
22: temp1 ← g
23: else
24: temp← g
25: V1 ← S − {s}
26: temp2 = temp2 −|V1|
27: ∂I

i.counter = {V1}
28: counter+ = 1

29: end while

Table I: Comparison of Accuracy of Different Existing Algo-
rithms with Our Proposed Algorithm

Accuracy

B-CLL ILD Prostate GDS3268 GDS3795 GDS4206

Falt et al.
(2005)

WV 0.71 - - - - -
LDA 0.90 - - - - -

Chuang et al.
(2007)

kNN - - 0.81 - - -
RF - - 0.82 - - -

SMO - - 0.87 - - -

Taylor et al.
(2009) - - - 0.68 - - -

Ahn et al.
(2011)

- - - 0.82 - - -
- - - 0.84 - - -

Cho at al.
(2011) RbFS - 1.00 - - - -

Swarnakar et al.
(2015)

3NN 0.81 0.83 0.85 - - -
RF 0.57 0.79 0.84 - - -

SVM 0.81 0.86 0.87 - - -

Ge at al.
(2016)

3NN 0.77 0.75 0.80 0.49 0.88 0.71
RF 0.76 0.86 0.84 0.51 0.91 0.77

SVM 0.64 0.82 0.83 0.63 0.87 0.66
ANN 0.64 0.73 0.90 0.43 0.75 0.70

Riverol et al.
(2017)

3NN 0.65 0.86 0.85 0.65 0.85 0.72
RF 0.72 0.86 0.80 0.63 0.91 0.75

SVM 0.71 0.86 0.82 0.53 0.88 0.78
ANN 0.50 0.67 0.88 0.65 0.91 0.76

Kang et al.
(2017)

3NN 0.64 0.61 0.85 0.51 0.91 0.78
RF 0.61 0.76 0.87 0.65 0.88 0.77

SVM 0.71 0.79 0.79 0.63 0.83 0.69
ANN 0.67 0.79 0.90 0.67 0.88 0.73

Proposed
Method

3NN 0.71 ± 0.10 0.86 ± 0.09 0.88 ± 0.06 0.71 ± 0.04 0.92 ± 0.02 0.78 ± 0.07
RF 0.67 ± 0.12 0.89 ± 0.03 0.87 ± 0.02 0.67 ± 0.03 0.95 ± 0.02 0.82 ± 0.06

SVM 0.76 ± 0.10 0.86 ± 0.06 0.91 ± 0.02 0.67 ± 0.01 0.91 ± 0.02 0.78 ± 0.06
ANN 0.75 ± 0.15 0.88 ± 0.06 0.93 ± 0.03 0.70 ± 0.02 0.95 ± 0.02 0.85 ± 0.10

are reported in Table-V, VII, and VIII of the supplementary
material. Also, we analyze the performance of the extracted
features with respect to two baseline approaches.
• Baseline 1: Here, we consider all the preprocessed genes

of the dataset during sample classification.
• Baseline-2: Here, we assume that the centroids, {Ci |
Ci ∈ πPM}, of the MOO-based clustering technique are

used as the representative features and further utilized
for sample classification using the above mentioned three
classifiers.

In Table-V of the supplementary material, we have shown
the performance metrics for the B-CLL dataset with respect to
different DSGs (DSG-I to DSG-IX), the hub genes modules
(HGz|z∈{3,5,17,33,55}) and two baselines. It is shown that
the performance of HGz|z∈{3,5,17,33,85} identified by the
proposed approach for B-CLL data outperforms the baselines
and most of the dense subgraphs. In Table-VII and Table-
VIII of the supplementary material, a comparative analysis
of the performance metrics for baselines and different hub
gene modules of ILD and prostate datasets are presented,
respectively. For both datasets, the hub gene modules identified
by the proposed method outperform two baselines in sample
classification with respect to all the performance metrics
irrespective of classification model used.

The obtained comparative results confirm that the proposed
graph-based hub gene (as informative feature) identification
method utilizing the power of MOO-based clustering tech-
nique is a productive approach. Incorporation of the confidence
scores (ϕi) of the PPI in the Goldberg algorithm enables
to identify the biologically and topologically significant gene
modules. These gene modules are further used as the infor-
mative features for sample classification.

D. Comparative Analysis of the Proposed Method with the
Existing Methods

To validate the superiority of the proposed method over
other state-of-art algorithms, we have compared the perfor-
mance of our approach with several existing methods in terms
of different performance metrics. All the performance metrics
are calculated as a two-class classification problem. In Table-
I, a comparative analysis with nine state-of-art techniques in
terms of accuracy is tabulated. Among these methods, Fält et
al.[16] used different supervised and unsupervised clustering
methods to identify the important genes. Chuang et al. [17]
and Taylor et al. [18] exploit protein interaction networks for
predicting the gene markers. Similarly, Ahn et al. [19] and
Swarnakar et al. [20] identified important genes by combining
different genetic information with protein interaction network.
System biology approaches, with global expression data sets,
were used in Cho et al. [21]. Ge et al. (2016)[22] developed a
feature selection technique which is based on a recent corre-
lation measurement, Maximal Information Coefficient (MIC).
In Riverol et al. (2017)[23], an integrated feature selection
technique is developed by combining different popular feature
selection methods with Correlation Matrix(CM) and Principal
Component Analysis(PCA). Kang et al. (2017) proposed a new
feature selection method by utilizing the significance analysis
of microarrays (SAM). In Table-I, we have reported the com-
parative study of the accuracies for all six NCBI datasets. For
our proposed technique, we run ten times the 10-fold cross-
validation and report the variance of the accuracies in Table-I.
Also, it is evident from Table-I that the overall performance
of the proposed method outperforms other existing methods.
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Table II: Comparison of Different Performance Metrics (Sensitivity, Specificity, F-measure and Matthews correlation coeffi-
cient(MCC)) of Different Existing Algorithms with Our Proposed Algorithm for Prostate Dataset

Chuang et al.
(2007)

Taylor et
al.(2009)

Ahn et al.
(2011)

Swarnakar et. al
(2015)

Ge et. al
(2016)

Riverol et. al
(2017)

Kang et. al
(2017) Proposed Method

kNN RF SMO - - - 3NN RF SVM 3NN RF SVM ANN 3NN RF SVM ANN 3NN RF SVM ANN 3NN RF SVM ANN

Sensitivity 0.88 0.82 0.90 0.75 0.86 0.90 0.84 0.71 0.74 0.63 0.63 0.66 0.65 0.67 0.64 0.67 0.63 0.76 0.86 0.82 0.67 0.87 0.89 0.92 0.95
Specificity 0.74 0.82 0.84 0.62 0.78 0.78 0.86 0.90 0.93 0.85 0.88 0.85 0.93 0.86 0.79 0.81 0.93 0.62 0.74 0.83 0.79 0.86 0.79 0.83 0.91
F-measure - - - - - - 0.78 0.74 0.78 0.66 0.66 0.68 0.67 0.68 0.61 0.68 0.66 0.78 0.82 0.78 0.79 0.90 0.91 0.94 0.96
MCC 0.63 0.65 0.75 0.49 0.65 0.69 0.60 0.62 0.69 0.65 0.61 0.71 0.82 0.62 0.62 0.69 0.80 0.65 0.66 0.62 0.65 0.69 0.67 0.70 0.83

Table III: Comparison of Different Performance Metrics for B-CLL, ILD, GDS3268, GDS3795 and GDS4206 datasets

Swarnakar et. al
(2015)

Ge et. al
(2016)

Riverol et. al
(2017)

Kang et. al
(2017) Proposed Method

Dataset Performance
metrics 3NN RF SVM 3NN RF SVM ANN 3NN RF SVM ANN 3NN RF SVM ANN 3NN RF SVM ANN

B-CLL
Precision 0.56 0.58 0.58 0.50 0.50 0.40 0.20 0.50 0.50 0.50 0.20 0.55 0.50 0.50 0.55 0.80 0.57 0.88 0.73
F-measure 0.70 0.61 0.61 0.39 0.37 0.33 0.36 0.36 0.36 0.43 0.30 0.36 0.33 0.43 0.39 0.72 0.64 0.61 0.73
MCC 0.16 0.14 0.14 0.22 0.10 0.14 0.13 0.14 0.24 0.14 0.14 0.44 0.14 0.14 0.29 0.44 0.15 0.17 0.62

ILD
Precision 0.50 1.00 0.67 0.80 0.80 0.80 0.70 0.80 0.80 0.80 0.80 0.67 0.80 0.67 0.69 0.95 0.95 0.82 0.79
F-measure 0.25 0.50 0.44 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.81 0.81 0.80 0.89 0.90 0.93 0.85 0.76
MCC 0.20 0.53 0.39 0.75 0.61 0.65 -0.09 0.50 0.37 0.58 0.66 0.61 0.65 0.65 0.71 0.67 0.75 0.67 0.83

GDS3268
Precision - - - 0.63 0.64 0.64 0.64 0.65 0.63 0.65 0.63 0.65 0.63 0.63 0.65 0.75 0.81 0.81 0.81
F-measure - - - 0.49 0.53 0.65 0.48 0.55 0.55 0.58 0.55 0.53 0.49 0.49 0.61 0.65 0.58 0.65 0.74
MCC - - - 0.12 0.13 0.09 -0.31 0.23 0.22 -0.26 0.23 0.19 0.23 0.22 0.22 0.50 0.45 0.46 0.56

GDS3795
Precision - - - 0.05 0.05 0.02 0.05 0.02 0.02 0.05 0.01 0.02 0.02 0.02 0.01 0.24 0.25 0.32 0.31
F-measure - - - 0.01 0.01 0.01 0.01 0.01 0 0.01 0.01 0 0 0.01 0.03 0.13 0.13 0.15 0.09
MCC - - - -0.05 -0.02 -0.03 -0.10 -0.06 -0.02 -0.02 -0.08 -0.03 -0.03 -0.02 -0.03 0.10 0.12 0.12 0.12

GDS4206
Precision - - - 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.67 0.78 0.78 0.80 0.83 0.80 0.82 0.92
F-measure - - - 0.75 0.77 0.70 0.79 0.75 0.76 0.78 0.79 0.75 0.69 0.72 0.79 0.79 0.83 0.85 0.90
MCC - - - -0.12 -0.09 -0.04 -0.10 -0.05 -0.13 -0.01 0.14 0.03 0.03 0.09 0.21 0.21 0.19 0.17 0.41

In Table-II, a comparative study of different performance
metrics for the Prostrate dataset is tabulated. Similarly, Table-
III shows the comparative analysis of different performance
metrics for B-CLL, ILD, GDS3268, GDS3795 and GDS4206
datasets against other comparative methods. But results of
many of the existing methods are not available for six NCBI
datasets. Therefore, the unavailable information is represented
by the dash (-) in Table-I, II and III. Fig-1 of the supplementary
material shows the performance evaluation of the proposed
feature selection method against other existing methods for
all six datasets. Only for ILD dataset, the error measure of
Chuang et al. is less than the proposed method. But from
the Fig-1 of the supplementary material, it is clearly evident
that overall performance of proposed method is better than
all other existing methods. From this comparative study, it is
clearly evident that the proposed feature extraction technique
surpasses the existing methods in terms of overall performance
for all six datasets.

To prove the effectiveness of the proposed method, we have
also considered three simulated datasets with different noise
levels and sample sizes. These datasets are generated in a
way so that they possess similar characteristics [24] of real
microarray datasets. The comparative study of performance
for the simulated datasets is reported in Table-VI of the
supplementary material which proves the effectiveness of the
proposed method for simulated datasets. The results of the
comparative study (for both NCBI datasets and simulated
datasets) have demonstrated that our proposed method is
effective for detecting significant genes and classification
tasks. Finally, we perform a statistical hypothesis, Welch’s t-
test [25], for all the performance metrics to prove that the

performance improvements attained by the proposed method
are statistically significant. Here the null hypothesis presumes
that there is an insignificant difference between the mean
values of two groups and alternative hypothesis states that
there are significant differences in the mean values of two
groups. The p-values of Welch’s t-test on six gene expression
profiles are reported in Table-IX of the supplementary material
and it is seen that all the p-values are less than 0.05. Thus
the obtained p-values evidently support that the improvements
attained by the proposed method are statistically significant
and are not occurred by chance.

E. Biological Analysis

To analyze the biological significance of the ex-
tracted features, we have followed two different proce-
dures. In the first procedure, Gene Ontology Consortium
(http://www.geneontology.org/) is used to find out the signif-
icant gene ontology (GO) terms corresponding to extracted
gene sets. Also it gives the enrichment of the GO cate-
gory in terms of p-value, percentage (HG%) of genes of
HGz|z∈{3,5,17,33,55} or DSG related to a particular GO term,
and percentage (Genome%) of genes of Gene Ontology Con-
sortium related to a particular GO term. In Table-X of the
supplementary material, we have reported the major biological
and cellular processes of selected genes of the dense and
hub gene modules for the B-CLL dataset. For example, in
DSG-I of B-CLL dataset, 87.09% genes are related to GO
term GO:0065007, which is responsible for the biological
regulation of the cell. It is also shown that only 57.88%
genes of the Gene Ontology Consortium are related to the
particular GO term(GO:0065007). Hence the gene modules
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or gene set of DSG-I are more enriched than the existing
gene ontology database with respect to biological regulation
process(GO:0065007).

In the second procedure, we have found out the correlations
between the selected genes with their respective diseases by
validating our result using a disease-gene association database
namely DisGeNET [26]. In Table-III of the supplementary
material, we have reported those genes (genes selected by our
proposed method) which belong to the top 10 disease-related
genes of the DisGeNET database. Results clearly show that
80%-100% of the top 10 disease-related genes of DisGeNET
belong to our selected gene (feature) set. The obtained results
of these two tables are strong evidence to justify that gene
modules obtained by the proposed graph-based technique are
strongly correlated with the particular disease and very much
responsible for the biochemical process of the living cell.

IV. CONCLUSION

The current paper reports about the development of a
method for hub-gene selection utilizing the concepts of multi-
objective based clustering and a modified version of Goldberg
algorithm. The MOO-based clustering technique utilizes the
integrated information of PPI and expression profiles for
simultaneously optimizing four objective functions, which
help in identifying both biologically relevant and functionally
similar genes. Finally, incorporation of protein interactions
with Goldberg algorithm helps in identifying the densest
part of the gene clusters obtained from the aforementioned
MOO-based clustering technique. The performance of the
proposed hub-gene selection approach is evaluated for sample
classification. The results are compared with different existing
methods with respect to five performance metrics. From the
comparative study, described in section-III, it is easily inferred
that the proposed method is superior to all the existing methods
with respect to the overall performance. In future, we aim
to develop a deep learning based feature selection algorithm
integrated with multi-objective optimization to identify the
informative genes.
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