
Feature Assisted Stacked Attentive Shortest Dependency Path

based Bi-LSTM Model for Protein-Protein Interaction

Shweta Yadav, Asif Ekbal, Sriparna Saha, Ankit Kumar and Pushpak Bhattacharyya

Department of Computer Science and Engineering
Indian Institute of Technology Patna (IIT Patna)

Patna, India

Abstract

Knowledge about protein-protein interactions is essential for understanding the biological
processes such as metabolic pathways, DNA replication, and transcription etc. However, a
majority of the existing Protein-Protein Interaction (PPI) systems are dependent primarily
on the scientific literature, which is not yet accessible as a structured database. Thus,
efficient information extraction systems are required for identifying PPI information from
the large collection of biomedical texts.

In this paper, we present a novel method based on attentive deep recurrent neural net-
work, which combines multiple levels of representations exploiting word sequences and de-
pendency path related information to identify protein-protein interaction (PPI) information
from the text. We use the stacked attentive bi-directional long short term memory (Bi-
LSTM) as our recurrent neural network to solve the PPI identification problem. This model
leverages joint modeling of proteins and relations in a single unified framework, which is
named as the ‘Attentive Shortest Dependency Path LSTM’ (Att-sdpLSTM) model. Ex-
perimentation of the proposed technique was conducted on five popular benchmark PPI
datasets, namely AiMed, BioInfer, HPRD50, IEPA, and LLL. The evaluation shows the F1-
score values of 93.29%, 81.68%, 78.73%, 76.25%, & 83.92% on AiMed, BioInfer, HPRD50,
IEPA, and LLL dataset, respectively. Comparisons with the existing systems show that our
proposed approach attains state-of-the-art performance.

Keywords: Relation Extraction, Protein-Protein Interaction, Bi-directional Long Short
Term Memory(Bi-LSTM), Stacked Attention, Deep Learning, Shortest Dependency Path,
Support Vector Machine.

1. Introduction

The study of the Protein-Protein Interaction (PPI) is crucial in understanding the bi-
ological process, such as DNA replication, transcription, metabolic pathways and cellular

∗Asif Ekbal
Email address: asif.ekbal@gmail.com,asif@iitp.ac.in (Shweta Yadav, Asif Ekbal, Sriparna Saha,

Ankit Kumar and Pushpak Bhattacharyya)

Preprint submitted to Knowledge-Based Systems October 14, 2018

organization. Owing to this fact, several databases have been manually curated to cache
protein interaction information such as MINT [1], BIND [2], and SwissProt [3] in struc-
tured and standard formats. However, the rapid growth of biomedical literature has shown
a significant gap between the availability of protein interaction article and its automatic
curation. As such, a majority of the protein interaction information is still uncovered in the
textual contents of biomedical literature. Moreover, the growth in biomedical literature is
at an exponential pace. In the last 20 years, the overall size of MEDLINE has increased
at a 4.2% compounded annual growth rate. There is 3.1% compounded annual growth
rate in the number of new entries in MEDLINE database. MEDLINE currently has more
than 6, 000, 000 publications, which are more than three millions than those published in
the last 5 years alone [4]. Hence, owing to the exponential rise [5, 6] and complexity of
the biological information, the necessity for intelligent information extraction techniques to
assist biologist in detecting, curating and maintaining database is becoming crucial. This
has lead to a surge in the interest of Biomedical Natural Language Processing (BioNLP)
community for automatic detection and extraction of PPI information.

Determining PPIs in the scientific text is the process of recognizing how two or more
proteins in the given biomedical sentence are related. We exemplify interaction types be-
tween protein pairs in Table-1 where protein (Bnrlp-Rho4p) forms the interacting protein
pair and the (Bnrlp-Rho1p) is non-interacted protein pairs.

Sentence Protein Entities Interacted Protein Pair Non-interacted Protein Pair

Bnrlp interacts with another Rho family member, Rho4p,

but not with Rho1p.
Bnrlp, Rho4p, Rho1p Bnrlp-Rho4p Bnrlp-Rho1p

These data demonstrate that Stat3 but not Stat1 or Stat5 is

directly recruited to the ligand-activated IL-10 receptor.
Stat3, Stat1, Stat5, IL-10 Stat3-IL-10

Stat3-Stat1, Stat3-Stat5, Stat3-IL-10,

Stat1-Stat5, Stat1-IL-10, Stat5-IL-10

Table 1: Exemplar description of protein protein interaction in a sentence

Majority of the existing systems look upon this task as a binary classification problem
by identifying whether any interaction occurs between a pair of proteins or not. One of the
most explored techniques for PPI task includes kernel-based method [7, 8]. The potentiality
of the kernel-based method is due to the virtue of a large amount of carefully crafted fea-
tures. However, extraction of these features relies on the other NLP tools such as ABNER
[9], MedT-NER [10] or PowerBioNE [11] and machine learning (ML) tool (SVM-light with
Tree-Kernels). Recently, with the widespread usages of neural network based techniques in
clinical and biomedical domain [12, 13, 14, 15, 16], methods exploring latent features have
emerged as strong alternative choices over the traditional machine learning based techniques.
Some of the distinguished studies [17, 18] for PPI extraction tasks utilize convolution neural
networks (CNNs) which have shown significant performance improvements over the exist-
ing state-of-art techniques. Some other popular neural network based models for relation
extraction are [19, 20] system. However, these systems are mostly applicable in identify-
ing different relationships from newswire articles. Thus these approaches fail to produce a
comparable performance on biomedical literature owing to the complexity of the biomedical
text. Biomedical named entities do not have standard nomenclature. Moreover, the different

2

protein entities often have similar names making it more difficult to capture the contextual
information, and these arbitrariness increases the difficulty in capturing the semantic rela-
tionships between the entities (proteins).

Motivated by these observations, in this paper we propose an attentive shortest depen-
dency path based Bi-directional LSTM architecture (Att-sdpLSTM) to identify PPI pairs
from the text. The proposed method differs from the previous studies in three facets: firstly,
utilizing the dependency relationships between the protein names, we generate the Shortest
Dependency Path (SDP) of the sentences. This facilitates us to create more syntax-aware
inferences about the capabilities of the proteins in a sentence in comparison to the technique
developed based on classical kernel-based method. Second, we investigate the significance
of Part-of-Speech (PoS) and position embedding features in improved learning of the Att-
sdpLSTM. Finally, we exploit the stacked Bi-LSTM over attention by stacking multiple
Bi-LSTMs layers on top of each other, and finally generating the weighted sum represen-
tation of hidden states using the attention mechanism. This approach potentially allows
the hidden state at each level to operate at different timescale. In contrast to the systems
proposed by [17] and [18], we employ attentive multi-layer Bi-LSTM models [21] instead of
Convolutional Neural Network (CNN) [22]. In CNN, features are generated by performing
pooling over the entire sentence based on continuous n grams, where n refers to the filter
size. This puts constraints on longer sentences where long-term dependencies exist. Our
method circumvents the shortcoming of CNN architecture by utilizing the Bi-LSTM layer,
which can effectively encode the long-term dependencies using the recurrent connection. In
general, Bi-LSTM can keep track of preceding and succeeding words. We also use the at-
tention mechanism to generate the weighted representation of each word. As such, when
we employ the LSTM, we obtain the features from the entire sentence possessing the whole
information not just on n-grams as in state-of-the-art CNN based architecture [17, 18]. The
intuition behind Bi-LSTM network is that it combines the multiple levels of representations
that are proven to be effective in deep networks with the flexible use of long range context
that empowers RNNs (LSTM). Also, introducing attention mechanism in the context of
relation classification helps in weighing of text segments (e.g., word or sentence) or some
high-level feature representations obtained by learning a scoring function. This allows a
model to pay more attention to the most influential segments of texts for a relationship
category.

In contrary, the existing methods [19, 23] generally consider a whole sentence as the
input. The drawback of these existing techniques is that such representations fail to de-
scribe the relationships of two target entities which appear in the same sentence at a far
distance (i.e. long distant). Considering these problems, in our proposed technique we ex-
ploited dependency parsing related feature to examine the sentence and capture the Shortest
Dependency Path to generate SDP based word embedding. In order to further inject the
explicit linguistic information and boost the performance of the attentive multi-layer LSTM
architecture, we have included the PoS information of SDP based words to assist the LSTM
based network. The position w.r.t protein and part-of-speech (PoS) are prominent features1

1We used the word features and embeddings interchangeably for position and PoS input.

3

identifying the protein interaction information. PoS provides useful evidence that helps to
detect important grammatical properties. Words assigned with same PoS posses similar
syntactic behavior which provides an important clue to the system for inferencing the inter-
action between the protein pair.
The basic structure of a sentence can be obtained by determining the position of protein-word
and the word occurring in its vicinity which provides pivotal clues to identify interactions
in sentences. The extraction of SDP based word embeddings rather than full sentence em-
bedding and its usage as an input to attentive Bi-LSTM network in an amalgamation with
the other latent feature is the core contribution of our proposed work.

The key contributions of the proposed work are summarized below:

1. An shortest dependency path based attentive Bi-LSTM model (Att-sdpLSTM) in-
spired from [24] is proposed for relation extraction in biomedical domain.

2. Integration of different concepts (SDP, attention, stacking, & feature embedding) and
application of the integrated system in solving the biomedical protein protein interac-
tion task is a novel contribution.

3. Latent features like Part-of-Speech (PoS) and position of token with respect to the
proteins which are found to be effective are utilized in extracting protein-protein pairs
in a deep learning framework.

4. We have demonstrated that word embedding models learned on the PubMed, PMC
and Wikipedia corpus are more powerful than the internal embedding models or the
models trained on general corpus such as the news corpus2.

5. Evaluations on five different benchmark corpora, namely AiMed, BioInfer, HPRD50,
IEPA, and LLL establish the fact that our proposed approach is generic in nature.
Please note that these five datasets were created by following different protein anno-
tation guidelines.

2. Related Works

1. Pattern-based Model: Preliminary studies conducted by [25] and [26] explored pre-
specified patterns and rules for the PPI task. However, the system lacks in identifying
complex cases such as complex relationships expressed in various coordinating and
relational clauses. For sentences containing complex relations between three or more
entities, the approach usually yields erroneous results. For example,
“The gap1 mutant blocked stable association of Ste4p with the plasma membrane, and
the ste18 mutant blocked stable association of Ste4p with both plasma membranes and
internal membranes.”
In [27] authors proposed a technique based on dynamic programming to automatically
discover patterns. The system proposed in [28] also studied the performance of rule-
based algorithms. They developed two models, first one made use of rapier rule-based
system and the other one relied on longest common subsequences.

2https://code.google.com/archive/p/word2vec/

4

2. Using Dependency Parsing: Here we describe the works that take into account
more syntax aware approach such as full and partial (shallow) parsing. In the par-
tial parsing, sentence structure is divided partially and dependencies are generated
locally within the phrase. While in full parsing, the whole sentence is considered to
capture dependencies, [29] developed the system solely based on the shallow syntactic
information. They further incorporated kernel functions to combine information from
the entire sentence and the local contexts around the interacting entities. The work
reported in [30] focused on extracting the SDP between the protein pairs by defining
the cosine similarities and edit distance function via semi-supervised learning. Some
of the other prominent works include the studies conducted by [31] and [32]. Other
popular studies based on full parsing include the works as reported in [33, 34, 35].

3. Kernel-based Model: Bunescu and Mooney [7] first proposed the idea of using
kernel methods to extract PPI based on the SDP. Some of the effective kernel-based
techniques for PPI task include graph kernel [36], bag-of-word (BoW) kernel [37], edit-
distance kernel [30], all-path kernel [8] and tree kernel [38, 39].

4. Deep Learning based Model: Recent studies show the applicability of deep learning
models for the PPI task [17, 18]. The work reported in [17] made use of Convolutional
Neural Network (CNN) for developing the PPI based system. [18] proposed a CNN
based model utilizing several handcrafted features exploiting lexical, syntactic and
semantic level information in combination with word embeddings.

3. Method

In this study, we present a novel model to predict protein interaction pairs from the
text. Our model leverages joint modeling of proteins and relations in a single model by
exploiting attentive stacked Bi-LSTM technique. Dependency between entities captures
the information relevant for identifying the relations. Further, this architecture utilizes
positional information of proteins in the sentence and the PoS embedding as the latent
features in improved learning of Att-sdpLSTM model. We begin by extracting SDP sentences
and exploiting latent features. Embeddings are generated corresponding to each feature
which is passed as input to the stacked Bi-LSTM unit. The architecture of our proposed
Att-sdpLSTM is shown in figure-2. We describe each phase in succeeding subsections.

3.1. Shortest Dependency Path (SDP)

The input to the sdpLSTM is the SDP between a protein pair. For this purpose, we
exploit the dependency parse tree of the sentence. It describes the syntactic constituent
structure of the sentence by annotating edges with dependency types, e.g. subject, auxiliary,
modifier and captures the semantic predicate-argument relationships between the words. In
general, [7] first proposed the idea of using dependency parse tree for relation extraction.
They designed a kernel function exploring the shortest path between the entities to capture

5

Figure 1: Proposed model architecture for protein protein interaction. The input is the Shortest Dependency
Path (SDP) between a pair of protein. The output of the model is the probability distribution over two
class:‘interaction’ and ‘non-interaction’. (all the neurons representation are hypothetical)

the relations. The main intuition behind this is based on the observation that shortest path
reveals non-local dependencies within sentences which can help in capturing the relevant
information from the sentence. The shortest path between the protein pair generally captures
the essential information (aspects of sentence construction such as mood, modality and
sometimes negation, which can significantly alter or even reverse the meaning of the sentence)
to identify their relationship. The approach proposed in [40] was proved to be significantly
better over the dependency tree kernel-based model. We follow this idea to use SDPs for
extracting protein interacting pairs.
As illustrated in Figure 2, the word ‘bind’ in SDP carries important information to predict
the interaction between the protein pair. The dependency relation bounded here is by verb
argument and as interaction verb carries essential evidence in PPI. For PPI task, capturing
these dependency relations is important.

For the purpose of extracting dependency relations, we use Enju Parser3 which is a
syntactic parser for English and can effectively analyze syntactic and/or semantic structures
of biomedical text and provide with predicate-argument information. We have generated
a graph for every sentence that contains at least two protein entities where each word
corresponds to the node of the graph and the edges between the nodes (dependency relation)
are obtained by the parser. We utilize Breadth First Search (BFS) algorithm [41] to calculate
the shortest distance between the protein pair. The words occurring between the SDP only
takes part in the training instead of the whole words present in the sentences to generate

3http://www.nactem.ac.uk/enju/

6

Figure 2: The predicate argument of the example sentence “Prot1 is shown to bind with cell surface of
Prot2.” Here, the words represent the nodes and predicate argument relation is represented by edges. The
red nodes form the SDP for the given sentence with the black arrow denoting the path to reach from ‘Prot1’
to ‘Prot2’. The other words are represented in blue round-rectangular boxes that are not part of SDP.
Thereby, the SDP for given sentence is “Prot1 bind with surface of Prot2”

SDP embedding.

SDP Words PoS PoS Feature
PoS Feature

Encoding

Relative position

from Prot1

Relative position

from Prot2

Position

Feature-1

Position

Feature-2

Position Feature

Encoding-1

Position Feature

Encoding-2

Prot1 NN 10000000 [0.00171600 . . . 0.0033500] 0 -6 0000000000 0000111111 [0.03141600 . . . 0.9035500] [0.1117600 . . . 0.0223500]

regulator NN 00000000 [0.99121600 . . . 0.0233500] 1 -5 0000000001 0000011111 [0.77171600 . . . 0.4858500] [0.83191600 . . . -0.1133500]

between IN 00100000 [0.25191600 . . . 0.1739500] 2 -4 0000000011 0000001111 [0.33171600 . . . -0.8833500] [0.58961600 . . . 0.7189200]

Interaction NN 10000000 [0.17171219 . . . 0.7583350] 3 -3 0000000111 0000000111 [0.75171600 . . . 0.5533500] [0.99171600 . . . 0.7633500]

and CC 00100000 [0.17001600 . . . 0.3030350] 4 -2 0000001111 0000000011 [0.78117600 . . . -0.033500] [0.72171600 . . . 0.1233500]

repression NN 10000000 [0.17858500 . . . 0.8835300] 5 -1 0000011111 0000000001 [0.45897600 . . . -0.0522500] [0.7800100 . . . 0.3311500]

Prot2 NN 10000000 [0.98581600 . . . 0.0263500] 6 0 0000111111 0000000000 [0.77451600 . . . 0.8985500] [0.1745100 . . . 0.3323500]

Table 2: Feature Encoding for sentence “Interaction between cell cycle regulator, Prot1, and Prot2 mediates
repression of HIV-1 gene transcription.”. Here, the words occurring in the vicinity of SDP are used to
generate features.

Distance 0 1 2 3 4 5 6 7 8 9 10 11-∞

B
in
a
ry

re
p
re
se
n
ta
ti
o
n

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1

Table 3: Binary representation of relative distance w.r.t the protein mention.

3.2. Latent Feature Encoding Layer

Along with the SDP embedding, we design domain-independent features to assist our
model in becoming more generic and adaptable. We explore PoS and position of each word
as a feature. An exemplar illustration of latent feature encoding is provided in Table-2.

1. PoS Feature: This represents the PoS for each word occurring in the vicinity of
SDP. We use Genia Tagger4 to extract PoS information of each token. Every PoS

4http://www.nactem.ac.uk/GENIA/tagger/

7

tag is encoded as a unique eight dimension one hot vector which is fed to a neural
network (NN) based encoder. Auto-encoder [42] is employed to transfer the sparse PoS
features to the dense real-valued feature vectors. This converts one-hot representation
to dense feature representation of dimension 8. We use Adadelta optimizer [43] with
loss function as a squared error to train our auto-encoder model.
Let P represents the one hot vector of a PoS tag corresponding to each word. The
auto-encoder learns the transition functions ϕ and Ω such that reconstruction errors
(squared errors) are minimized. The function ϕ and Ω are called the encoder and the
decoder function, respectively. Mathematically, it can be written as follows:

ϕ,Ω = argmin
ϕ,Ω
||P − P ′||2 (1)

where ϕ : P → Z, Ω : Z → P .

2. Position Feature: This feature helps us in identifying the significant interacting
tokens between the two target protein entities. The position feature computes the rel-
ative distances of a word with respect to the protein mentions. We extract this feature
on SDP of the target protein pairs. It is a two-dimensional tuple denoting distances
of these tokens from the two target proteins. For e.g., consider the following sentence:
‘Prot1 regulator between interaction and repression Prot2’, the relative distances of
the word ‘interaction’ with respect to Prot1 and Prot2 are −3 and 3, respectively.
Relative distances are then mapped to 10-dimensional binary vectors. From Table-3,
we can observe that more attention is given to the words near to the protein mentions,
particularly to the words occurring in the vicinity of 10 surrounding words. Moreover,
words whose relative distances exceed 10 are all treated equally.
Intuitively, the words which are nearer to the target words are more informative than
the farther words. We perform experiments to determine the optimal dimension by
varying the distance (from 5 to 12) of more informative words with respect to proteins
as shown in Table 6. We notice that the system performs well when the maximum rel-
ative distance of the informative word is within the range of 10 w.r.t the protein term.
As we follow the binary representation of distance, therefore, the position feature is
represented using a feature vector of 10 dimensions.
Similar to PoS feature, every position feature is encoded as a 10-dimensional vector
which is fed into an auto-encoder. Using the learned auto-encoder model, we convert
the sparse position feature vector to a dense real valued feature vector of dimension
10.

3.3. Embedding Layer

Word embedding persuades a real-valued latent semantic or syntactic vector for each
word from a large unlabeled corpus by using continuous space language models [44]. In
embedding layer we obtain real-valued vector corresponding to each word of the SDP. Let
us assume that we have a SDP sentence Ssdp = {w1, w2 . . . wN} having size N , a pre-trained
word embedding matrix M ∈ Rd×|V |. A real-valued vector representation Ew

k for given a

8

word wk can be obtained as follows:

Ek = M · j(wk) (2)

where j(wk) is the one hot vector representation of the word wk. Thereafter, we augment the
PoS and position embeddings (obtained from the previous layer) to the vector representation.

xk = Ew
k ⊕ EPoS

k ⊕ Eposition
k (3)

Where EPoS
k and Eposition

k are the PoS embedding and position embedding, respectively.
The ⊕ denotes the concatenation operator. In our work, we use publicly available word
embedding5 (200 dimensions) pre-trained on a combination of PubMed and PMC articles
to the text extracted from a recent English Wikipedia dump. The performance of the word
embedding depends on various hyperparameter setting such as vector dimension, context
window size, learning rate, sample size etc. Pysallo et al. [45] has released this pre-trained
biomedical embedding after the deep analysis of various hyperparameter setting that obtains
optimal embedding. Utilizing the pretrained word embedding not only helps in minimizing
the time cost but also helpful in obtaining the best optimal parameter.

3.4. Stacked Bi-LSTM Layer

The Stacked Bi-LSTM layer takes the input from embedding layer and provides a higher
level abstract representation of each word in the sentence. Recurrent neural network (RNN)
is a powerful technique to encode a sentence by capturing long term dependency. However,
because of the long sequence it often suffers from vanishing or exploding gradient problems
[21, 46]. This problem can be overcome by gating and memory mechanism as introduced in
LSTM [47]. LSTM provides a different way to compute the hidden states.

The feature word sequence is represented by a bidirectional LSTM-RNNs [21]. The
LSTM unit at k-th word consists of an input gate ik, forget gate fk, an output gate ok, a
memory cell ck and hidden state hk. The input to this unit is a n-dimensional input vector
xk, the previous hidden state hk1, and the memory cell hk1, and computes the new hidden
states as follows:

ik = σ(W
(i)
1 xk +W

(i)
2 hk−1 + b(i))

fk = σ(W
(f)
1 xk +W

(f)
2 hk−1 + b(f))

ok = σ(W
(o)
1 xk +W

(o)
2 hk−1 + b(o))

uk = tanh(W
(u)
1 xk +W

(u)
2 hk−1 + b(u))

ck = ik � uk + fk � ck−1

hk = ok � tanh(ck)

(4)

where σ, � denote the sigmoid function and element-wise multiplication, respectively. The
W1, W2 and b’s are the weight-metrics and bias vectors, respectively. We can simplify the
Eq 4 as follows:

hk, ck = LSTM(xk, ck−1, hk−1) (5)

5http://bio.nlplab.org/

9

Inspired by the success of stacked attentive LSTM in solving other NLP tasks [24, 48, 49, 50],
we use the stacked LSTM to encode the shortest dependency path sentence. The Stacked
LSTM is an extension to LSTM model that has multiple hidden LSTM layers where each
layer contains multiple memory cells. The purpose of using multiple LSTM layers is to learn
more sophisticated conditional distributions from the data [51]. In this work, we employ
vertical stacking strategy where the output of the previous layer of LSTM is fed to the input
of the next layer of LSTM. Let the number of layers in stacked LSTM is L then the LSTM
computes the hidden state and memory cell for each layer l ∈ L as follows:

hlk, c
l
k = LSTM(xlk, c

l−1
k , hl−1

k) (6)

where, hlk and clk are the hidden state representation and the memory cell at the lth layer,
respectively. The inputs c0

k and h0
k to the first layer (l = 1) of LSTM are initialized randomly.

The first layer of LSTM unit at kth word feature takes the input as the concatenation of
word embedding, PoS embedding and position embeddings obtained from an auto-encoder:
x1
k = [Ew

k ⊕ EPoS
k ⊕ Eposition

k]. The inputs (xl+1
k , clk, h

l
k) to the (l + 1)th LSTM layer is the

(hlk, c
l
k, h

l
k), in other words the output hidden state hlk of the lth layer is the input to the

(l+ 1)th layer and the hidden state and memory cell are initialized with the previous layer’s

hidden state and memory cell respectively. We compute the forward (
−→
hk) and backward (

←−
hk)

hidden state for each word k in the sentence. The final hidden state at layer l is computed by

augmenting both the hidden states: zlk = [
−→
hlk ⊕

←−
hlk]. The final SDP sentence representation

is calculated by taking the hidden state of the last layer (L) of the LSTM as follows:

z1, z2, . . . , zN = [
−→
hL1 ⊕

←−
hL1], [

−→
hL2 ⊕

←−
hL2], . . . , [

−→
hLN ⊕

←−
hLN] (7)

3.5. Attention Layer

We introduce another layer over the outputs of stacked LSTM. The attention layer
uncovers the salient contexts from the SDP sentence and encodes those to form the context
vector. Usually the contexts in our task are the clue words and the implicit information
which play important roles in deciding the interaction or non-interaction between the protein
pairs. The inputs to this layer are the hidden states as calculated in E.q. 7 and the output
is the weighted sum based on the attention distribution. We first feed the hidden state
zk of the kth of the SDP sentence to one-layer perceptron to obtain the mk as a hidden
representation of zk, then we compute the similarity with the context vector c. We obtain the
normalized attention weights through softmax. Finally, the weighted SDP representation (R)
is calculated by multiplying the attention weight to the stacked LSTM hidden representation
zk.

mk = tanh(Wazk + ba)

αk =
em

T
k ∗c∑N

i=1 e
mT

i ∗c

R =
N∑
k=1

αk ∗ zk

(8)

10

where, Wa and ba are the weight matrix and bias vector, respectively. The context vector c
is randomly initialized and jointly learned through training.

3.6. Multilayer Perceptron (MLP) layer

The output of attention layer R is fed into a fully connected layer with H number of
hidden layers. More formally, given a sequence layer output R, number of hidden layers H,
network calculates output as follows:

M = f(WM ∗R + bM) (9)

where, WM ∈ RH×R is the weight matrix between the output of sequence layer and hidden
layer; bM ∈ RH×1 is a bias term vector. Thereafter, the output M is transformed into
T ∈ RC×1 by augmenting with a weight matrix WT ∈ RC×H , where C is the number of
required labels. In our case the value of C = 2.

T = WT ∗M (10)

Finally, the transformed output T is fed into the softmax layer. The softmax layer
provides the output probability of each label. Mathematically, it can be written as follows:

P (class = C|T) =
eTclass∑C
k=1 e

Tk
(11)

Figure-1 represents the architecture of our Att-sdpLSTM model.

4. Results

4.1. Dataset

The proposed model is evaluated on the five popular benchmark corpora for PPI, namely
AiMed, BioInfer6, HPRD507, IEPA8, & LLL9. AiMed dataset is generated from 197 abstracts
extracted from the Database of Interacting Protein (DIP). It contains 1955 sentences with
the protein entities, manually tagged with the PPI interaction relations. This is recognized
as the standard dataset for PPI extraction task.

The BioInfer corpus created by the Turku BioNLP group10 consists of 836 sentences. In
our work, we assume the protein interacted pair as the positive instance and non-interacted
pair as the negative instance. To identify the negative instances which are not directly given
in the dataset, we assume all the possible pairs of proteins that are possible in a given sen-
tence and consider those protein-pairs to be negative instances whose relations are not given

6http://corpora.informatik.hu-berlin.de/
7https://goo.gl/M5tEJj
8https://goo.gl/JeboFE
9https://goo.gl/1DsDqL

10http://bionlp.utu.fi/

11

in the sentence. Thereby, we obtain 3109 negative instances and 939 positive instances for
AiMed corpus. Similarly, in case of BioInfer corpus, we obtain 5951 negative instances over
1077 positive interactions. It can be observed that all dataset are imbalanced as they are
strongly biased towards the negative examples.

HPRD50, referenced by the Human Protein Reference Database (HPRD) dataset is gen-
erated by randomly selecting a subset of 50 abstracts [52]. The annotation was done for
direct physical interactions, regulatory relations, and for any modifications (e.g., phospho-
rylation). The dataset consists of a total 145 sentences, with 163 positive interaction pairs
and 270 negative pairs.

IEPA, termed as the Interaction Extraction Performance Assessment (IEPA) consists of
nearly three hundred abstracts [53]. These abstracts were retrieved from the MEDLINE
utilizing the queries. Each query was the AND of two biochemical nouns.

LLL (Learning language in logic) is another PPI dataset, released as part of the LLL
shared task challenge 2005 [54]. The aim of the task was to extract protein/gene interac-
tions in the form of relations from biology abstracts of the Medline bibliography database,
specifically concerning Bacillus subtilis transcription.

A detail statistics of these datasets are provided in Table-4.

4.2. Preprocessing

The protein entities are generalized with the protein IDs to make the model insensitive
towards biases associated with the names of the proteins. This makes every protein unique
and avoids the model to learn highly interacting protein pairs. We perform tokenization
with the help of Genia Tagger11. The tokenized sentence is parsed with the Enju parser to
obtain the dependency relations.

Datasets Interacted Pair Non-interacted Pair Ratio

AiMed 939 3109 1:3.3

BioInfer 1077 5951 1:5.5

HPRD50 163 270 1:1.6

IEPA 335 482 1:1.4

LLL 164 166 1:1.0

Table 4: Dataset Statistics for PPI Extraction

4.3. Network Training and Hyper-parameters

The objective of training the Bi-LSTM model is to minimize the binary cross entropy
cost function. It can be written as follows:

L(S, Y) = − 1

n

n∑
i=1

y(i) ln a(s(i)) +
(

1− y(i)
)

ln
(

1− a(s(i))
)

(12)

11http://www.nactem.ac.uk/GENIA/tagger/

12

Here, S = {s(1), s(2) . . . s(n)} is the set of input SDP sentence in the training dataset, and
C = {c(1), c(2) . . . c(n)} is the corresponding set of labels for those SDP sentences. The a(s)
denote the output of the MLP layer. The gradient-based optimizer is used to minimize our
cost function described in Eq-12. We have used Adam [55], an adaptive learning rate based
optimizer, to update the parameters throughout training. To avoid over-fitting, the network
dropout [56] mechanisms are used with a dropout rate of 0.3.

The hyper-parameter values were determined from the preliminary experiments by eval-
uating the model performance for 10-fold cross-validation. The proposed model described
in Section-3 is implemented using Keras12. We have chosen Tensorflow as backend machine
learning library. We tune our model for various hyper-parameters of the LSTM architecture
including the number of LSTM units, dropout ratio, number of epochs and different opti-
mization algorithms etc. for all datasets. The optimum performance is achieved with 115
epochs for AiMed and BioInfer datasets as depicted in Figure-4. We obtain the best results
for all the PPI datasets on a set of optimized network hyper-parameters (c.f. Table 5) using
10-fold cross validation experiments.

Hyper-parameters
Optimal

value

Number of LSTM units 64

Dropout ratio 0.3

Activation function Sigmoid

Optimization algorithm Adam

Epochs (AiMed & BioInfer) 115

Epochs (HPRD50, IEPA & LLL) 50

Size of MLP layer output 30

No. of LSTM layers 6

Context vector size 75

Table 5: Optimal hyper-parameter setting on 10-fold cross
validation for all datasets.

Context window

size

F-score

(AiMed)

F-score

(BioInfer)

[-5,5] 78.36 72.72

[-6,6] 78.54 73.18

[-7,7] 79.19 73.23

[-8,8] 81.16 74.29

[-9,9] 81.75 75.56

[-10,10] 82.89 75.93

[-11,11] 82.17 75.28

[-12,12] 81.41 74.88

Table 6: Analysis of context window on 10
fold cross validation data for position feature
on sdpLSTM model.

4.4. Analysis of Hyper-parameter Settings

We setup all the experiments by varying the hyper-parameter values and analyze the
behaviors of our model. For AiMed dataset, we observed that addition of LSTM units
improves the model performance to a certain extent. Thereafter, it keeps on decreasing
gradually. We define an optimal value 64 for the same, via cross-validation experiment.
We started the experiment with single LSTM layer and keep on increasing till six layer of
LSTMs. We observed that the performance start decreasing after sixth layer of LSTMs.
The model performance against the varying number of LSTM layer can be visualize in the
Figure 3. In case of other datasets, we also observe quite a similar trend in performance
with the addition of LSTM units, size of context vector and stacking of LSTM layer.

12https://keras.io/

13

Figure 3: Effect of stacking Bi-LSTM layers

Figure 4: Effect of varying epochs on the performance (F1-Score)

As shown in Fig-3, stacking helps in improving the performance of the system for the
AiMed and BioInfer dataset. However, for the dataset HPRD50, IEPA, & LLL, there wasn’t
much impact on stacking multiple LSTM units. We observed that after stacking two layers
of LSTM units, the performance of the system was almost constant.
We also analyze the performance of our model on the number of epochs for which training
was performed on all datasets. On AiMed dataset, the value of F1-score initially shows
minor growth from epochs 1 to 5 and then shows regular growth with the increasing number
of epochs from 5 to 115, and finally a dip on further increasing the number of epochs to
115 and 140. For BioInfer dataset there has been steady increase with the increase in the
number of epochs. We achieve the optimum performance with the almost same number of
epochs (115) for all datasets. The model behaviors with respect to the epochs are shown in
the Figure 4. For the remaining dataset, the optimal results are achieved with 50 epochs
(c.f. Figure-4), this is because the HPRD50, IEPA and LLL datasets are small compared to
AiMed and BioInfer datasets and model get over-fitted with higher number of epochs.
Similarly, we performed the cross-validation experiment with the varying size of context
vector and found to be optimal on size 75 for all the datasets.

14

4.5. Evaluation on Benchmark Datasets

In the recent years, different kernel-based techniques and SVM based model were adopted
as baselines against the deep learning CNN based model for the PPI task. It has been shown
how deep learning based models perform superior compared to the feature based models
[57, 18]. As such, in order to make an effective comparison of our proposed approach, we
design three strong baselines based on neural network architecture as follows:

1. Baseline 1: The first baseline model is constructed by training a multi-layer percep-
tron on the features obtained from the embedding layer as defined in subsection-3.3.
The sentence embedding SM is generated by the concatenation of every PoS and po-
sition augmented word embeddings to SDP embedding.

SM = x1 ⊕ x2 . . .⊕ xn; (13)

Thereafter, SM is fed into MLP layer described in Subsection-3.6.

2. Baseline 2: Our second baseline is based on the more advanced sentence encoding
techniques, RNN. The SDP sentence encoding SR can be generated as follows:

SR = σ(U ∗ xn + V ∗ h(n− 1) + b) (14)

where σ is a sigmoid function, h(n− 1) denotes the hidden representation of (n− 1)th

word in the SDP sentence. U , V , and b are the network parameters. Similar to
Baseline 1, MLP layer is used to classify a SDP sentence into one of the two classes,
viz : ‘interacting pair’ and ‘non-interacting pair’.

3. Baseline 3: As a third baseline model, we utilized shortest dependency path based
single Bi-LSTM model assisted by the latent features (PoS, position embedding). We
call this baseline as sdpLSTM.

We perform 10-fold cross validation on all the datasets. With no official development data set
available, cross validation seems to be the most reliable method of evaluating our proposed
model. To evaluate the performance of our model, we use standard recall, precision, and F1-
score. The detailed comparative analysis of our proposed model (Att-sdpLSTM) over these
baselines and state-of-art systems are reported in Table-7,8, & 9. The obtained results clearly
show the effectiveness of our proposed Att-sdpLSTM based model over the other models
exploring neural network architectures or conventional kernel or SDP based machine learning
model. In our proposed model we obtain the significant F1-score improvements of 26.83,
23.07, and 6.84 points over the first three baselines for the AiMed dataset, respectively. On
BioInfer dataset, our system shows the F1-Score improvements of 11.46, 8.47, and 4.33 points
over these three baselines, respectively. For HPRD50 dataset, performance improvements of
11.29, 4.79, 1.09 points were observed by the proposed approach over the first three baselines,
respectively. Similar improvements were also observed for the other two datasets. With
IEPA, the proposed model outperforms the baselines by 9.44, 4.53, 0.69 points, respectively.
On LLC dataset, the performance improvements of 12.79, 6.24, 0.97 F1-Score points were
observed with the proposed approach.

15

Model Approach
AiMed BioInfer HPRD50 IEPA LLL

P R F1 P R F1 P R F1 P R F1 P R F1

Baseline 1 MLP (SDP) 59.73 75.93 66.46 68.56 72.05 70.22 68.26 66.64 67.44 69.21 64.57 66.81 70.39 71.88 71.13

Baseline 2 RNN (SDP) 66.23 74.72 70.22 71.89 74.59 73.21 75.13 72.78 73.94 72.48 70.97 71.72 78.02 77.34 77.68

Baseline 3 sdpLSTM (SDP+Feature Embeddings) 91.10 82.20 86.45 72.40 83.10 77.35 79.19 76.14 77.64 76.17 74.95 75.56 83.10 82.81 82.95

Proposed Model
Att-sdpLSTM

(SDP+Feature Embedding+Attention+Stacking)
92.63 93.96 93.29 80.81 82.57 81.68 79.92 77.58 78.73 76.90 75.62 76.25 84.22 83.62 83.92

Table 7: Comparative results of the proposed model (Att-sdpLSTM) with the baselines model.

5. Analysis

5.1. Comparative Analysis with Existing Methods

In order to perform the comparative analysis with the existing approaches, we choose
the recent approach exploiting neural network model for AiMed and BioInfer dataset. We
explore other approaches utilizing SVM based kernel methods and word embedding feature
as shown in Table-8. We observe that Att-sdpLSTM significantly performs better than all
the state-of the-art techniques for AiMed and BioInfer dataset. From this, we can conclude
that Att-sdpLSTM is more powerful in extracting protein interacted pairs over the CNN
based architecture developed in [17] and [18]. We further make an interesting observation
that incorporating the latent features embedded into the neural network based architecture
improves the performance of the system.

Our proposed model attains an significant improvement of 8.09 F-score point (c.f. Table
8) over the model proposed in [18] for the AiMed dataset. The DCNN model [18] made use
of a significant number (total 29) of domain dependent lexical, syntax and semantic level
features. In contrast to this our model is more generic in the sense that we use only PoS and
position features. We further re-implemented the DCNN system and evaluated it on AiMed
and BioInfer datasets. Evaluation (c.f. Table 8) shows that our proposed model attains
better performance for AiMed and BioInfer datasets. We also re-implemented the system
reported in [58] to obtain the precision and recall values. We also conducted experiments
by introducing negative sampling in Baseline 3 model for AiMed and BioInfer dataset. As
shown in Table-8, the overall performance of the system has dropped by nearly 2% for all
datasets compared to Baseline 3.

We also conducted comparative analysis for HPRD50, IEPA, and LLL dataset with the
existing state-of-the-art system utilizing kernel based approach. Table-9 shows that our
proposed model outperformed the state-of-art by 7.83, 1.15, and 1.72 F1-Score points on
HPRD50, IEPA, and LLL dataset, respectively.
5.2. Effects of Stacking Bi-LSTM with attention

We examined the impact of stacking multiple Bi-LSTM layers by varying the number of
layers from 1 to 6. To investigate the role of stacking, we replaced basic LSTM model with
the stacked Bi-LSTM model. We observed (c.f. Table 10) the performance improvement
of 5.49 F1-Score points on AiMed dataset and 3.11 F1-Score points improvement on the
BioInfer dataset. For the other three datasets, we observed very modest improvement by in-
troducing stacking. Performance improvements of 0.46, 0.16, and 0.22 points were observed
for HPRD50, IEPA, and LLL dataset, respectively. The possible reason for not getting any
significant improvement (unlike AiMed and BioInfer datasets) is the small dataset size. The

16

Model Approach
AiMed BioInfer

Precision Recall F1-Score Precision Recall F1-Score

Proposed Model
Att-sdpLSTM

(SDP+Feature Embedding+Attention+Stacking)
92.63 93.96 93.29 80.81 82.57 81.68

sdpLSTM + Negative Sampling sdpLSTM (SDP+Feature Embeddings+Negative Sampling) 89.61 80.39 84.75 70.06 82.61 75.82

[17] sdpCNN (SDP+CNN) 64.80 67.80 66.00 73.40 77.00 75.20

[18]
DCNN (CNN+word/position embeddings+

Semantic (WordNet) feature embeddings)
- - 85.20 - - -

[18]∗ DCNN 88.61 81.72 85.03 72.05 77.51 74.68

[59] Single kernel+ Multiple Parser+SVM 59.10 57.60 58.10 63.61 61.24 62.40

[23]
McDepCNN (CNN+word+PoS+Chunk+NEs

Multi-channel embedding)
67.30 60.10 63.50 62.70 68.20 65.30

[60] Deep neutral network 51.50 63.40 56.10 53.90 72.90 61.60

[61] All-path graph kernel 49.2 64.60 55.30 53.30 70.10 60.00

[58] Multiple kernel+ Word Embedding+ SVM - - 69.70 - - 74.00

[58]∗ Multiple kernel+ Word Embedding+ SVM 67.18 69.35 68.25 72.33 74.94 73.61

[62] Tuned tree kernels +SVM 72.80 62.10 67.00 74.50 70.90 72.60

Table 8: Comparative results of the proposed model (Att-sdpLSTM) with state-of-the-art systems for AiMed
and BioInfer dataset. Ref. [18]∗ and [58]∗ denote the re-implementation of the systems proposed in [18] and
[58] with the authors reported experimental setups.

Model Approach
HPRD50 IEPA LLL

P R F1 P R F1 P R F1

Proposed Model
Att-sdpLSTM

(SDP+Feature Embedding+Attention+Stacking)
79.92 77.58 78.73 76.90 75.62 76.25 84.22 83.62 83.92

[61] APG 68.2 69.8 67.8 66.6 82.6 73.1 71.3 91 78.1

[61] APG(with SVM) 65.4 72.5 67.5 71.0 75.1 72.1 70.9 95.4 79.7

[63] kBSPS 66.7 80.2 70.9 70.4 73.0 70.8 76.8 91.8 82.2

[36] APG 64.3 65.8 63.4 69.6 82.7 75.1 72.5 82.2 76.8

[64] Rich Feature Based 60.0 51.0 55.0 64.0 70.0 62.0 72.0 73.0 73.0

[65] Hybrid 68.5 76.1 70.9 67.5 78.6 71.7 77.6 86.0 80.1

[36] Co-occ 38.9 100.0 55.4 40.8 100.0 57.6 55.9 100.0 70.3

[66] RelEx 76.0 64.0 69.0 74.0 61.0 67.0 82.0 72.0 77.0

Table 9: Comparative results of the proposed model (Att-sdpLSTM) with state-of-the-art systems for
HPRD50, IEPA, and LLL dataset

17

model was easily overfitted and therefore no major impact was observed.
In order to understand the role of attention, we further incorporated the attention to

sdpLSTM + stacking model. The obtained results show the effectiveness of attention mech-
anism on all the datasets. Incorporating attention boosts the performance of the stacked
sdpLSTM model by 1.35, 1.22, 0.63, 0.53, and 0.75 F1-Score points on AiMed, BioInfer,
HPRD50, IEPA, and LLL dataset, respectively. With the vanilla sdpLSTM model, perfor-
mance improvements of 6.84, 4.33, 1.09, 0.69, and 0.97 F1-Score points were observed on
AiMed, BioInfer, HPRD50, IEPA, and LLL datasets, respectively.
5.3. Effects of Feature Combination

In this section, we analyze the significance of each feature by performing feature abla-
tion study (removing one feature at a time) as shown in Table-11. We begin by examining
only SDP embedding. It can be observed that Att-sdpLSTM alone without using additional
features shows a remarkable performance of 92.27, 80.53, 78.73, 76.25, and 83.92 F1-Score
on AiMed, BioInfer, HPRD50, IEPA, and LLL datasets, respectively. This clearly shows
the significance of SDP based embedding with attention in identifying protein interacted
pairs. We observe that inclusion of position embedding slightly improves (0.42 F1 score)
the performance on the AiMed dataset. However, there have been drops in F1-score by 0.22
points when PoS feature is added. This might be due to the data sparseness problem with
the lack of training data. In case of BioInfer dataset, position embedding is comparatively
less informative, but still boosts the F1-score by 0.29 F1-score points. The inclusion of PoS
embeddings, however, shows an improvement of 0.70 F-score points. The reason is while
adding a position to PoS feature, it helps as we have PoS tag information (which is NNP)
of the closest potential entity. We analyze that, the improvements are not simply due to
combining the features to SDP embedding. This suggests that these information sources are
complementary to each other in some linguistic aspects. We closely investigate the outputs
of the AiMed dataset produced in our system and make the summary with the following
observations:

1. PoS distribution: Protein names are mainly noun phrases. For the AiMed dataset,
we observed that the multi-word proteins were not properly tagged as the noun phrases.
This encountered some errors which eventually propagated when introduced the PoS
alone as a feature to the LSTM model.

2. Presence of protein interacted words: The presence of protein interacted words
(inhibit, regulated, interaction etc.) provides an important clue to identify the interac-
tion of proteins. When the system takes SDP as input, we observe that in some cases
the PoS tagger is unable to tag the interacted words as verbs. This could be one of
the reasons that the system performance is comparable when we use PoS information
alone as a feature.

For the HPRD50 dataset, the exclusion of PoS drops the model performance by 1.07 F1
Score points. Position feature was also observed as a significant feature in assisting the
proposed model. Removal of this feature leads to the decrease in F1-Score by 1.16 points.
We observed similar phenomena for the IEPA and LLL datasets, where exclusion of PoS

18

Model
AiMed BioInfer HPRD50 IEPA LLL

P R F1 P R F1 P R F1 P R F1 P R F1

sdpLSTM 91.10 82.20 86.45 76.61 78.10 77.35 79.19 76.14 77.64 76.17 74.95 75.56 83.10 82.81 82.95

sdpLSTM + Stacking 92.89 91.02 91.94 79.29 81.67 80.46 79.53 76.73 78.10 76.29 75.16 75.72 83.41 82.94 83.17

Att-sdpLSTM (sdpLSTM + Stacking + Attention) 92.63 93.96 93.29 80.81 82.57 81.68 79.92 77.58 78.73 76.90 75.62 76.25 84.22 83.62 83.92

Table 10: Effect of stacking and attention on proposed Att-sdpLSTM model.

Model
AiMed BioInfer HPRD50 IEPA LLL

P R F1 P R F1 P R F1 P R F1 P R F1

Att-sdpLSTM 92.63 93.96 93.29 80.81 82.57 81.68 79.92 77.58 78.73 76.90 75.62 76.25 84.22 83.62 83.92

Att-sdpLSTM - PoS Embeddings 94.61 92.44 93.51 79.95 82.04 80.98 78.52 76.82 77.66 75.88 74.91 75.39 83.13 82.50 82.81

Att-sdpLSTM - Position Embeddings 94.39 91.41 92.87 80.37 82.44 81.39 79.07 76.13 77.57 76.02 74.64 75.32 83.58 82.91 83.24

Att-sdpLSTM - PoS - Position Embeddings 95.61 89.17 92.27 79.16 81.95 80.53 78.32 75.89 77.09 75.72 74.49 75.10 82.97 82.28 82.62

Table 11: Proposed model performance after removing PoS and position embeddings once at
a time.

feature drops the F1 Score by 0.86, 1.11 point respectively. When the position feature
is removed from the proposed model, it showed the F-score degradation by 0.93 and 0.68
points, respectively, for IEPA and LLL data sets. Interestingly, combination of all the
features improves the performance of the system by 1.02, 1.15, 1.64, 1.15 and 1.3 F1-score
points on AiMed, BioInfer, HPRD50, IEPA, and LLL datasets, respectively. We observe
that when the model is evaluated on the less number of epochs, performance improvement
with the addition of features is 3%-4%. Increasing the epoch gradually vanishes the impact
of additional features.
5.4. Statistical Significance Testing

We conduct the statistical significance tests to verify the improvements over the baselines.
Specially, we used the Wilcoxon signed-ranks test[67]. The Wilcoxon signed-rank test is the
non-parametric uni-variate test which is an alternative to the dependent t-test. Wilcoxon
signed-rank test estimates the statistical significance for the null hypothesis that the two
models (one of the baselines and the proposed model) are equally accurate. The p-values
for the null hypothesis, corresponding to different baselines for our proposed model, are
listed in Table 12. This test confirms that the performance of proposed model is statistically
significant over Baseline 1 and Baseline 2 for all the PPI datasets. The dataset for which
null hypothesis cannot be rejected (p-value < 0.05) are highlighted.

Datasets
with Baseline 1

p-value (95% C.I.)

with Baseline 2

p-value (95% C.I.)

with Baseline 3

p-value (95% C.I.)

AiMed 2.453e-4 0.024 0.032

BioInfer 3.749e-3 0.014 0.039

HPRD50 4.258e-3 0.048 0.129

IEPA 3.477e-4 0.027 0.046

LLL 9.231e-4 0.047 0.094

Table 12: Statistical significance (Wilcoxon Signed-Rank with 95% confidence interval (C.I.)) tests for the
baselines and proposed model. The p-values greater than the confidence level (0.05) are shown in italicized
font.

19

5.5. Error Analysis

In this subsection, we analyze different sources of errors which lead to misclassification.
We closely study the false positive and false negative instances and come up with following
observations:
(1) When Enju dependency parser fails to capture dependencies, the error is propagated to
BFS algorithm as such it does not return any valid SDP. For example, in the given sentence
“The ProtId1 or ProtId2 family is targets of cytokines and other agents that induce HIV-1
gene expression”, the mentioned SDP outputs are “ProtId1 and ProtId2” and “ProtId1
family ProtId2”. It should be noted that this is a negative example and our SDP fails to
capture the context. This hampers our accuracy significantly.
(2) Presence of multiple protein entities: Another form of misclassification is because
of the presence of multiple protein instances in a sentence. Repetitive mention of protein is
expected to act like a noise, which may cause neural models to loose relevant information
from other words likely to be contextually important. For example:
“The nucleotide sequences of ProtId26 (ProtId29), ProtId28 (ProtId23), ProtId27 (Pro-
tId31), ProtId22 (ProtId32), and ProtId30 (ProtId24) genes were partly determined for 19
wild strains of measles virus (MV) isolated over the past 10 years in Japan (nucleotide
position ProtId33: 1301-1700, ProtId21: 1751-2190, ProtId25: 3571-4057, ProtId19: 6621-
7210, ProtId20: 10381-11133) and also for a MV strain obtained from a patient with subacute
sclerosing panencephalitis (SSPE) who had natural measles in 1980.”
(3) No mention of explicit protein: The misclassification was observed where there is
no mention of the explicit interaction bearing words. For example:
“Cotransfections with different combinations of these genes demonstrated that a subset of
four of them, coding for the HSV ProtId242 complex (ProtId241, ProtId239, ProtId243 and
the ProtId240, was already sufficient to mediate the helper effect.”
(4) Negative protein interacting word: Interaction bearing words carry important in-
formation to identify protein interacted pairs such as bind, interact, inhibit. However, when
interaction bearing words appear in negative context, system fails to properly classify those
as non-interacted protein pairs. For example:
“in GSK-3 inhibitors suppressed Sema4D-induced growth”, inhibit does not occur here in
context of PPI.

6. Conclusion and Future Works

In this article, we have proposed an efficient model based on deep learning technique for
PPI. The model makes use of SDP embeddings as low level input feature. In addition it
also exploits the latent PoS and position embedding features to complement the SDP em-
bedding. The main contribution of the proposed methodology is the systematic integration
of word embeddings learn from the biomedical literature and the use of SDP between pro-
tein pairs into the attentive stacked sdpLSTM architecture. Bio-medical word embedding
was observed to capture semantic information more effectively than internal embedding.
By employing SDP and Bi-LSTM, the proposed approach could make full use of struc-
tural information. Our comprehensive experimental results on five benchmark biomedical

20

corpora, AiMed, BioInfer, HPRD50, IEPA,and LLL demonstrated that (i) the SDP based
word embedding input is effective to describe protein-protein relationships in PPI task; (ii)
the attentive Bi-LSTM architecture is useful to capture the long contextual and structure
information; and (iii) high-quality pretrained word embedding is important in the PPI task.
The obtained results depict the superiority of Att-sdpLSTM over the complex state-of-art
approaches leveraging CNN and several higher level features with the significant F1-score
improvements of 8.09 and 6.48 points on AiMed and BioInfer dataset, respectively. Similarly,
for the HPRD50, IEPA, LLL datasets, our proposed model outperformed the state-of-art by
7.83, 1.15, and 1.72 F1-Score points, respectively.

In future, we would like to validate our approach on other relation extraction tasks such
as drug-drug interaction, chemical-protein interaction by overcoming the possible errors.

References

[1] A. Zanzoni, L. Montecchi-Palazzi, M. Quondam, G. Ausiello, M. Helmer-Citterich, G. Cesareni, Mint:
a molecular interaction database, FEBS letters 513 (1) (2002) 135–140.

[2] G. D. Bader, D. Betel, C. W. Hogue, Bind: the biomolecular interaction network database, Nucleic
acids research 31 (1) (2003) 248–250.

[3] A. Bairoch, R. Apweiler, The swiss-prot protein sequence database and its supplement trembl in 2000,
Nucleic acids research 28 (1) (2000) 45–48.

[4] L. Hunter, K. B. Cohen, Biomedical language processing: what’s beyond pubmed?, Molecular cell 21 (5)
(2006) 589–594.

[5] Z. Lu, Pubmed and beyond: a survey of web tools for searching biomedical literature, Database 2011.
[6] R. Khare, R. Leaman, Z. Lu, Accessing biomedical literature in the current information landscape,

Biomedical Literature Mining (2014) 11–31.
[7] R. C. Bunescu, R. J. Mooney, A shortest path dependency kernel for relation extraction, in: Proceedings

of the conference on human language technology and empirical methods in natural language processing,
Association for Computational Linguistics, 2005, pp. 724–731.

[8] A. Airola, S. Pyysalo, J. Björne, T. Pahikkala, F. Ginter, T. Salakoski, A graph kernel for protein-
protein interaction extraction, in: Proceedings of the workshop on current trends in biomedical natural
language processing, Association for Computational Linguistics, 2008, pp. 1–9.

[9] B. Settles, Abner: an open source tool for automatically tagging genes, proteins and other entity names
in text, Bioinformatics 21 (14) (2005) 3191–3192.

[10] R. Sætre, K. Yoshida, A. Yakushiji, Y. Miyao, Y. Matsubayashi, T. Ohta, Akane system: protein-
protein interaction pairs in biocreative2 challenge, ppi-ips subtask, in: Proceedings of the second
biocreative challenge workshop, Vol. 209, Madrid, 2007, p. 212.

[11] G. Zhou, J. Zhang, J. Su, D. Shen, C. Tan, Recognizing names in biomedical texts: a machine learning
approach, Bioinformatics 20 (7) (2004) 1178–1190.

[12] S. Yadav, A. Ekbal, S. Saha, P. Bhattacharyya, Entity extraction in biomedical corpora: An approach
to evaluate word embedding features with pso based feature selection, in: Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics: Volume 1,
Long Papers, Vol. 1, 2017, pp. 1159–1170.

[13] S. Yadav, A. Ekbal, S. Saha, P. Bhattacharyya, A. Sheth, Multi-task learning framework for mining
crowd intelligence towards clinical treatment, in: Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), Vol. 2, 2018, pp. 271–277.

[14] S. Yadav, A. Ekbal, S. Saha, P. Bhattacharyya, Deep learning architecture for patient data de-
identification in clinical records, in: Proceedings of the Clinical Natural Language Processing Workshop
(ClinicalNLP), 2016, pp. 32–41.

21

[15] A. Ekbal, S. Saha, P. Bhattacharyya, et al., A deep learning architecture for protein-protein interaction
article identification, in: Pattern Recognition (ICPR), 2016 23rd International Conference on, IEEE,
2016, pp. 3128–3133.

[16] A. Kumar, A. Ekbal, S. Saha, P. Bhattacharyya, et al., A recurrent neural network architecture for de-
identifying clinical records, in: Proceedings of the 13th International Conference on Natural Language
Processing, 2016, pp. 188–197.

[17] L. Hua, C. Quan, A shortest dependency path based convolutional neural network for protein-protein
relation extraction, BioMed Research International 2016.

[18] S.-P. Choi, Extraction of protein–protein interactions (ppis) from the literature by deep convo-
lutional neural networks with various feature embeddings, Journal of Information Science (2016)
0165551516673485.

[19] M. Miwa, M. Bansal, End-to-end relation extraction using lstms on sequences and tree structures,
arXiv preprint arXiv:1601.00770.

[20] Y. Liu, F. Wei, S. Li, H. Ji, M. Zhou, H. Wang, A dependency-based neural network for relation
classification, arXiv preprint arXiv:1507.04646.

[21] A. Graves, Generating sequences with recurrent neural networks, CoRR abs/1308.0850.
URL http://arxiv.org/abs/1308.0850

[22] Y. LeCun, Y. Bengio, et al., Convolutional networks for images, speech, and time series, The handbook
of brain theory and neural networks 3361 (10) (1995) 1995.

[23] Y. Peng, Z. Lu, Deep learning for extracting protein-protein interactions from biomedical literature,
arXiv preprint arXiv:1706.01556.

[24] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, et al., Google’s neural machine translation system: Bridging the gap between human and
machine translation, arXiv preprint arXiv:1609.08144.

[25] C. Blaschke, M. A. Andrade, C. A. Ouzounis, A. Valencia, Automatic extraction of biological informa-
tion from scientific text: protein-protein interactions., in: Ismb, Vol. 7, 1999, pp. 60–67.

[26] T. Ono, H. Hishigaki, A. Tanigami, T. Takagi, Automated extraction of information on protein–protein
interactions from the biological literature, Bioinformatics 17 (2) (2001) 155–161.

[27] M. Huang, X. Zhu, Y. Hao, D. G. Payan, K. Qu, M. Li, Discovering patterns to extract protein–protein
interactions from full texts, Bioinformatics 20 (18) (2004) 3604–3612.

[28] R. Bunescu, R. Ge, R. J. Kate, E. M. Marcotte, R. J. Mooney, A. K. Ramani, Y. W. Wong, Comparative
experiments on learning information extractors for proteins and their interactions, Artificial intelligence
in medicine 33 (2) (2005) 139–155.

[29] C. Giuliano, A. Lavelli, L. Romano, Exploiting shallow linguistic information for relation extraction
from biomedical literature., in: EACL, Vol. 18, Citeseer, 2006, pp. 401–408.

[30] G. Erkan, A. Özgür, D. R. Radev, Semi-supervised classification for extracting protein interaction
sentences using dependency parsing., in: EMNLP-CoNLL, Vol. 7, 2007, pp. 228–237.

[31] Y. Miyao, K. Sagae, R. Sætre, T. Matsuzaki, J. Tsujii, Evaluating contributions of natural language
parsers to protein–protein interaction extraction, Bioinformatics 25 (3) (2009) 394–400.

[32] S. Garg, A. Galstyan, U. Hermjakob, D. Marcu, Extracting biomolecular interactions using semantic
parsing of biomedical text, in: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
AAAI’16, AAAI Press, 2016, pp. 2718–2726.
URL http://dl.acm.org/citation.cfm?id=3016100.3016282

[33] J. M. Temkin, M. R. Gilder, Extraction of protein interaction information from unstructured text using
a context-free grammar, Bioinformatics 19 (16) (2003) 2046–2053.

[34] N. Daraselia, A. Yuryev, S. Egorov, S. Novichkova, A. Nikitin, I. Mazo, Extracting human protein
interactions from medline using a full-sentence parser, Bioinformatics 20 (5) (2004) 604–611.

[35] A. Yakushiji, Y. Miyao, Y. Tateisi, J. Tsujii, Biomedical information extraction with predicate-
argument structure patterns, in: Proceedings of the first International Symposium on Semantic Mining
in Biomedicine (SMBM), Hinxton, Cambridgeshire, UK, April, 2005.

[36] A. Airola, S. Pyysalo, J. Björne, T. Pahikkala, F. Ginter, T. Salakoski, All-paths graph kernel for

22

protein-protein interaction extraction with evaluation of cross-corpus learning, BMC bioinformatics
9 (11) (2008) S2.

[37] R. Sætre, K. Sagae, J. Tsujii, Syntactic features for protein-protein interaction extraction., LBM (Short
Papers) 319.

[38] C. Ma, Y. Zhang, M. Zhang, Tree kernel-based protein-protein interaction extraction considering both
modal verb phrases and appositive dependency features, in: Proceedings of the 24th International
Conference on World Wide Web, WWW ’15 Companion, ACM, New York, NY, USA, 2015, pp. 655–
660. doi:10.1145/2740908.2741705.
URL http://doi.acm.org/10.1145/2740908.2741705

[39] M. Zhang, J. Zhang, J. Su, G. Zhou, A composite kernel to extract relations between entities with
both flat and structured features, in: Proceedings of the 21st International Conference on Com-
putational Linguistics and the 44th Annual Meeting of the Association for Computational Linguis-
tics, ACL-44, Association for Computational Linguistics, Stroudsburg, PA, USA, 2006, pp. 825–832.
doi:10.3115/1220175.1220279.
URL http://dx.doi.org/10.3115/1220175.1220279

[40] A. Culotta, J. Sorensen, Dependency tree kernels for relation extraction, in: Proceedings of the 42nd
annual meeting on association for computational linguistics, Association for Computational Linguistics,
2004, p. 423.

[41] C. Y. Lee, An algorithm for path connections and its applications, IRE transactions on electronic
computers (3) (1961) 346–365.

[42] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, Stacked denoising autoencoders: Learn-
ing useful representations in a deep network with a local denoising criterion, Journal of Machine Learn-
ing Research 11 (Dec) (2010) 3371–3408.

[43] M. D. Zeiler, Adadelta: An adaptive learning rate method, CoRR abs/1212.5701.
URL http://arxiv.org/abs/1212.5701

[44] B. Tang, H. Cao, X. Wang, Q. Chen, H. Xu, Evaluating word representation features in biomedical
named entity recognition tasks, BioMed research international 2014.

[45] S. Moen, T. S. S. Ananiadou, Distributional semantics resources for biomedical text processing (2013).
[46] R. Pascanu, T. Mikolov, Y. Bengio, Understanding the exploding gradient problem, CoRR

abs/1211.5063.
[47] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation 9 (8) (1997) 1735–1780.
[48] A. Graves, A.-r. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks, in:

Acoustics, speech and signal processing (icassp), 2013 ieee international conference on, IEEE, 2013, pp.
6645–6649.

[49] C. Dyer, M. Ballesteros, W. Ling, A. Matthews, N. A. Smith, Transition-based dependency parsing
with stack long short-term memory, arXiv preprint arXiv:1505.08075.

[50] A. Prakash, S. A. Hasan, K. Lee, V. Datla, A. Qadir, J. Liu, O. Farri, Neural paraphrase generation
with stacked residual lstm networks, arXiv preprint arXiv:1610.03098.

[51] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate,
arXiv e-prints abs/1409.0473.
URL https://arxiv.org/abs/1409.0473

[52] K. Fundel, R. Küffner, R. Zimmer, Relexrelation extraction using dependency parse trees, Bioinfor-
matics 23 (3) (2006) 365–371.

[53] J. Ding, D. Berleant, D. Nettleton, E. Wurtele, Mining medline: abstracts, sentences, or phrases?, in:
Biocomputing 2002, World Scientific, 2001, pp. 326–337.

[54] C. Nédellec, Learning language in logic-genic interaction extraction challenge, in: Proceedings of the
4th Learning Language in Logic Workshop (LLL05), Vol. 7, Citeseer, 2005, pp. 1–7.

[55] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, CoRR abs/1412.6980.
URL http://arxiv.org/abs/1412.6980

[56] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way
to prevent neural networks from overfitting., Journal of Machine Learning Research 15 (1) (2014)

23

1929–1958.
[57] Y. Kim, Convolutional neural networks for sentence classification, in: Proceedings of the 2014 Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational
Linguistics, Doha, Qatar, 2014, pp. 1746–1751.
URL http://www.aclweb.org/anthology/D14-1181

[58] L. Li, R. Guo, Z. Jiang, D. Huang, An approach to improve kernel-based protein–protein interaction
extraction by learning from large-scale network data, Methods 83 (2015) 44–50.

[59] L. Qian, G. Zhou, Tree kernel-based protein–protein interaction extraction from biomedical literature,
Journal of biomedical informatics 45 (3) (2012) 535–543.

[60] Z. Zhao, Z. Yang, H. Lin, J. Wang, S. Gao, A protein-protein interaction extraction approach based on
deep neural network, International Journal of Data Mining and Bioinformatics 15 (2) (2016) 145–164.

[61] D. Tikk, P. Thomas, P. Palaga, J. Hakenberg, U. Leser, A comprehensive benchmark of kernel meth-
ods to extract protein–protein interactions from literature, PLoS computational biology 6 (7) (2010)
e1000837.

[62] S.-P. Choi, S.-H. Myaeng, Simplicity is better: revisiting single kernel ppi extraction, in: Proceedings
of the 23rd International Conference on Computational Linguistics, Association for Computational
Linguistics, 2010, pp. 206–214.

[63] P. Palaga, Extracting relations from biomedical texts using syntactic information, Mémoire de DEA,
Technische Universität Berlin 138.

[64] S. Van Landeghem, Y. Saeys, B. De Baets, Y. Van de Peer, Extracting protein-protein interactions
from text using rich feature vectors and feature selection, in: 3rd International symposium on Semantic
Mining in Biomedicine (SMBM 2008), Turku Centre for Computer Sciences (TUCS), 2008, pp. 77–84.

[65] M. Miwa, R. Sætre, Y. Miyao, J. Tsujii, Protein–protein interaction extraction by leveraging multiple
kernels and parsers, International journal of medical informatics 78 (12) (2009) e39–e46.

[66] S. Pyysalo, A. Airola, J. Heimonen, J. Björne, F. Ginter, T. Salakoski, Comparative analysis of five
protein-protein interaction corpora, in: BMC bioinformatics, Vol. 9, BioMed Central, 2008, p. S6.

[67] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics bulletin 1 (6) (1945) 80–83.

24

