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Mention recognition in chemical texts plays an important role in a wide-spread range of application
areas. Feature selection and parameter optimization are the two important issues in machine learning.
While the former improves the quality of a classifier by removing the redundant and irrelevant features,
the later concerns finding the most suitable parameter values, which have significant impact on the over-
all classification performance. In this paper we formulate a joint model that performs feature selection
and parameter optimization simultaneously, and propose two approaches based on the concepts of single
and multiobjective optimization techniques. Classifier ensemble techniques are also employed to
improve the performance further. We identify and implement variety of features that are mostly
domain-independent. Experiments are performed with various configurations on the benchmark patent
and Medline datasets. Evaluation shows encouraging performance in all the settings.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Information extraction addresses the issues of finding relevant
information from a huge collection of documents. Significant
amount of information available in the web are unstructured.
Information added to it daily are enormous in size, and therefore
organizing, and finding relevant information poses an important
challenge in our day-to-day life. In life science publications and
patents, chemical compounds like small signal molecules or other
biological active chemical substances are the important entity
classes. Chemical names have different nomenclatures, and are
represented in several forms. Some of the well-known representa-
tions include SMILES, InChI and IUPAC. While SMILES and InChI
allow a direct structure search, IUPAC like names appear more fre-
quent in biochemical texts. Dictionary based approach may be suf-
ficient to identify the trivial chemical names, and to map these into
their corresponding chemical structures. However enumerating all
the IUPAC like names are not easier. Because of the varieties of
interests, there has been a need to develop text mining methods
for automatic identification of chemical compounds. It helps in
meaningful search in the sense that it returns the documents that
contain elements of the class, to which the entity belongs to.
Ultimately this could be beneficial to find relations e.g. to adverse
reactions or diseases.

Use of huge text corpora databases like Medline1 [23,1] will be
greatly facilitated if all the documents are well classified and ranked
according to some similarity measurement. It provides an easier and
faster access to the useful information relevant to the entities.
Retrieval, extraction and gathering of information about the particu-
lar entities of our interest (for example, IUPAC-like names) at a high
recall rate can be implemented. These can, thereafter, be mapped to
the corresponding entries in the database. In order to automate the
entire process there is a great demand to develop the efficient meth-
ods for text mining.

Developing a complete dictionary is the main constraint in tra-
ditional systems such as dictionary based system. Thus rule
based systems and machine learning (ML) based systems are
more popularly being used as these do not require any comprehen-
sive dictionary. Regular expression based patterns are, in general,
used to develop the rule based system [22]. Machine learning
approaches, especially supervised algorithms need sufficiently
large amount of annotated text for training. The learning algorithm
makes use of this dataset to extract statistical information in order
to capture the inherent dependencies in the data. The information
is used to create a knowledge base that can classify, label or tag the
unseen instances.
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The performance of any classification technique heavily
depends on the features used for training/testing and the parame-
ters used. Feature selection [21,20] is a technique that determines
the most relevant set of features to build the robust machine learn-
ing models. This is also known as the variable selection, attribute
selection or variable subset selection. By removing the most irrel-
evant and redundant features from the data, feature selection helps
to improve the performance of a classifier. In general a classifier
has several parameters whose values heavily influence its perfor-
mance for any problem. Thus determining appropriate values of
parameters of a classifier is another crucial issue. Here we formu-
late the problem of appropriate feature and parameter selection
of a supervised machine learning algorithm as an optimization
issue, and develop some evolutionary optimization based tech-
niques to solve these.

In recent years few works have been reported that address the
issues of feature and parameter selection in any supervised classi-
fier. One such method is proposed in [7] that was evaluated for
named entity recognition (NER) involving Indian languages. The
work [7] describes a multiobjective optimization (MOO) based
technique that automatically selects the most relevant set of fea-
tures and parameters for two classification techniques, namely
Conditional Random Field (CRF) [18] and Support Vector Machine
(SVM) [25]. In contrast to [7], our current work focuses on to
develop some automated techniques in order to perform detection
and classification of chemical names in texts. The scenarios and
challenges in Indian language and chemical domains are not simi-
lar. An information extraction system in the respective domain
poses different challenges, and hence the processing steps and
the attributes (or, features) are quite dissimilar. Extraction of rele-
vant entities from the chemical text is more challenging compared
to the Indian language text because of the appearance of very long
and complex wordforms, presence of many symbols and common
words inside the chemical names, etc. Because of the complexity
involved in the current domain, more extensive feature set had
to be implemented for it. Moreover in the current work we also
employ a two-stage approach. In the first step two algorithms for
automatic feature selection and parameter optimization are devel-
oped. In the second step, solutions obtained from the output of the
first step are combined using the classifier ensemble techniques. It
is also to be mentioned that we perform more extensive parameter
optimization in our current work.

In [19], a cat swam optimization based feature and parameter
optimization technique has been developed to automatically
determine the relevant set of features and the value of kernel
parameter for SVM. Here different data sets from UCI machine
learning repository were utilized to evaluate the classification
accuracy of the proposed technique. In [14], a particle swarm opti-
mization (PSO) based approach is used to automatically determine
the most relevant set of features and the kernel parameter for SVM.
In [13], a feature and parameter selection technique is developed
to improve the accuracy of solar power prediction. Authors made
use of various machine learning techniques, namely Least
Median Square (LMS), Multilayer Perceptron (MLP) and SVM. In
[15] a genetic algorithm (GA) based feature and parameter selec-
tion technique has been developed for the SVM based classifier.
Another GA based feature selection technique is developed in
[11], where only the problem of feature selection was addressed
under the single objective optimization (SOO) framework. In the
current paper we deal with the problems of feature selection as
well as parameter optimization. We formulate this in a joint model,
and then solve using SOO as well as MOO based techniques. Thus
the problems and the techniques used in [11] and in the current
paper are completely different.

As we mentioned earlier, in our present work we formulate a
joint model that is able to tackle the problems of feature selection
and parameter optimization. The algorithm is comprising of two
steps; first step of which deals with the feature selection and
parameter optimization methods, and the second step makes use
of an ensemble algorithm to combine the solutions of the first step.
For SOO, GA [8] is used as the underlying optimization technique.
For MOO, the most popular GA based technique, namely
non-dominated sorting GA-II (NSGA-II) [5] is used as the underly-
ing optimization technique. The proposed approaches are evalu-
ated for the extraction of chemical mentions in the forms of
IUPAC and IUPAC-like names from the text. We use CRF and SVM
as the base learning algorithms. We implement variety of features,
most of these are automatically extracted from the given train-
ing/test datasets. It is also to be noted that we did not make use
of any heavy domain-specific resources and/or tools except the
PubChem database.2 Note that PubChem is a database that contains
the chemical molecules and their activities against biological assays.
The system is maintained by the National Center for Biotechnology
Information (NCBI), a component of the National Library of
Medicine, which is part of the United States National Institutes of
Health (NIH). PubChem can be accessed for free through a web user
interface.

The single objective GA based feature selection and parameter
optimization method yields a set of solutions on the best popula-
tion, whereas multiobjective NSGA-II yields a set of solutions on
the final Pareto optimal front. The feature selection is performed
for both the classifiers, CRF and SVM. The set of solutions obtained
in the final population of these two after application of GA based
technique are then merged together using a GA based classifier
ensemble technique [6]. Similarly after the application of MOO
based technique we obtain a set of solutions on the final Pareto
optimal front for CRF and SVM each. We combine the outputs of
these solutions using a MOO based classifier ensemble technique
proposed in [24]. The methods are evaluated on the benchmark
setup of patent and Medline datasets. For the SOO based approach
we obtain the overall F-measure values of 74.05%, 74.00% and
88.49% for the patent test data sets of 2008, 2009 and Medline test
data set, respectively. The multiobjective based approach yields
the overall F-measure values of 75.55%, 76.07% and 89.77%, respec-
tively, for the patent test data sets of 2008, 2009 and Medline test
data set. Comparisons show that the proposed technique (i.e. auto-
matic feature selection and parameter optimization) is more effec-
tive than the systems that make use of all the available features
and default parameter values (i.e. baselines 1–4). We also show
that a two-stage approach, where feature selection and parameter
optimization are performed first followed by classifier ensemble,
could be more effective compared to the approach that only per-
forms feature selection and parameter optimization. It is evident
that our proposed approach achieves the state-of-the-art
performance.
2. Methods

In this section we describe the proposed approach for chemical
name identification and classification. As already mentioned, we
propose a technique to address two crucial issues of any machine
learning algorithm, viz. feature selection and parameter optimiza-
tion. We model these two problems jointly, and solve using SOO
and MOO based techniques.

2.1. Problem formulation

The problem of feature selection and parameter optimization is
formulated under the SOO as follows:
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Given a set of features X, appropriate parameters P and a clas-
sification quality measure D, determine the feature subset F� and
parameter subset P� such that:

DðF�; P�Þ ¼ max
F2X;P2P

DðF; PÞ

Chemical mention extraction (i.e. detection and classification)3 is an
important task in many text processing activities including informa-
tion extraction [3]. The key task can be thought of as a two-step pro-
cess that involves identification of every word/term and classifying
them into some predetermined categories. The categories could vary
depending upon the application domain. For example, in the current
work the overall task is cast as the process of identification of chem-
ical entities from the texts and classification of them into the classes
that represent the IUPAC and IUPAC related entity types.

The kinds of tasks such as mention extraction can be evaluated
using the standard measures such as recall, precision and
F-measure. While recall tries to increase the number of correctly
retrieved entities as much as possible, precision tries to reduce
the number of incorrectly tagged entities. These two capture two
different classification qualities. In case of single objective formu-
lation of feature and parameter selection problem, we only opti-
mize a function, namely the F-measure. The problem is then
stated as follows:

Given a set of features X, appropriate parameters P and a clas-
sification quality measure, F-measure, determine the feature sub-
set F� and parameter subset P� such that maximize ½F-measure�
where F� # X and P� #P.

The problem of feature selection and parameter optimization
within the framework of MOO is formulated as follows: Given a
set of features X, appropriate parameters P and two classification
quality measures, recall and precision, determine the feature subset
F� and parameter subset P� such that maximize ½recall;precision�
where F� # X and P� #P.

Here we optimize two different parameters of CRF. These are (a)
the hyper-parameter of CRF. CRF tends to overfit to the training
data with the larger values of this parameter. This parameter
makes a balance between overfitting and underfitting. The results
obtained in CRF can significantly be influenced with the tuning of
this parameter. In general optimal value for this parameter can
be determined by tuning on the development data or using the
cross-validation techniques; (b) the second parameter determines
the cut-off threshold for the features. CRF utilizes the features that
appears no less than NUM times in the given training data. The
default value is 1. In case of large data set, the number of unique
features would amount to several millions. In such cases, setting
the value of this parameter to a reasonably higher range may lead
to the decrease in the number of features. This, in turn, reduces the
overall complexity of the problem.

In case of SVM we use LibSVM4 toolkit available with Weka
Machine Learning Suite [10]. Kernel function plays a very vital role
in SVM learning. In our work we automatically determine the values
of the following parameters of SVM.

� Type of kernel function: it can be polynomial kernel, radial
basis kernel, sigmoid kernel or linear kernel. Default is the poly-
nomial kernel.
� Degree of the kernel function: Default value for this parameter

is 3.
� Coefficient of the kernel function: Default value for this

parameter is 0.
� Value of gamma in the kernel function: Default value for this

parameter is 1
number of features.
3 Also referred to as the task of named entity recognition.
4 http://weka.wikispaces.com/LibSVM.
� Epsilon width of tube for regression: Default value for this
parameter is 0.1.

In general the search space for this type of problems is huge.
Thus, exhaustive search strategies cannot be applied in this case.

2.2. Genetic algorithms

Genetic algorithm(GA) [8] is a popularly used randomized
search and optimization technique. The working principles are
guided by evolution and natural genetics. Parameters of the search
space are encoded in the forms of strings called chromosomes. The
set of such strings is known as a population. At the beginning ini-
tial population is created randomly. Each of the chromosomes rep-
resents a point in the search space, and it is associated with an
objective or fitness function. The fitness function denotes the
degree of goodness of the corresponding chromosome. Based on
the principle of survival of the fittest few chromosomes are
selected that go into the mating pool. New generation of chromo-
somes is obtained by applying the biologically inspired operators
like crossover and mutation. Crossover is an operation that is
applied to generate an offspring chromosome by exchanging infor-
mation of two parent chromosomes. The mutation operation is
used to produce a new chromosome by changing parts of the par-
ent chromosome according to a certain probability. The operations
of selection, crossover and mutation are repeated for a fixed num-
ber of generations or till a termination condition is satisfied.

2.2.1. Nondominated sorting genetic algorithm-II (NSGA-II)
Genetic algorithms are known to be more effective for solving

MOO than classical methods such as weighted metrics or goal pro-
gramming, because of their population-based nature [4]. A partic-
ularly popular GA of this type is NSGA-II [5].

In NSGA-II, a random parent population P0 is initially created
and sorted based on the partial order defined by the
non-domination relation. The result is a (sorted) sequence of
non-dominated fronts F1; F2; F3; . . . ; Fn. Each solution in the popula-
tion is assigned a fitness value which is equal to its
non-domination level in the partial order. A child population Q0

of size N is created from the parent population P0 by using recom-
bination and mutation operators. Then iteration begins. At the tth
iteration, a combined population Rt ¼ Pt þ Q t is formed. The
sub-population Pt of size N contains the best solutions found so
far, according to the partial order imposed by the
non-domination relation. The population Rt is sorted, obtaining a
sequence of non-dominated fronts. The algorithm keeps adding
entire fronts to Ptþ1, until the total size of Ptþ1 reaches N. To choose
exactly N solutions, the solutions of the last included front are
sorted using the crowded comparison operator [5] and the best
among them (i.e., those with lower crowding distance) are selected
to fill in the available slots in Ptþ1. The crowded comparison oper-
ator measures the density of a particular solution: solutions which
are in a less crowded regions are given higher priority to be
selected. The new population Ptþ1 is then used for crossover and
mutation to create a population Q tþ1 of size N. The basic steps of
the algorithm is shown in Fig. 1.

2.3. Single and multiobjective GA for joint model of feature selection
and parameter optimization

Single objective GA and a multiobjective GA, along the lines of
NSGA-II [5], are used as the underlying optimization techniques
in order to solve our problems. Note that these algorithms are very
general. In place of NSGA-II we could have used any other MOGA
(multiobjective genetic algorithm) technique and in place of GA

http://weka.wikispaces.com/LibSVM


Fig. 1. NSGA-II procedure.
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we could have used any other optimization technique like simu-
lated annealing or differential evolution.

The basic steps of the proposed joint model for feature selection
and parameter optimization are shown in Fig. 2. The steps are enu-
merated below:

� GA or NSGA-II is utilized to automatically determine the appro-
priate feature and parameter combination for a CRF-based clas-
sifier using the procedure mentioned below. After the complete
execution, final population will contain a set of solutions; some
may be good with respect to one classification quality measure,
recall and some may be good with respect to the other classifi-
cation quality measure, precision.
� Similarly GA or NSGA-II is also utilized to automatically deter-

mine the appropriate feature and parameter combination for a
SVM based classifier. It yields a set of solutions at the end.
� The different solutions of CRF and SVM based approaches are

combined using a classifier ensemble technique.

Different steps of the proposed MOO based technique are pro-
vided in Fig. 3.
2.3.1. Chromosome representation and population initialization
Let us assume that the number of features is F and the number

of possible parameters is P. Thus, the length of the chromosome is
F þ P. In case of CRF, we determine the optimal values of
‘‘hyper-parameter for CRF’’ (denoted by c) and ‘‘cut off threshold
for the number of features’’ (denoted by f). Thus the parameter val-
ues encoded in the chromosomes represent the values for these
two parameters. As an example, the encoding of a particular chro-
mosome is represented in Fig. 4. Here, F ¼ 8 (i.e., total 8 different
features are available) and P ¼ 2. The chromosome represents the
use of 4 features, i.e., first, third, sixth and eighth for constructing
the particular CRF based classifier with the parameter values
c ¼ 2:5 and f ¼ 4. The values of the features of each chromosome
are randomly initialized to either 0 or 1. For feature representation,
the value of 1 at the ith position represents that this feature is used
for constructing the classifier, and the value of 0 represents that
the feature is not used. The parameter values are initialized with
some real values such as the following: The parameter i is ran-

domly initialized to a real value (r) between Pmin
i to

Pmax
i ; r ¼ randðÞ

RAND MAXþ1 � ðP
max
i � Pmin

i þ 1Þ þ Pmin
i where Pmin

i is the

minimum value of this parameter and Pmax
i is the maximum possi-

ble value of this parameter. In case of CRF, we varied the values of c
in the range of 0.5–2.5 and f in the range of 1–10. In case of SVM we
optimize five different parameters: kernel function, degree of the
kernel function, gamma value of the kernel function, coefficient
value of the kernel function and epsilon parameter. The parameter
for kernel function can take four values: 1, 2, 3 and 4 that denote
the linear, polynomial, radial basis function and sigmoid kernel
function, respectively. The parameter ‘degree of kernel’ is an inte-
ger entity which is varied between 2 and 6. The parameter ‘gamma’
value is a real entity and is varied in the range of 1/45–1/10. The
value of parameter ‘coefficient’ is varied in the range of 0–4.
Finally, the parameter ‘epsilon’ is varied in the range of 0.1–0.5.
If the population size is POP then all the POP number of chromo-
somes of this population are initialized in the above way. By pop-
ulation, here we denote a set of chromosomes.



Fig. 2. Joint model for feature and parameter selection.

Fig. 3. Different steps of the proposed MOO based technique.

Fig. 4. Chromosome representation for SOO and MOO based feature and parameter
selection.
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2.3.2. Fitness computation
In order to compute the fitness we execute the following

sequence of steps.
(1) Let us assume that there are N number of 1’s in the chromo-
some. It represents that N features are present. Suppose P be
the parameter combination for this chromosome.

(2) Construct the classifier with only these N features and P
parameter combination encoded in the chromosome.

(3) The entire training set is divided into 3 parts. Train the clas-
sifier with 2/3 portions of training data with the set of fea-
tures and parameters encoded in the corresponding
chromosome. Evaluate classifier with the rest 1/3 portion.

(4) Compute the overall recall, precision and F-measure values
of the classifier for the test data.

(5) Perform 3-fold cross validation by repeating the steps 2–4.
Compute the overall average recall, precision and
F-measure values of the classifier from this cross validation
experiment.

In case of SOO, the objective function corresponding to a partic-
ular chromosome is f ¼ F-measureavg . The function is maximized
using the search capability of GA.

In case of MOO, the objective functions corresponding to a par-
ticular chromosome are:

f 2 ¼ recallavg and f 2 ¼ precisionavg

These two objective functions are maximized using the search capa-
bility of NSGA-II.
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2.3.2.1. Motivation of using recall and precision as two objective
functions. The performance of any MOO algorithm greatly depends
on the choice of the objective functions. The functions should be as
much contradictory as possible. Here we choose recall and preci-
sion as the two objective functions. These two metrics are defined
as below:

recall ¼ Number of entities correctly identified by the system
Number of entities in the gold standard test data

ð1Þ

precision ¼ Number of entities correctly identified by the system
Number of entities identified by the system

ð2Þ

The above definitions show that recall tries to increase the number
of correctly retrieved entities as much as possible, but the goal of
precision is to decrease the number of misclassified entities.
Ideally these two metrics capture two different classification quali-
ties, and often their relationships are inverse in the sense that one’s
high value may be obtained at the cost of others’ low value. For
example, in an information retrieval system, recall can be improved
by retrieving more and more documents. This, however, may
include many irrelevant documents, and hence precision may be
affected at the greater extent.

Let us consider the following example:
Suppose there are 100 relevant entities; system identifies 600

entities and out of this only 60 entities are correct. As per the def-
inition, recall of the system is 0.6 (i.e. 60/100) whereas precision is
0.1 (i.e. 60/600). In this case, however recall is acceptable, precision
is very low. In another scenario, suppose the system identifies in
total 20 entities, out of which 10 are correct. The recall of the sys-
tem is 0.1 (10/100), whereas precision is 0.5 (10/20). Here preci-
sion seems to be acceptable but the recall is very low.

This is the underlying motivation of simultaneously optimizing
these two objectives. The objective functions corresponding to a
particular chromosome are f 1 ¼ recallavg and f 2 ¼ precisionavg .
The objective is to: max½f 1; f 2�. These two objective functions are
simultaneously optimized using the search capability of NSGA-II.

F-measure is a metric that combines both the recall and preci-
sion. The F-measure can be interpreted as a weighted average of
precision and recall, where F-measure reaches its best value at 1
and worst score at 0. The F-measure is computed as below:

F-measure ¼ 2� recall� precision
recallþ precision

ð3Þ

The harmonic mean of two numbers tends to be closer to the smal-
ler of the two. For the F-measure value to be high, both precision and
recall should be high.

It has been discussed very thoroughly in [4] that it is not possi-
ble to identify all the non-dominated solutions using a weighted
sum approach. The solutions located on the convex part of the
Pareto front can be found. The other important motivation of using
MOO is that it provides a set of solutions, some of them may be
good with respect to recall and some may be good with respect
to precision. Finally we have combined the outputs of these classi-
fiers using a classifier ensemble technique. Hence, MOO can indeed
be a good candidate to solve these types of problems. Here, no
weight is needed to combine the objectives, and hence no prior
information about the problem is needed apriori. Moreover opti-
mization of F-measure does not guarantee optimization of both
recall and precision. Thus MOO is indeed needed to optimize recall
and precision simultaneously.

Note that by optimizing F-measure using SOO based technique
we can generate solutions on the best population which are good
with respect to F-measure. But in order to get solutions which
are good with respect to precision and in order to generate solu-
tions which are good with respect to recall, we have to optimize
recall and precision separately as two different objective functions.
As already explained, depending upon the application we may
require the solutions which are better with respect to either of
these two objectives. Therefore, MOO and SOO both are necessary.

2.3.3. Genetic operators
For single objective GA, normal single point crossover [12] is

used. For binary encoding each bit of the chromosome is randomly
replaced by either 0 or 1. In contrast for real encoding each position
of the chromosome is mutated with probabilitylm as follows. The bit
position is updated with a random variable that is drawn from a

Laplacian distribution, pð�Þe�j��ljd , where the scaling factor d sets the
magnitude of perturbation. Here, l is the corresponding value at
the position that is to be perturbed. A value equal to 0.1 is chosen
to be assigned to the scaling factor d. The newly generated value is
used to replace the old value at the position. As a result of the gener-
ation of a random variable using Laplacian distribution, there will
always be a non-zero probability of generating any valid position
from the other valid positions. At the same time the probability of
generating a new value near the old value is high. Proportional selec-
tion strategy is used to implement the Roulette wheel selection [8].

In case of multiobjective version the crossover operation is simi-
lar to that of NSGA-II. For mutation of the feature values, normal bin-
ary mutation operation of NSGA-II is used. For mutation of the
parameter values the real mutation of NSGA-II is used. The method
of feature and parameter optimization uses crowded binary tourna-
ment selection as in NSGA-II. The most distinguishing feature of
NSGA-II is its elitism operation, where non-dominated sorting [4]
operation is applied among the parent and child populations. The
set of new solutions is propagated to the next generation.

2.3.4. Combining solutions of the final population
Both the approaches are executed for a fixed number of gener-

ations. In case of SOO, we obtain a set of solutions on the best pop-
ulation. The final solution is the one with the best F-measure value.
Some of the solutions on the best population may have high recall
values whereas some could have high precision values. Thus
instead of selecting a single solution we use a SOO based classifier
ensemble technique [6] to combine the solutions, obtained in the
best population.

In case of MOO, two objective functions were optimized. The
near-Pareto-optimal chromosomes of the last generation denote
different solutions to the problems of feature selection and param-
eter optimization. Multiobjective optimization algorithm produces
a number of non-dominated solutions [4] on the final Pareto opti-
mal front. The solutions represent different feature and parameter
subsets for the classifier. As per the algorithmic point of view each
of these solutions is important, and none of these is better com-
pared to the other. Thus it is very difficult to select a unique solu-
tion from the best population. Hence rather than selecting a
solution we combine all the outputs of the classifiers using a
MOO based classifier ensemble technique [24].

2.3.5. Selection of a single solution from Pareto optimal front
In another experiment we also select one solution from the final

Pareto optimal front obtained at the end of feature selection and
parameter optimization technique. In order to achieve this we exe-
cute the following steps. For all solutions on the final Pareto front
we compute the F-measure values. The solution with the highest
F-measure is chosen as the best one. We report this solution (from
the first stage of our algorithm) for comparing with the baselines,
especially the first four ones (refer to Section 4.3). This is not the
unique process of selecting the best solution, and depending upon
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the requirement there can be many others. For example, depending
on the need one could also choose the solutions with the higher
recall or precision values. Please note that this is not the final out-
put of the system. This is an intermediate result. In our second set-
ting we combine all the solutions of the final Pareto optimal front
using a MOO based classifier ensemble technique [24]. This is done
to further improve the performance as well as to compare with the
last two baselines (i.e. baselines 5–6).

2.4. Evolutionary optimization based classifier ensemble

In this section, we present a solution to the problem of classifier
ensemble under the SOO and MOO frameworks. The SOO and MOO
based techniques are based on GA and NSGA-II, respectively. For
SOO and MOO based ensemble learning we employ the algorithms
proposed in [6,24], respectively.

2.4.1. String representation and population initialization
If the total number of available classifiers is M and total number

of output tags (i.e., number of classes) is O, then the length of the
chromosome is M � O. Each chromosome encodes the weights of
votes for possible O classes in each classifier. The encoding of a
chromosome is represented in Fig. 5. We consider that total 9 votes
are possible, i.e. M ¼ 3 and O ¼ 3. Combinations of three output
classes in three classifiers are as follows:

Classifier-1: 0.59, 0.12 and 0.56;
Classifier-2: 0.09, 0.91 and 0.02;
Classifier-3: 0.76, 0.5 and 0.21.
We use real encoding, i.e. each bit of the chromosome is ran-

domly initialized to a real value (r) that ranges between 0 and 1.

Here, r ¼ randðÞ
RAND MAXþ1. If the population size is P then all the P number

of chromosomes of this population are initialized in the above way.

2.4.2. Fitness computation
At first all the individual classifiers are trained on the training

set and evaluated on the test set. Thereafter we execute the follow-
ing steps in sequence.

(1) Suppose, there are total M number of classifiers. Let us assume
that F-measure values of these M classifiers on the develop-
ment set be Fi; i ¼ 1; . . . ;M, respectively. It is to be noted that
a part of the training set is used as the development set.

(2) The outputs of all the individual classifiers are combined to
create an ensemble. For the ensemble the output label of
each instance is determined based on the weighted voting
of these M classifiers’ outputs. Weight of the output class
predicted by the ith classifier is equal to Iðm; iÞ, where
Iðm; iÞ denotes the particular entry in the chromosome that
corresponds to mth classifier and ith class. The final weight
assigned to a particular class for a particular word w is:
Fig. 5. Chromosome representation for real voting.
f ðciÞ ¼
X

Iðm; iÞ � Fm;

8m ¼ 1 : M & opðw;mÞ ¼ ci

Here, opðw;mÞ denotes the output class predicted by the mth
classifier for the word w. The final output is assigned based
on the highest weighted vote.
(3) For the development set, the overall recall, precision and
F-measure values of the ensemble classifier are computed.
In case of SOO, the objective function is the final
F-measure. In case of MOO based approach, the objective
functions corresponding to a particular chromosome are
f 1 ¼ recall and f 2 ¼ precision. The main goal is to maximize
these two objective functions using the search capability of
NSGA-II.

2.4.3. Genetic operators used for MOO based approach
For GA based approach single point crossover and Roulette

wheel selection [8] are used. For mutation we have used the
Laplacian distribution based mutation operation as done in case
of parameters of the previous stage (described in Section 2.3.3).

As implemented in NSGA-II we use the crowded binary tourna-
ment selection. This step is followed by conventional crossover and
mutation operations. The mutation operation is exactly the same
as used in SOO. The most distinguishing characteristic of NSGA-II
is the elitism operation, where we select the non-dominated solu-
tions [4] from the set of parent and child populations, and propa-
gate these to the subsequent generation. The solutions obtained
in the last generation represent different solutions for the ensem-
ble construction. These are actually the solutions that lie on the
Pareto front or its near. Final solution is selected by the procedure
described in Section 2.3.5.

2.5. Time complexity

Here we analyse the time complexity of the proposed algo-
rithm. Note that in the current work we have used NSGA-II as
the underlying optimization strategy for MOO based technique.
The complexity of NSGA-II is OðMN2Þ where M: number of objec-
tives and N: population size. Different steps of the proposed algo-
rithm are having the following complexities:

� Initialization takes O(N) time.
� For fitness computation, for each chromosome we need to per-

form training and testing for a particular classifier. Let the train-
ing time be timetrain and the test time be timetest . Hence the total
time for fitness computation for a particular chromosome is
Oðtimetrain þ timetestÞ. Thus for a population of size N, total com-
plexity is Oððtimetrain þ timetestÞ � NÞ.
� Other operators also take O(N) time.
� Thus the overall time complexity for MOO based feature selec-

tion and parameter optimization approach is Oððtimetrainþ
timetestÞ � N þMN2Þ.

Finally the solutions obtained on the final Pareto optimal front
are combined using a classifier ensemble technique. The classifier
ensemble technique is having the following complexities:

� Initialization takes O(N) time where N: population size.
� Fitness computation depends on the size of the data set. If the

data set size is d then fitness computation takes OðdÞ time for
each chromosome. Thus for N number of chromosomes, the
complexity is Oðd� NÞ.
� Other operators take O(N) time.
� Thus the overall time for MOO based classifier ensemble

approach is Oðd� N þMN2Þ.



5 http://pubchem.ncbi.nlm.nih.gov/.
6 http://www.scai.fraunhofer.de/chem-corpora.html.
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Finally, the total complexity of the joint model for chemical
name detection and classification is Oððtimetrain þ timetestÞ � Nþ
MN2 þ d� NÞ.

3. Features for chemical name identification

In this section we describe the features that we extracted for
chemical name identification and classification. We formulate the
overall task within the framework of supervised machine learning
algorithm. Our focus is on recognizing IUPAC and IUPAC-like men-
tions of chemical names. In general, different nomenclatures are
used for representing chemical entities, and in many cases these
representations are combined by the chemists. Rather than nar-
rowing our attention only to the correct IUPAC terms, the defini-
tion is broadened to include chemical substances represented in
a IUPAC-like manner. Additionally it also includes IUPAC names
in which a part is abbreviated or fragmented, or denotes a group
name. The task is cast as a sequential labeling problem, and we
use two popular machine learning techniques, namely CRF and
SVM. The problem is to determine the most optimal class (or,
tag) sequence T ¼ t1; t2; t3; . . . ; ti; . . . ; tj for a sequence of words
W ¼ w1;w2;w3; . . . ;wi; . . . ;wn. Probabilistically, this can be mod-
eled as equivalent to finding out argmaxT PðTjWÞ.

Performance of any classification technique depends upon the
feature sets. Our feature set is mixed in nature that exploits mor-
phology, syntax and contextual information along with the various
statistics that are computed from the given datasets. In order to
preserve the domain-independence property we did not make
use of heavy domain-specific resources and/or tools. We extract
few features from the external resource like PubChem database.
For example, the prefix and suffix character sequences extracted
from this database serve as the domain dependent features. The
features are described as below.

(1) Context words: We use the local contextual information
surrounding the current token as the features. We use the
contexts within the preceding three and succeeding three
tokens.

(2) Word prefix and suffix: These are the fixed length character
strings stripped either from the beginning (for prefix) and
end positions (for suffix) of the words. We experiment with
n = 3 (i.e., 6 features) and 4 (i.e., 8 features) both.

(3) Infrequent word: The words that appear frequently in the
training set have a tendency of not being chemical name.
Here we define a threshold value equal to 10 to decide
whether the target word is a possible candidate of chemical
name or not.

(4) Unknown token feature: This is defined in such a way that
sets a feature value to 1 if the word appears in the training
set, and 0 otherwise. For the training set the value of this fea-
ture is assigned randomly.

(5) Word normalization: Word normalization feature is
defined to capture how a target word is orthographically
constructed. The mappings are defined as follows:
Capitalized character to ‘A’, small character to ‘a’, and all
the consecutive digits to ‘0’. As examples, ‘IL’ is mapped to
‘AA’; ‘IL-2’ is mapped to ‘AA-0’; and ‘IL-88’ is mapped to
‘AA-0’. The names having the similar structures are mapped
to the same group that denotes a particular chemical class.

(6) Orthographic features: We define several orthographic fea-
tures depending upon the contents of the wordforms. The
features check whether initial letter of the word is capitalized,
all the letters of word are capitalized, word contains a capital
letter inside, initial letter is capital; then a mixture of small
and capital letters, word consists of digits only, word contains
digit with special character, word starts with digit and then a
sequence of alphabetic characters, word contains digit inside,
etc. Often the chemical names contain special characters like
(‘,’,‘-’,‘.’,‘)’, ‘(’, etc. As an example, ‘-’ (hyphen) often appears
inside the chemical names. Features that check the presence
of ATGC sequence and stop words are also defined. We have
in total 24 orthographic features.

(7) Informative words: The frequently occurring words that
precede and follow the chemical names provide useful evi-
dence for identifying the chemical names. We extract such
frequently occurring words that appear within the contexts
of previous two and next two tokens of the chemical names
in the training set. After removing the stop words we create
two different lists, each entity of which is considered to be
informative. Two features are defined in such a way that
they fire whenever the current token appears in any of these
two lists.

(8) Chemical prefix and suffix: We extract the most frequently
occurring prefixes and suffixes of length two from the IUPAC
entities present in the training data. Thereafter two binary
valued features are defined that fire if only if the current
token contains any of these prefixes and suffixes.

(9) PubChem prefix and suffix: We extract most frequently
occurring prefixes and suffixes of length two from the IUPAC
chemical names of the PubChem database.5 A binary valued
feature is then defined that fires if and only if any of these inflec-
tions matches with the character sequences stripped either
from the beginning or from the end positions of words.

(10) Dynamic NE information: This is the output label(s) of the
previous token(s). The value of this feature is determined
dynamically at run time. This feature is used for SVM.

Descriptions of the set of features are shown in Table 1.

4. Datasets, experiments and analysis

In this section we present the details of datasets, report the
results of the different experiments with necessary analysis, and
provide the comparisons with the existing systems.

4.1. Data sets

Chemical names in text can appear in various forms. One stan-
dardized nomenclature comes from the International Union of Pure
and Applied Chemistry (IUPAC) and forms a systematic way of
naming organic chemical compounds that can be mapped to their
structures.

We use the datasets available at this web.6 Brief statistics of the
datasets are reported in Table 2. The training set was collected from
the Medline abstracts. We experiment with two different test sets,
one from the Medline abstracts and the other is from a collection
of patent documents. The dataset for patent was labeled with seven
classes as follows:

TRIVIAL: It denotes the single word terms like aspirin, estragon,
testosterone, Acetylsalicylate, etc.
IUPAC: It denotes the multiword systematic names. For exam-
ple, 1-hexoxy-4-methyl-hexane, 1,4-dihydronaphthoquinones,
etc.
PART: It denotes the partial chemical names. Some of the exam-
ples are 8-ðmethylthioÞ-and . . . ;17beta-, etc.
MODIFIER: It denotes the words that modify the chemical
names.

http://pubchem.ncbi.nlm.nih.gov/
http://www.scai.fraunhofer.de/chem-corpora.html


Table 1
Description of features.

Name of the feature Explanation

allCapital All characters are in capital letters
initialCapital Initial character is Capital or not
capitalInner Inner characters are capital or not
initialCapitalThenMix First character is capital and next characters are mixed type (allowed characters)
allDigit All characters are digits or not
realNumber Word is real number or not
digitWithSpecialCharacter Word contains special characters along with digit or not
initialDigitThenAlpha Word with first digit character followed by alphabets or not
digitInner Inner characters of a word are digit or not
specialChar Word contains the special characters or not
twoBegConsecutiveWordMatch Matching two consecutive words with the beginning two tokens of a multiword name
twoEndConsecutiveWordMatch Matching two consecutive words with the last two tokens of a multiword name
stopWordMatch Matching word with the stopword list
wordMatchFirst Matching word to the first token of a chemical entity
wordMatchLast Matching word to the last token of chemical entity
wordMatchVerb Matching word with the possible list of verbs
wordNormalization Normalizing surface form of words
romanNumber Word is a representation of a Roman number
GreekNumber Word is a Greek number representation
digitCommaDigit Digit, digit is a substring of the word
singleCapital Word contains only one capital letter
digitAlphaDigit Initial letter is digit, intermediate characters are alphabets and the last character is again a digit
alphaDigitAlpha Word starts and ends with alphabet and intermediate characters are all digits
wordPreviouslyOccured Word previously occurred in the training data or not
initialSmallThenMix Word starting with small letter and then followed by mixed (capital or small) letters
initialCapitalThenSmall Word starting with capital letter and followed by small letters
initialAlphaThenDigit Word starting with alphabet followed by digits
initialCapitalsThenDigit Word with a sequence of capital letters followed by digits
IsDash Word is a dash e.g.: [- – —]
IsSlash Word is a slash e.g.: [/]
IsQuote Word is a quote e.g.: [‘,]
Autom.Prefixes Matching a prefix of a token against the list of prefixes extracted from chemical names
Autom.Suffixes Matching a suffix of a token against the list of suffixes extracted from chemical names
Spaces_left Feature indicating if a white space is preceding the token
Spaces_right Feature indicating if a white space is following the token
Prefix_list Matching a prefix (length 2) of a token against the list of prefixes of intermediate or first token of IUPAC names from pubChem
Suffix_list Matching a suffix (length 2) of a token against the list of suffixes of intermediate or last token of IUPAC names from PubChem
RelImp_prefix_list Matching a word against a list of words which are the beginning tokens of chemical names
RelImp_suffix_list Matching a word against a list of words which are the ending tokens of chemical names
Context features We have considered various contexts within the window size of ½�3;þ3�
Bigram feature Bigram feature template for CRF
Prei Prefixes of length up to i characters
Sufi Suffixes of length up to i characters
Word length feature Length of the word is considered
Infrequent word Frequency of occurrences of the word in the training data is considered
Informative word Denotes the set of words that appear more frequently in the surrounding context of chemical name
sequenceATGC Feature that checks the presence of ATGC sequence

Table 2
Statistics of the datasets.

Set #abstracts #sentences #tokens #IUPAC names

Training 463 3700 161,591 3712
Test set (Medline) 1000 5305 124,122 151
Test set (Patent, 2008) 26 152 4309 411
Test set (Patent, 2009) 27 160 4417 471
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ABBREVIATION: It denotes the abbreviation but does not
include those appearing as part of IUPAC names such as TPA
and AMPA.
SUM: It denotes the sum formulas like CH_3SNa, KOH, etc.
FAMILY: This class represents the families of chemical names
such as disaccharide, pyrimidine and hydrazides. But this does
not include the pharmacological/functional families such as
anti-inflammatory drug and chelator.

However the training set was labeled with all these classes, test
set does not have instances of all such classes. The test set was
annotated with only three classes, namely IUPAC, PART and
MODIFIER. The test set of Medline contains only the instances of
IUPAC and MODIFIER classes. In order to properly denote the
boundaries of multiword chemical names, all the classes are fur-
ther divided using the BIO notation, where ‘B-XXX’ refers to the
beginning of a multi-word/single-word name of type ‘XXX’,
‘I-XXX’ refers to the intermediate parts of the name and ‘O’ refers
to the entities outside the name. Here for each token all the fea-
tures mentioned in Section 3 are extracted. Features are added as
tab-separated in a single file. The last column contains the output
class. Examples of data sets are given below:



( 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 _ 0 0 0 0 0 0 ( ND ND ND ( ND ND ND ( 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B-IUPAC
propargyloxy 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 aaaaaaaaaaaa 0 0 0 0 0 0 p pr pro
prop y xy oxy loxy a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 I-IUPAC
) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 _ 0 0 0 0 0 0 ) ND ND ND ) ND ND ND ) 0 0 1
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I-IUPAC
methyl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 aaaaaa 0 0 0 0 0 0 m me met meth l yl
hyl thyl a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 I-IUPAC
acyclonucleoside 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 aaaaaaaaaaaaaaaa 0 0 0 0 0 0 a
ac acy acyc e de ide side a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 I-IUPAC
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4.2. Experimental setup

For the experiments we use the C++ based CRF++ package,7 a
simple, customizable, and open source implementation of CRF for
segmenting or labeling sequential data. For SVM experiments we
use YamCha8 toolkit along with TinySVM-0.07.9 Here, the pairwise
multi-class decision method and the polynomial kernel function are
used. In YamCha, only polynomial kernel function is available. But
in order to automatically optimize the other parameters of SVM like
kernel type, degree of kernel function, coefficient of kernel function,
gamma in kernel function, epsilon parameter we use LibSVM imple-
mentation as available in the Weka tool box.10 We set the following
parameter values for GA and NSGA-II: population size = 100, number
of generations = 50, probability of mutation = 0.2 and probability of
crossover = 0.9.

In this work we use all the features described in Section 3, and
optimize two parameters of CRF and five parameters of SVM.

Initially, we construct the following six baseline models based
on CRF and SVM. Here, C½�i;þj� denotes the context spanning from
the previous ith word to the next jth word with the current token
at position 0; Prei and Sufi denote the prefixes and suffixes of char-
acter sequences up to i of the current word, respectively.

(1) Baseline 1: CRF classifier trained using the default parame-
ter values with the feature combinations: C½�3;þ3�;
Pre4; Suf4, and all the features described in Section 3.

(2) Baseline 2: CRF classifier trained using the default parame-
ter values with the feature combinations:
C½�2;þ2�; Pre4; Suf4, and all other features described in
Section 3.

(3) Baseline 3: SVM classifier trained using the default parame-
ter values with the feature combinations: C½�3;þ3�; Pre4;

Suf4, and all other features described in Section 3.
(4) Baseline 4: SVM classifier trained using default parameter

values with the feature combinations: C½�2;þ2�; Pre4; Suf4,
and all other features described in Section 3.

(5) Baseline 5: All the classifiers of the final Pareto optimal front
generated after application of the proposed feature and
parameter selection technique on CRF and SVM are com-
bined using majority voting. Suppose, there are total M num-
ber of classifiers. Now, for the ensemble classifier the output
label for each token is determined using the majority voting
of these M classifiers’ outputs. The combined score of a par-
ticular class(ci) for a particular word w is f ðciÞ ¼ n where n is
the number of classifiers that assign the output class ci for
the word w. The class receiving the maximum weight is
selected as the final decision.
7 http://crfpp.sourceforge.net.
8 http://chasen-org/taku/software/yamcha/.
9 http://cl.aist-nara.ac.jp/taku-ku/software/TinySVM.

10 http://weka.wikispaces.com/LibSVMdeal.
(6) Baseline 6: All the CRF and SVM based classifiers of the final
Pareto optimal front generated after application of the pro-
posed feature and parameter selection technique are com-
bined using weighted voting. Suppose, there are M
classifiers. Let, the overall F-measure values of these M clas-
sifiers for the development set be Fi; i ¼ 1; . . . ;M, respec-
tively. For the ensemble classifier the output label for each
token is determined using the weighted voting of these M
classifiers’ outputs. The combined score of a particular class
for a particular word w is:
f ðciÞ ¼
X

Fm;

8m ¼ 1 : M & opðw;mÞ ¼ ci

Here, opðw;mÞ denotes the output class provided by the mth
classifier for the word w. The final class label is decided based
on the highest weight.
4.3. Results and analysis

At first we apply SOO and MOO based feature selection and
parameter optimization techniques (Section 2.3) to solve the prob-
lem of chemical mention detection and classification with respect
to two different classifiers, CRF and SVM. In the first step a CRF is
trained using the training dataset of Medline and evaluation is
done on three independent test sets. The recall, precision and
F-measure values obtained by the proposed SOO and MOO based
techniques are shown in Table 3 for the chemical test datasets pre-
pared in 2008, 2009; and for the Medline. After application of the
proposed SOO based approach on a chemical test dataset prepared
in 2008 we obtain a F-measure of 72.69% (recall = 62.12% and pre-
cision = 87.59%) and after applying the same technique to a anno-
tated chemical test dataset prepared in 2009, the F-measure
obtained is 72.65% (recall = 62.11% and precision = 87.50%).
Whereas with the test dataset of Medline our system is able to
achieve the F-measure of 87.10% (recall = 88.12% and preci-
sion = 86.10%). The MOO based approach of feature and parameter
selection produces the F-measures of 73.78% (recall = 63.00% and
precision = 88.99%) and 74.05% (recall = 63.51% and preci-
sion = 88.78%) for the datasets of 2008 and 2009, respectively.
The same MOO based system shows the recall, precision and
F-measure values of 89.90%, 87.76% and 88.82%, respectively, for
the Medline data set. The significant drop in performance for the
patent datasets is because of its inherent characteristics. Instead
of sampling from a set of sentences and text snippets, this partic-
ular dataset was created by selecting the tokens which are hard
to identify.

The analysis of different datasets shows two main problems:
Only IUPAC, PARTIUPAC and MODIFIER names are included in the
training dataset, but in both the test datasets fragments (of chem-
ical names) occurred frequently. Another problem found with the
training dataset is that it does not have any instance of some of
the categories, which are present in the test data. All such

http://crfpp.sourceforge.net
http://chasen-org/taku/software/yamcha/
http://cl.aist-nara.ac.jp/taku-ku/software/TinySVM
http://weka.wikispaces.com/LibSVMdeal


Table 3
Overall results of the proposed system on three different test datasets.

Model Test Corpus 2008 Test Corpus of 2009 Medline

Recall Precision F-measure Recall Precision F-measure Recall Precision F-measure

SOO + CRF based approach 62.12 87.59 72.69 62.11 87.50 72.65 88.12 86.10 87.10
SOO + SVM based approach 61.99 87.91 72.71 61.61 86.41 71.93 89.01 82.15 85.44
(optimizing degree of kernel only)
SOO + SVM (optimizing five parameters) 62.22 87.94 72.87 61.81 86.56 72.12 89.71 82.61 86.01
SOO based ensemble [CRF + SVM] 63.45 88.90 74.05 63.52 88.61 74.00 89.91 87.11 88.49
MOO + CRF based approach 63.00 88.99 73.78 63.51 88.78 74.05 89.90 87.76 88.82
MOO + SVM based approach 62.97 88.99 73.75 62.43 87.50 72.87 90.62 83.08 86.69
(optimizing degree of kernel only)
MOO + SVM (optimizing five parameters) 62.99 89.01 73.77 62.61 87.75 73.08 90.81 83.28 86.88
MOO based ensemble[CRF + SVM] 65.10 90.01 75.55 65.71 90.32 76.07 90.90 88.66 89.77
Baseline-1 61.41 86.87 71.95 62.01 86.18 72.12 88.26 85.77 87.00
Baseline-2 61.55 86.96 72.08 62.25 86.41 72.30 88.02 85.38 86.68
Baseline-3 61.01 86.17 71.44 61.87 88.26 72.74 88.19 81.63 84.78
Baseline-4 61.25 86.60 71.75 61.95 88.90 73.02 88.22 81.09 84.50
Baseline-5 63.90 89.56 74.58 64.90 89.79 75.34 90.03 87.94 88.97
Baseline-6 63.99 89.78 74.72 64.95 89.97 75.44 90.13 87.99 89.05
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examples that appear in the test dataset are not correctly predicted
because the training data does not contain any such class
instances. In fact it uses only the classes learned from the training
set and as a result performance of the MOO based system reaches
to 74.05% for the chemical test dataset. But the Medline test data
has only two classes, namely IUPAC and MODIFIER, and these are
also present in the training data. Because of this, the proposed sys-
tem attains reasonably high accuracy on this particular dataset of
Medline.

Similarly the proposed SOO and MOO based approaches are
applied for solving the problem with respect to SVM. The best solu-
tion is selected based on the F-measure value. The corresponding
recall, precision and F-measure are reported in Table 3. Results
show that, for all the three test datasets, CRF performs superior
compared to SVM.

The SOO based feature and parameter selection technique,
when applied on CRF and SVM, produces a set of promising solu-
tions including the best one on the final population. Based on the
features and parameters represented by the chromosomes corre-
sponding to these solutions we generate a set of CRF and SVM
based models. It is to be noted that we have two different popula-
tions representing the solutions obtained from CRF and SVM. Each
of the chromosomes in a population represents a particular feature
and parameter combination for a classifier (either CRF or SVM). The
solutions that exist on a particular population do not conform to
the uniform characteristics. In order to further improve the perfor-
mance we combine all the CRF and SVM based models using a SOO
based classifier ensemble technique [6]. Overall evaluation results
along with the baseline models are reported in Table 3 for all the
three datasets. The SOO based feature and parameter selection
technique alone achieves the encouraging performance for all the
three test corpora. Final SOO based ensemble yields the overall
recall, precision and F-measure values of 63.45%, 88.90% and
74.05%, respectively for the test corpus of 2008; 63.52%, 88.61%
and 74.00%, respectively for the test corpus of 2009; and 89.91%,
87.11% and 88.49%, respectively for the Medline test corpus.

After application of the MOO based feature selection and
parameter optimization technique for the CRF based classifier we
obtain a set of Pareto optimal solutions. Based on the features
and parameters of these solutions we generate a set of CRF models.
Some of them are good with respect to recall and some are good
with respect to precision. Similarly after executing the MOO based
approach for the SVM based classifier we obtain another set of
solutions on the final Pareto front. These solutions represent differ-
ent feature and parameter combinations. By using these features
and parameters, we can again generate several SVM models. We
take the union of these CRF and SVM based models, and combine
their outputs using a MOO based classifier ensemble technique
[24]. Overall evaluation results along with the baseline models
are reported in Table 3 for the chemical test corpus prepared in
2008, 2009, and Medline. Evaluation shows that we can achieve
reasonable performance for all the three test data sets. The final
output of our proposed approach, which employs MOO based
ensemble, yields the overall recall, precision and F-measure values
of 65.10%, 90.01% and 75.55%, respectively for the test corpus of
2008; 65.71%, 90.32% and 76.07%, respectively for the test corpus
of 2009; and 90.90%, 88.66% and 89.77%, respectively for the
Medline test corpus.

Results also show that the proposed MOO based technique is
more effective than the systems developed using all the features
and default parameter settings. For the test corpus of 2009, MOO
along with CRF attains 1.93% and 1.75% performance improve-
ments over the first two baselines, respectively. Again MOO with
SVM based approach attains the performance improvements of
0.24% and 0.06% F-measure points over the third and fourth base-
lines, respectively. These baselines use all the features and default
parameter values to generate SVM based models. Experiments of
these different settings prove the efficiency of the MOO based
automatic feature selection and parameter optimization technique
over the manual feature and parameter selection technique. It is
also worthy to combine the outputs of the classifiers on the final
Pareto front (obtained in the first stage) using a MOO based ensem-
ble technique. It is evident from the final evaluation figures
reported in Table 3 that MOO based ensemble achieves the perfor-
mance improvement of 2.02% F-measure over the best individual
classifier (here it is CRF based feature and parameter selection
approach) for the 2009 test corpus. This MOO based ensemble also
performs better than the two existing classical ensemble tech-
niques, namely the fifth and sixth baselines. We achieve the incre-
ments of 1.41% and 1.31% F-measure values, respectively, over
these two models. Evaluation also suggests that MOO suits more
compared to SOO. For 2009 patent test data it achieves 2.07%
F-measure improvement over the SOO based approach.

For Medline test data we also observe quite similar patterns in
the evaluation results. Here CRF provides better performance than
SVM. The MOO based approach along with CRF performs better
than the baselines, which use all the features and default parame-
ter values. Table 3 shows that the proposed approach attains the
performance increments of 1.82% and 2.14% F-measure values,
respectively over the first two baselines. Similarly MOO along with
SVM based approach attains the performance increments of 2.10%
and 2.38% F-measure values over the third and fourth baselines,
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respectively. Highest accuracies are obtained when MOO based
ensemble is employed at the second stage of our algorithm. It
achieves the increments of 0.95%, 0.80% and 0.72% F-measure val-
ues over the CRF based feature and parameter selection method,
fifth baseline and sixth baseline, respectively. Similar kind of con-
clusions can also be drawn for the 2008 test dataset.

For illustration, we have also plotted the set of solutions (in
terms of recall, precision and F-measure values) obtained by
the proposed MOO based feature and parameter selection tech-
nique for three different data sets when executed with the CRF
based classifier. These are shown in Fig. 6(a)–(c), respectively.
These plots show that for all the cases we obtain multiple solu-
tions; some of these are better with respect to recall whereas
some are better with respect to precision. Thus the proposed
MOO based technique indeed provides a variety of trade-off solu-
tions. Depending on the user preference or application domain
any single solution is finally selected as the optimal one.
Similarly we also present the boxplots of the F-measure values
obtained by the solutions on the best population obtained after
the application of SOO based technique when executed on three
data sets with CRF as the base classifier. These plots are shown in
Fig. 7(a)–(c), respectively.

Statistical analysis of variance (ANOVA), is performed in order
to examine whether the MOO based feature and parameter selec-
tion technique really outperforms the best individual classifier,
six baseline ensembles and the corresponding single objective GA
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Fig. 6. Set of solutions obtained by the proposed MOO based feature and parameter se
Corpus 2009 and (c) Medline test corpus.
based approaches. Here, all the classifiers and the proposed ensem-
ble techniques are executed 10 times. Thereafter, ANOVA analysis
is carried out on these outputs. Evaluation results of the ANOVA
analyses are shown in Table 4 for the MOO based feature selection
and parameter optimization approach for the Medline data set.
ANOVA tests show that the differences in mean recall, precision
and F-measure are statistically significant as p value is less than
0.05 in each case. Results also reveal that MOO based techniques
truly perform better than the corresponding single objective GA
based techniques.

We present the features and parameters selected by the pro-
posed MOO based approach for the CRF classifier in Table 6.
This shows that only a small set of features is actually relevant.
For example, out of 45 features only 17 are selected for the test
dataset of Patent 2003. In the baselines 1–4 we utilize all the 45
features. This is the another important aspect of our proposed
approach which proves the necessity of feature selection in the
chemical domain. Similarly the feature and parameter combina-
tions selected by the MOO based approach for the SVM based
classifier are shown in Table 7. It is again evident, that with only
a limited number of features, we can achieve improved
performance.

In another experiment, we removed the unknown classes (cat-
egories which are present in the test data, but not available in
training, for example: SUM, FAMILY, ABBREVIATION, TRIVIAL,
etc.) from the training data. With this setting, the MOO based
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Table 4
Estimated marginal means and pairwise comparison between the proposed MOO based feature and parameter selection technique and several other ensembles for Medline test
data.

Evaluation criterion Technique (I) Comp. Mean Diff. (I–J) Significance value

F-measure MOO based ensemble MOO + CRF 0:95� 0:013 1:1623e� 009
F-measure MOO based ensemble MOO + SVM 3:08� 0:011 2:7623e� 008
F-measure MOO based ensemble GA based ensemble 1:28� 0:012 2:2356e� 010
F-measure MOO based ensemble Baseline 1 2:77� 0:014 3:3990e� 009
F-measure MOO based ensemble Baseline 2 3:09� 0:011 8:6386e� 010
F-measure MOO based ensemble Baseline 3 4:99� 0:014 5:5376e� 010
F-measure MOO based ensemble Baseline 4 5:27� 0:013 2:7126e� 010
F-measure MOO based ensemble Baseline 5 0:80� 0:009 4:5176e� 010
F-measure MOO based ensemble Baseline 6 0:72� 0:008 3:8326e� 010

Table 5
Comparison with the existing approaches (we report percentages).

System Used approach Data set F-measure (%)

Klinger et al. [17] CRF Medline 85.6
Grego et al. [9] CRF 2008 patent data 50.73

2009 patent data 50.63
Medline 63.20

OSCAR3 [2] 2008 patent data 35.34
2009 patent data 35.93
Medline 36.02

Proposed approach CRF, SVM 2008 patent data 75.55
2009 patent data 76.07
Medline 89.77
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technique attains the recall, precision and F-measure values of
80.76%, 90.97% and 85.55%, respectively for the patent 2008 data-
set with CRF. For 2009 data set with the same configuration we
attain the recall, precision and F-measure values of 81.22%,
90.92% and 85.79%, respectively. On the other hand the same tech-
nique with SVM achieves the recall, precision and F-measure val-
ues of 79.95%, 86.76% and 83.22%, respectively for the 2008
patent test data set. For 2008 dataset the method shows the recall,
precision and F-measure values of 79.35%, 85.52% and 82.32%,
respectively. Finally the outputs of all the CRF and SVM classifiers
present on the final Pareto optimal front are combined by the MOO
based ensemble technique. This yields the recall, precision and
F-measure values of 82.76%, 91.34% and 86.84%, respectively.



Table 7
Features and parameters identified by the proposed MOO based approach for SVM classifier. Here C½i; j�: content spacing from the ith position to the jth position with 0 as the
current one.

Language Features Parameters

Test corpus
of 2008

C½�2;þ2�; Suf2; Pre4, initialAlphaThenDigit, wordPreviouslyOccured, singleCapital, digitCommaDigit,
romanNumber, wordNormalization, wordMatchVerb, wordatchFirst, stopWordMatch,
twoEndConsecutiveWordMatch, twoBegConsecutiveWordMatch, digitInner, initialCapitalThenMix,
capitalInner, Autom.Prefixes, Autom.Suffixes RelImp_prefix_list, Dynamic NE feature,

Polynomial kernel, deg = 2, epsilon = 0.1,
gamma = 1/21, coeff = 0

Test corpus
of 2009

C½�2;þ2�; Pre3; Suf1, initialCapitalsThenDigit, initialAlphaThenDigit, initialCapitalThenSmall,
initialSmallThenMix, alphaDigitAlpha, digitAlphaDigit, singleCapital, digitCommaDigit, GreekNumber,
romanNumber, wordMatchVerb, wordMatchLast, stopWordMatch, twoBegConsecutiveWordMatch,
digitInner, initialDigitThenAlpha, digitWithSpecialChar, sequenceATGC, Autom.Suffixes, Informative word,
Dynamic NE feature

Polynomial kernel, deg = 3, gamma = 1/
24, coeff = 0, epsilon = 0.2

Medline Test
Corpus

C½�2;þ2�; Pre1; Suf4, initialCapitalsThenDigit, initialSmallThenMix, initialCapitalThenSmall,
wordPreviouslyOccured, alphaDigitAlpha, digitAlphaDigit, digitCommaDigit, GreekNumber,
romanNumber, WordMatchVerb, stopWordMatch, twoEndConsecutiveWordMatch,
twoBegConsecutiveWordMatch, allDigit, initialCapitalThenMix, capitalInner, singleCapital, initialCapital,
isDash, Autom.Prefixes, digitInner, Autom.Suffixes, RelImp_prefix_list, Informative word, Dynamic NE
feature

Polynomial kernel, deg = 2, epsilon = 0.1,
gamma = 1/28, coeffi = 0

Table 6
Features and parameters identified by the proposed MOO based approach for CRF classifier. Here C½i; j�: content spacing from the ith position to the jth position with 0 as the
current one.

Language Features Parameters

Test corpus of 2008 C½�2;þ2�; Suf2; Pre4, initialAlphaThenDigit, wordPreviouslyOccured, singleCapital, c = 2.184, f = 9
digitCommaDigit, wordNormalization, wordMatchVerb, wordMatchFirst, stopWordMatch,
twoEndConsecutiveWordMatch, initialCapitalThenMix, allCapital,
initialCapital, isSlash, RelImp_prefix_list, Bigram feature

Test corpus of 2009 C½�2;þ2�; Pre4; Suf1, initialCapitalsThenDigit, initialAlphaThenDigit, wordNormalization, c = 2.22, f = 3
digitAlphaDigit, GreekNumber, romanNumber, wordMatchLast, stopWordMatch,
twoBegConsecutiveWordMatch, twoEndConsecutiveWordMatch, digitInner, capitalInner, allCapital,
initialCapital, isDash, isQuote, isSlash, RelImp_prefix_list,
RelImp_suffix_list, Informative word, Bigram feature

Medline Test Corpus C½�2;þ2�; Pre1; Suf4, initialCapitalsThenDigit, initialAlphaThenDigit, c = 1.186, f = 1
initialCapitalThenSmall, wordPreviouslyOccured, alphaDigitAlpha, digitAlphaDigit,
digitCommaDigit, GreekNumber, romanNumber, wordMatchVerb,
wordMatchLast, stopWordMatch, digitInner,
digitWithSpecialChar, realNumber, allDigit, initialCapitalThenMix,
allCapital, initialCapital, isDash, isQuote,
Autom.Prefixes, RelImp_prefix_list, Informative word, Bigram feature
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4.4. Comparison with the existing systems

We compare the performance of our proposed approach with
the other existing techniques. We present the comparative evalua-
tion results in Table 5.

The state-of-the-art system proposed in [17] is developed for
entity extraction in chemical domain. The evaluation with different
orders and offset conjunctions of CRF demonstrates the importance
of these parameters. The classifier was trained with the following
set of features. It made use of various binary valued features that
check whether all the characters are capitalized; token is a real
number, a dash, a quote, a slash; whether there are spaces to the
left or right. It also incorporates the features based on the prefix
and/or suffix strings, bag-of-word feature, etc. Features were also
extracted from the prefix and suffix lists that were generated from
the IUPAC names mentioned in the data available from PubChem.
The lists of prefixes and suffixes of four length character sequences
were used that contain 714 and 661 entries, respectively. A third
list which includes 300 suffixes extracted from the last tokens of
IUPAC names was also used to improve the detection of IUPAC
names. The motivation of using these three lists is to provide the
system with a possibility to generalize in excess of the training
data. The parameters of the CRF based classifier are selected by
applying 30-fold bootstrapping on the training set. System pro-
posed in [17] achieved recall, precision and F-measure values of
86.5%, 84.8% and 85.6%, respectively on the Medline test dataset.
Our system (two-stage MOO based approach) achieves an incre-
ment of 4.17% F-measure for the Medline test dataset. This
improvement is due to the use of a rich feature set, use of a system-
atic approach of feature selection and parameter optimization of
classifiers using MOO, and finally for employing the ensemble.
Note that our baseline results are better than the results obtained
in [17]. This may be due to the fact that the baselines 1–4 use all
the available features, and these were proved to be helpful for
the identification and classification of chemical entities. In baseli-
nes 5 and 6 we utilize the MOO based feature and parameter selec-
tion technique to generate a set of solutions. Finally, instead of
using ensemble technique proposed in [24], we used some tradi-
tional ensemble techniques. As these two baseline models utilize
some of our proposed resources and/or techniques, the perfor-
mance gains do not look very convincing. However the ensemble
output seems to be satisfactory if we compare the evaluation fig-
ures with the other baselines.

We also compare our approach with the existing techniques
proposed in [9,2,16]. Note that in [9] a CRF based machine learning
system is developed for the chemical name identification. This
paper addressed only the issue of identification, and no classifica-
tion was performed. In contrast in our work we perform identifica-
tion as well as classification. In the identification phase we detect
the chemical names from the text, and in classification phase we
classify the entities into some predefined categories of interest.
In our work we perform these two tasks simultaneously, and it is
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more complex than the mere identification task. The CRF based
system proposed in [9] utilizes only a set of few features like
stem/root word, prefixes, suffixes and digit features. We executed
this CRF based approach with only these features on the three test
data sets used in our experiments. For 2008 patent data set the sys-
tem proposed in [9] attains the recall, precision and F-measure val-
ues of 47.06%, 55.01% and 50.73%, respectively. Similarly for 2009
patent dataset the same system attains the recall, precision and
F-measure values of 46.94%, 54.95% and 50.63%, respectively. For
Medline test data, the same system shows the recall, precision
and F-measure values of 66.38%, 60.32% and 63.20%, respectively.

We also executed the OSCAR3 system developed in [2], the ver-
sion of which is downloaded from the site.11 This is a chemical
entity recognition system which identifies chemical names from text
and classifies them into the following categories: CM (Chemical): A
chemical compound/class of compounds; RN (Reaction): A chemical
verb or nominalisation thereof, e.g. demethylation; CJ (Chemical
adjective): A chemical in adjective form e.g. benzylic; CPR
(Chemical prefix): e.g. 1,2- in 1,2-transposition; ASE (Single word
enzyme names-from-chemicals): e.g. peroxidase; PRW: Potential
reaction word; ONT: A term that does not fit into any other category.

These chemical entities are not same as in our case. So for fair
comparison we execute the OSCAR3 system on our test datasets.
We obtain the accuracies of 35.34%, 35.93% and 36.02%, respec-
tively, for the patent test data set 2008, patent test data set 2009
and Medline test data set.
5. Conclusion

In this paper we have proposed a joint model of feature selec-
tion and parameter optimization within the frameworks of SOO
and MOO for chemical name identification and classification. As
the base learning algorithms, we used CRF and SVM. These classi-
fiers were trained with a diverse set of features, most of which
were generated without using any domain-specific external
resources and/or tools. For CRF, we have optimized two parameter
values, namely hyper-parameter and cut-off threshold of features.
For SVM, we have optimized five parameter values, namely the
kernel function, degree of kernel, gamma value of kernel function,
coefficient value of kernel function and the epsilon parameter. The
proposed SOO and MOO based approaches generate a set of solu-
tions on the final best population and the final Pareto optimal
front, respectively. In the second stage of our algorithm we employ
ensemble learning algorithms to combine the outputs of all the
solutions obtained in the first stage. In case of SOO the solutions
on the final best population are combined using a SOO based clas-
sifier ensemble technique. In case of MOO the solutions of these
final Pareto front are then combined using a MOO based classifier
ensemble technique. The proposed systems are evaluated with
three benchmark datasets. Overall performance of the SOO and
MOO based approaches show the F-measure values of 74.05%
and 75.55%, respectively for the 2008 patent dataset. The same
methods exhibit 74.00% and 76.07% F-measures, respectively for
the patent 2009 test data set. Evaluation also yields
state-of-the-art performance with the overall F-measure values
of 88.49% and 89.77%, respectively for SOO and MOO based
approaches on Medline test data set. Our proposed method per-
forms superior over the six baseline models, constructed with
the various features, default parameters and classical ensemble
techniques. Comparisons with the other existing state-of-the-art
systems show the efficacy of our proposed models. We tried to pre-
serve the system as much domain-independent as possible, and
hence we limited ourselves to use only two domain-specific
11 http://apidoc.ch.cam.ac.uk/oscar3/.
features that were extracted from an external resource. In future,
we would like to include more domain dependent features.
Future works also include the use of some other well known clas-
sifiers like decision tree and memory based learner. We also plan to
evaluate our proposed approaches for the other domains.
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