Random Variable and Introduction to Probability Distribution

- In a statistical experiment 3 electronic items are tested, D signifies the item is defective while N signifies the item is nondefective.
- $S=\{N N N, N N D, N D N, D N N, N D D, D N D, D D N, D D D\}$
- Anyone might be interested to know the number of defective items.
- With each sample point there is an associated number of defective items and it can be $0,1,2,3$.
- These values are, of course, random quantities determined by the outcome of the experiment.
- They may be viewed as values assumed by the random variable X, the number of defective items when three electronic components are tested.
- A random variable is a function that associates a real number with each element in the sample space.
- We shall use a capital letter, say X, to denote a random variable and its corresponding small letter, x in this case, for one of its values.
- In the electronic component testing illustration, we notice that the random variable X assumes the value 2 for all elements in the subset $E=\{D D N, D N D, N D D\}$ of the sample space S. That is, each possible value of X represents an event that is a subset of the sample space for the given experiment.
- Two balls are drawn in succession without replacement from an urn containing 4 red balls and 3 black balls. The possible outcomes and the values y of the random variable Y, where Y is the number of red balls, are

Sample Point	y
RR	2
RB	1
BR	1
BB	0

- Statisticians use sampling plans to either accept or reject batches or lots of material. Suppose one of these sampling plans involves sampling independently 10 items from a lot of 100 items in which 12 are defective.
- Let X be the random variable defined as the number of items found defective in the sample of 10 . In this case, the random variable takes on the values $0,1,2$, ... 9, 10.

Random variables can be discrete or continuous

- Discrete random variables have a countable number of outcomes
- Examples: Dead/alive, outcomes when a die is rolled, rain/not-rain
- Continuous random variables have an infinite continuum of possible values.
- Examples: blood pressure, weight, the speed of a car, the real numbers from 1 to 6 .
- Discrete Probability Distributions: A discrete random variable assumes each of its values with a certain probability.
- In the case of tossing a coin three times, the variable X, representing the number of heads,

Sample Points	x
HHH	3
HHT	2
HTH	2
HTT	1
THH	2
THT	1
TTH	1
TTT	0

x	0	1	2	3
$P(X=x)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

- Frequently, it is convenient to represent all the probabilities of a random variable X by a formula. Therefore, we write $f(x)=P(X=x)$.
- The set of ordered pairs $(x, f(x))$ is called the probability function, probability mass function, or probability distribution of the discrete random variable X.
- The set of ordered pairs $(x, f(x))$ is a probability function, probability mass function, or probability distribution of the discrete random variable X if, for each possible outcome x,

1. $f(x) \geq 0$,
2. $\sum f(x)=1$
3. $P(X=x)=f(x)$.

Discrete example: roll of a die

Probability mass function (pmf)

x	$p(x)$
1	$p(x=1)=1 / 6$
2	$p(x=2)=1 / 6$
3	$p(x=3)=1 / 6$
4	$p(x=4)=1 / 6$
5	$p(x=5)=1 / 6$
6	$p(x=6)=1 / 6$

- A shipment of 20 similar laptops to a retail outlet contains 3 laptops which are defective. If a school makes a random purchase of 2 of these laptops, find the probability distribution for the number of defectives laptops.
- Let X be a random variable whose values x are the possible numbers of defective laptops purchased by the school. Then x can only take the values 0,1 , and 2 . Now
- $f(0)=P(X=0)={ }^{3} \mathrm{C}_{0}{ }^{*{ }^{17} \mathrm{C}_{2} /{ }^{20} \mathrm{C}_{2}=68 / 95}$
- $f(1)=P(X=1)={ }^{3} \mathrm{C}_{1}{ }^{*{ }^{17} \mathrm{C}_{1} /{ }^{20} \mathrm{C}_{2}=51 / 190}$
- $f(2)=P(X=2)={ }^{3} \mathrm{C}_{2}{ }^{*{ }^{17} \mathrm{C}_{0} /{ }^{20} \mathrm{C}_{2}=3 / 190}$
- Thus, the probability distribution of X is

x	0	1	2
$f(x)$	$68 / 95$	$51 / 190$	$3 / 190$

Cumulative distribution function (CDF)

Cumulative distribution function

x	$P(x \leq A)$
1	$P(x \leq 1)=1 / 6$
2	$P(x \leq 2)=2 / 6$
3	$P(x \leq 3)=3 / 6$
4	$P(x \leq 4)=4 / 6$
5	$P(x \leq 5)=5 / 6$
6	$P(x \leq 6)=6 / 6$

Examples

1. What's the probability that you roll a die and outcome is 3 or less?
$P(x \leq 3)=1 / 2$
2. What's the probability that you roll a die and outcome is 5 or higher?
$P(x \geq 5)=1-P(x \leq 4)=1-2 / 3=1 / 3$

Practice Problem

Which of the following are probability functions?
a. $f(x)=0.25$ for $x=9,10,11,12$
b. $\quad f(x)=(3-x) / 2$ for $x=1,2,3,4$
c. $f(x)=\left(x^{2}+x+1\right) / 25$ for $x=0,1,2,3$

Answer (a)

a. $f(x)=0.25$ for $x=9,10,11,12$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
$\mathbf{9}$	$\mathbf{0 . 2 5}$
$\mathbf{1 0}$	$\mathbf{0 . 2 5}$
$\mathbf{1 1}$	$\mathbf{0 . 2 5}$
$\mathbf{1 2}$	$\underline{\mathbf{0 . 2 5}}$

Yes, probability function!

Answer (b)

b. $f(x)=(3-x) / 2$ for $x=1,2,3,4$

\boldsymbol{x}	$f(x)$
$\mathbf{1}$	$(\mathbf{3 - 1}) / \mathbf{2 = 1 . 0}$
$\mathbf{2}$	$(\mathbf{3 - 2) / 2 = . 5}$
$\mathbf{3}$	$\mathbf{(3 - 3) / 2 = 0}$
$\mathbf{4}$	you can't have a negative probability; therefore, it's not a probability function.

Answer (c)

c. $f(x)=\left(x^{2}+x+1\right) / 25$ for $x=0,1,2,3$

x	$f(x)$
0	$1 / 25$
1	$3 / 25$
2	$7 / 25$
3	$\underline{13 / 25}$

Example

- The number of ships to arrive at a harbor on any given day is a random variable represented by x. The probability distribution for x is:

x	10	11	12	13	14
$P(x)$	0.4	0.2	0.2	0.1	0.1

Find the probability that on a given day:
a. exactly 14 ships arrive $\quad \boldsymbol{p}(\boldsymbol{x}=14)=\mathbf{0 . 1}$
b. At least 12 ships arrive $p(x \geq 12)=(\mathbf{0 . 2}+\mathbf{0 . 1}+\mathbf{0 . 1})=\mathbf{0 . 4}$
c. At most 11 ships arrive $p(x \leq 11)=(\mathbf{0 . 4}+\mathbf{0 . 2})=\mathbf{0 . 6}$

Example

You are lecturing to a group of 1000 students. You ask them to each randomly pick an integer between 1 and 10. Assuming, their picks are truly random:

- What's your best guess for how many students picked the number 9?

Since $p(x=9)=1 / 10$, we'd expect about $1 / 10^{\text {th }}$ of the 1000 students to pick 9 . 100 students.

- What percentage of the students would you expect picked a number less than or equal to 6?

Since $p(x \leq 6)=1 / 10+1 / 10+1 / 10+1 / 10+1 / 10+1 / 10=0.6=$ 60\%

Joint Probability Distributions

- There are many situations, where we may find it desirable to record the simultaneous outcomes of several random variables.
- If X and Y are two discrete random variables, the probability distribution for their simultaneous occurrence can be represented by a function with values $f(x, y)$ for any pair of values (x, y) within the range of the random variables X and Y. It is customary to refer to this function as the joint probability distribution of X and Y.
- Hence, in the discrete case $f(x, y)=P(X=x, Y=y)$;
- The function $f(x, y)$ is a joint probability distribution or probability mass function of the discrete random variables X and Y if

1. $f(x, y) \geq 0$ for all (x, y),
2. $\sum_{x} \sum_{y} f(x, y)=1$
3. $P(X=x, Y=y)=f(x, y)$.

- For any region A in the $x y$ plane, $P[(X, Y) \in A]$
$=\sum \sum_{A} f(x, y)$

Example

- Two ballpoint pens are selected at random from a box that contains 3 blue pens, 2 red pens, and 3 green pens. If X is the number of blue pens selected and Y is the number of red pens selected, find
a) the joint probability function $f(x, y)$,
b) $P[(X, Y) \in A]$, where A is the region $\{(x, y) / x+y \leq 1\}$.

3-blue(X), 2-red(Y), 3-green

- The possible pairs of values (x, y) are $(0,0),(0,1),(1,0),(1,1),(0,2)$, and $(2,0)$.
- Now, $f(x, y)$, for example, represents the probability that x blue and y red pens are selected.
- The total number of equally likely ways of selecting any 2 pens from the 8 is ${ }^{8} \mathrm{C}_{2}=$ 28.
- $f(0,0)={ }^{3} C_{2} /{ }^{8} C_{2}=3 / 28$ [choosing 2 green pens out of 3 green pens / all possible ways]
- $\mathrm{f}(0,1)={ }^{3} \mathrm{C}_{1} *{ }^{2} \mathrm{C}_{1} /{ }^{8} \mathrm{C}_{2}=6 / 28$ [choosing 1 green pen out of 3 green pens and 1 red pen out of 2 red pens / all possible ways]
- $f(1,0)={ }^{3} C_{1}{ }^{* 3} C_{1} /{ }^{8} C_{2}=9 / 28$ [choosing 1 blue pen out of 3 blue pens and choosing 1 green pen out of 3 green pens/ all possible ways]
- $\mathrm{f}(1,1)={ }^{3} \mathrm{C}_{1}{ }^{* 2} \mathrm{C}_{1} /{ }^{8} \mathrm{C}_{2}=6 / 28$ [choosing 1 blue pen out of 3 blue pens and choosing 1 red pen out of 2 red pens/ all possible ways]
- $f(0,2)={ }^{2} C_{2} /{ }^{8} C_{2}=1 / 28$ [choosing 2 red pens out of 2 red pens/ all possible ways]
- $f(2,0)={ }^{3} \mathrm{C}_{2} /{ }^{8} \mathrm{C}_{2}=3 / 28$ [choosing 2 blue pens out of 3 blue pens/ all possible ways]
- $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{{ }^{3} \mathrm{C}_{\mathrm{x}} *^{2} \mathrm{C}_{\mathrm{v}} *^{3} \mathrm{C}_{2-x-y}}{{ }^{8} \mathrm{C}_{2}}$ for $x=0,1,2 ; y=0,1,2$; and $0 \leq x+y \leq 2$.
- The probability that (X, Y) fall in the region A is
- $P[(X, Y) \in A]=P(X+Y \leq 1)=f(0,0)+f(0,1)+f(1,0)=$ $3 / 28+6 / 28+9 / 28=18 / 28=9 / 14$
- The function $f(x, y)$ is a joint density function of the continuous random variables X and Y if

1. $f(x, y) \geq 0$, for all (x, y),
2. $\int_{-\propto}^{\propto} \int_{-\propto}^{\propto} f(x, y) d x d y=1$,
3. $P[(X, Y) \in A]=\iint f(x, y) d x d y$ for any region A in the $x y$ plane.

- A privately owned business operates both a drive-in facility and a walk-in facility. On a randomly selected day, let X and Y, respectively, be the proportions of the time that the drive-in and the walk-in facilities are in use, and suppose that the joint density function of these random variables is

$$
f(x, y)= \begin{cases}\frac{2}{5}(2 x+3 y), & 0 \leq x \leq 1,0 \leq y \leq 1, \\ 0, & \text { elsewhere. }\end{cases}
$$

- Verify condition 2 of Definition.
- $\int_{-\propto}^{\propto} \int_{-\propto}^{\propto} f(x, y) d x d y=$ $\int_{0}^{1} \int_{0}^{1} \frac{2}{5}(2 x+3 y) d x d y$ $=\int_{0}^{1}\left(\frac{2 x^{2}}{5}+\frac{6 x y}{5}\right)_{x=0}^{x=1} d y$

$$
=\int_{0}^{1}\left(\frac{2}{5}+\frac{6 y}{5}\right) \mathrm{dy}=\frac{2}{5} y=\left.\frac{2}{5} y\right|_{y=0} ^{y=1}+\frac{6}{5} \frac{y^{2 y=1}}{2}{ }_{y=0}=\frac{2}{5}+\frac{3}{5}=1
$$

Marginal Distribution

- Given the joint probability distribution $f(x, y)$ of the discrete random variables X and Y, the probability distribution $g(x)$ of X alone is obtained by summing $f(x, y)$ over the values of Y. Similarly, the probability distribution $h(y)$ of Y alone is obtained by summing $f(x, y)$ over the values of X. We define $g(x)$ and $h(y)$ to be the marginal distributions of X and Y, respectively.
- The marginal distributions of X alone and of Y alone are $g(x)=\sum_{y} f(x, y)$ and $h(y)=\sum_{x} f(x, y)$ for the discrete case, and
- $g(x)=\int_{-\infty}^{\infty} f(x, y) d y$ and $h(y)=\int_{-\infty}^{\infty} f(x, y) d x$ for the continuous case.
- The term marginal is used here because, in the discrete case, the values of $g(x)$ and $h(y)$ are just the marginal totals of the respective columns and rows when the values of $f(x, y)$ are displayed in a rectangular table.

Example

- Two ballpoint pens are selected at random from a box that contains 3 blue pens, 2 red pens, and 3 green pens. If X is the number of blue pens selected and Y is the number of red pens selected. Give the marginal distribution of X alone and of Y alone.
- $f(0,0)=3 / 28, f(0,1)=6 / 28, f(0,2)=1 / 28, f(1,0)=9 / 28, f(1,1)=6 / 28$, $f(2,0)=3 / 28$
- For the random variable X,
- $g(0)=f(0,0)+f(0,1)+f(0,2)=10 / 28=5 / 14$
- $g(1)=f(1,0)+f(1,1)+f(1,2)=15 / 28$
- $g(2)=f(2,0)+f(2,1)+f(2,2)=3 / 28$
- For random variable Y
- $h(0)=f(0,0)+f(1,0)+f(2,0)=15 / 28$
- $h(1)=f(0,1)+f(1,1)+f(2,1)=12 / 28=3 / 7$
- $h(2)=f(0,2)+f(1,2)+f(2,2)=1 / 28$

Example

- The joint density for the random variables (X, Y), where X is the unit temperature change and Y is the proportion of spectrum shift that a certain atomic particle produces, is

$$
f(x, y)= \begin{cases}10 x y^{2}, & 0<x<y<1, \\ 0, & \text { elsewhere. }\end{cases}
$$

- Find the marginal densities $g(x), h(y)$
- $g(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{X}^{1} 10 x y^{2} d y$

$$
=\left.\frac{10}{3} x y^{3}\right|_{y-z} ^{y-1}=\frac{10}{3} x\left(1-x^{3}\right), 0<x<1,
$$

- $h(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{0}^{y} 10 x y^{2} d x$

$$
=\left.5 x^{2} y^{2}\right|_{z-0} ^{z-y}=5 y^{4}, 0<y<1 .
$$

