Elementary Graph Algorithms

Graphs

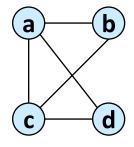
- Graph G = (V, E)
 - -V = set of vertices
 - *E* = set of edges \subseteq (*V*×*V*)
- Types of graphs
 - Undirected: edge (u, v) = (v, u); for all $v, (v, v) \notin E$ (No self loops.)
 - Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
 - Weighted: each edge has an associated weight, given by a weight function $w: E \to \mathbb{R}$.
 - Dense: $|E| \approx |V|^2$.
 - Sparse: $|E| << |V|^2$.
- $|E| = O(|V|^2)$

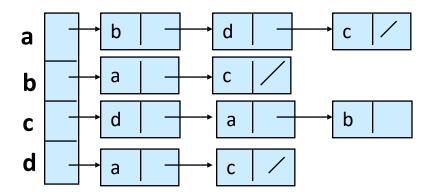
Graphs

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
 - Symmetric if G is undirected.
 - Not necessarily so if G is directed.
- If *G* is connected:
 - There is a path between every pair of vertices.
 - $|E| \ge |V| 1.$
 - Furthermore, if |E| = |V| 1, then G is a tree.

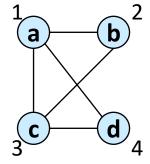
Representation of Graphs

- Two standard ways.
 - Adjacency Lists.

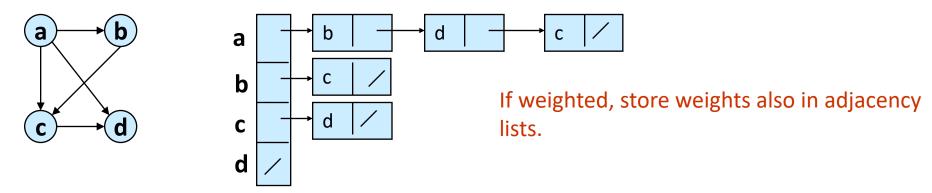


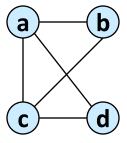


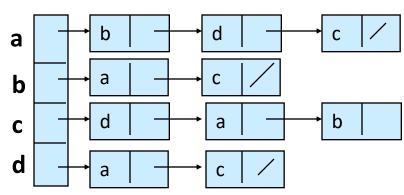
Adjacency Matrix.



- Adjacency Lists
 Consists of an array Adj of |V| lists.
- One list per vertex.
- For $u \in V$, Adj[u] consists of all vertices adjacent to u.







Storage Requirement

- For directed graphs:
 - Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{out-degree}(v) = |E|$$

No. of edges leaving v

- Total storage: $\Theta(V+E)$
- For undirected graphs:
 - Sum of lengths of all adj. lists is

$$\sum_{v \in V} degree(v) = 2|E|$$

No. of edges incident on v. Edge (u,v) is incident on vertices u and v.

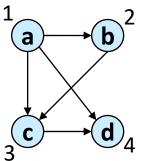
- Total storage: $\Theta(V+E)$

Pros and Cons: adj list

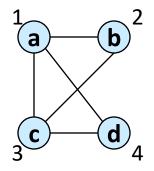
- Pros
 - Space-efficient, when a graph is sparse.
- Cons
 - Determining if an edge $(u,v) \in G$ is not efficient.
 - Have to search in u's adjacency list. $\Theta(\text{degree}(u))$ time.

Adjacency Matrix

- $|V| \times |V|$ matrix A.
- Number vertices from 1 to |V| in some arbitrary manner.
- A is then given by:



ven by:					$A[i,j] = a_{ij} = \begin{cases} 1 \\ 0 \end{cases}$	if $(i, j) \in E$		
	1	2	3	4	$A[\iota, J] - a_{ij} - \begin{cases} 0 \end{cases}$	otherwise		
1	0	1	1	1				
2	0 0	0	1	0				
3	0	0	0	1				
4	0	0	0	0				



	1	1 0 1 0	3	4	
1	0	1	1	1	
2	1	0	1	0	
3	1	1	0	1	
4	1	0	1	0	

 $A = A^{T}$ for undirected graphs.

Space and Time

- Space: $\Theta(V^2)$.
 - Not memory efficient for large graphs.
- Time: to list all vertices adjacent to $u: \Theta(V)$.
- Time: to determine if $(u, v) \in E: \Theta(1)$.
- Can store weights instead of bits for weighted graph.

Graph-searching Algorithms

- Searching a graph:
 - Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
 - Breadth-first Search (BFS).
 - Depth-first Search (DFS).

Breadth-first Search

• Input: Graph G = (V, E), either directed or undirected, and source vertex $s \in V$.

Output:

- -d[v]= distance (smallest # of edges, or shortest path) from s to v, for all $v \in V$. $d[v]=\infty$ if v is not reachable from s.
- $-\pi[v] = u$ such that (u, v) is last edge on shortest path $s \sim v$.
 - *u* is *v*'s predecessor.
- Builds breadth-first tree with root s that contains all reachable vertices.

Definitions:

Path between vertices u and v: Sequence of vertices $(v_1, v_2, ..., v_k)$ such that $u=v_1$ and $v=v_k$, and $(v_i, v_{i+1}) \in E$, for all $1 \le i \le k-1$.

Length of the path: Number of edges in the path.

Path is simple if no vertex is repeated.

Breadth-first Search

- Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
 - A vertex is "discovered" the first time it is encountered during the search.
 - A vertex is "finished" if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.
 - White Undiscovered.
 - Gray Discovered but not finished.
 - Black Finished.
 - Colors are required only to reason about the algorithm. Can be implemented without colors.

```
BFS(G,s)
1. for each vertex u in V[G] – {s}
             do color[u] \leftarrow white
2
3
                 d[u] \leftarrow \infty
                 \pi[u] \leftarrow \text{nil}
4
    color[s] \leftarrow gray
    d[s] \leftarrow 0
7 \pi[s] \leftarrow \text{nil}
8 Q \leftarrow \Phi
    enqueue(Q,s)
10 while Q \neq \Phi
             do u \leftarrow dequeue(Q)
11
12
                           for each v in Adj[u]
13
                                         do if color[v] = white
14
                                                       then color[v] \leftarrow gray
15
                                                              d[v] \leftarrow d[u] + 1
16
                                                              \pi[v] \leftarrow u
                                                              enqueue(Q,v)
17
18
                           color[u] \leftarrow black
```

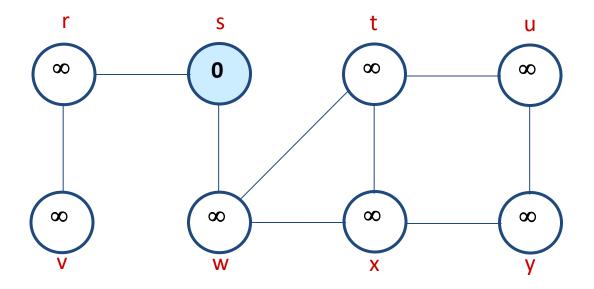
white: undiscovered gray: discovered black: finished

Q: a queue of discovered vertices color[v]: color of v

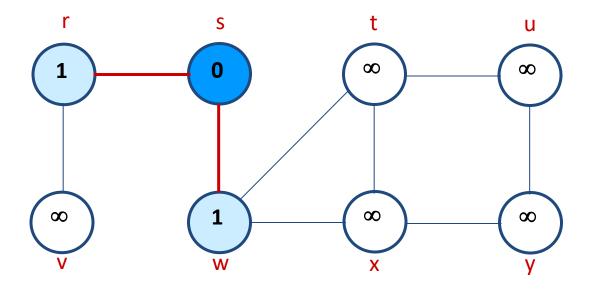
d[v]: distance from s to v

 $\pi[u]$: predecessor of v

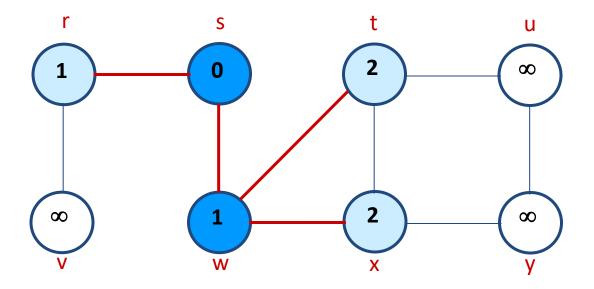
Example: animation.



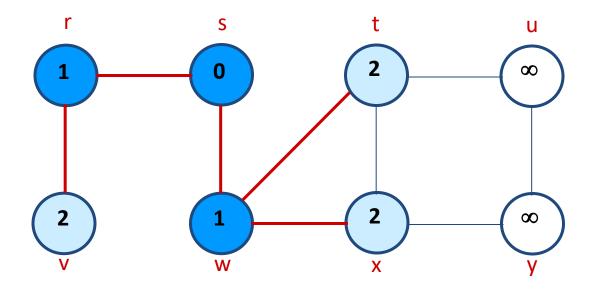
Q: s 0



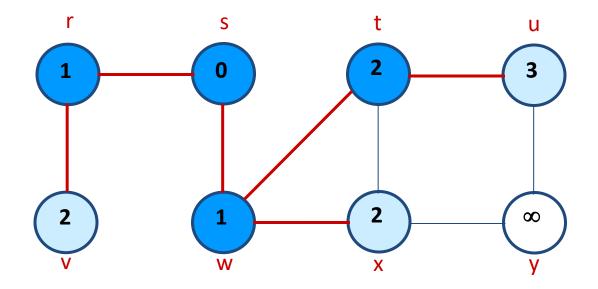
Q: w r 1 1



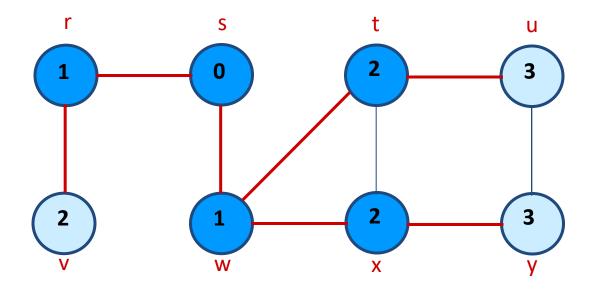
Q: r t x 1 2 2



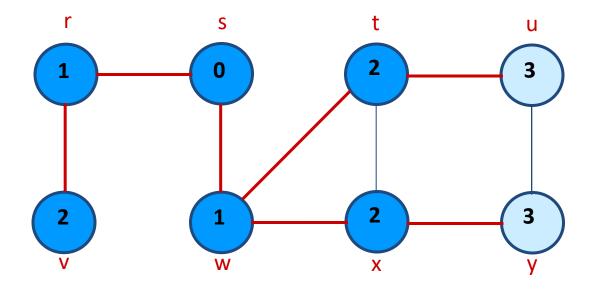
Q: t x v 2 2 2



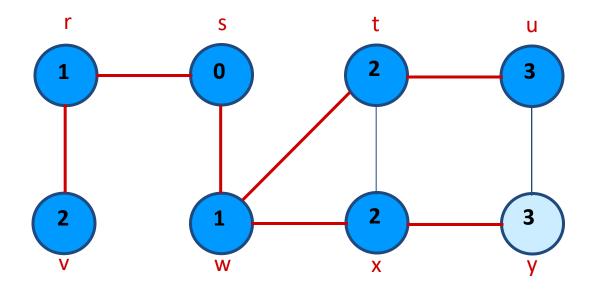
Q: x v u 2 2 3



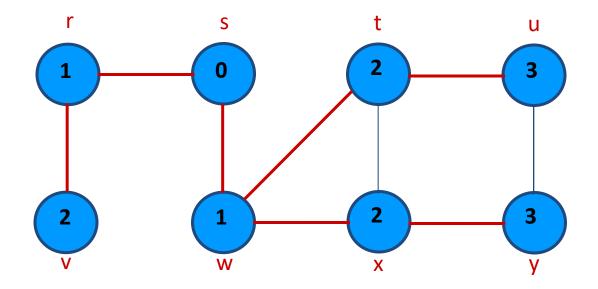
Q: v u y 2 3 3



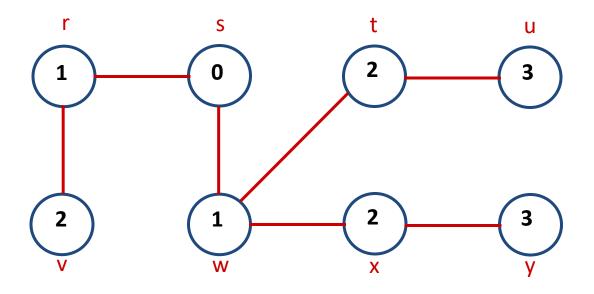
Q: u y 3 3



Q: y



 $\mathbf{Q}\!\colon \varnothing$



BF Tree

Analysis of BFS

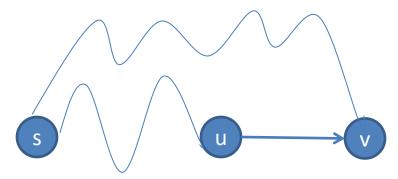
- Initialization takes O(V).
- Traversal Loop
 - After initialization, each vertex is enqueued and dequeued at most once, and each operation takes O(1).
 So, total time for queuing is O(V).
 - The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(E)$.
- Summing up over all vertices => total running time of BFS is O(V+E), linear in the size of the adjacency list representation of graph.

```
BFS(G,s)
1. for each vertex u in V[G] - \{s\}
              do color[u] \leftarrow white
2
3
                  d[u] \leftarrow \infty
                  \pi[u] \leftarrow \text{nil}
4
5
    color[s] \leftarrow gray
   d[s] \leftarrow 0
    \pi[s] \leftarrow \text{nil}
   Q \leftarrow \Phi
     enqueue(Q,s)
     while Q \neq \Phi
              do u \leftarrow dequeue(Q)
11
12
                             for each v in Adj[u]
                                            do if
13
     color[v] = white
14
              then color[v] \leftarrow gray
15
                     d[v] \leftarrow d[u] + 1
16
                     \pi[v] \leftarrow u
17
                      enqueue(Q,v)
18
                             color[u] \leftarrow black
```

Lemma 1

Let G = (V, E) be a directed or undirected graph, and let $s \in V$ be an arbitrary vertex. Then, for any edge $(u, v) \in E$,

$$\delta(s, v) \leq \delta(s, u) + 1$$
.



Lemma 2

Let G = (V,E) be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex $s \in V$. Then upon termination, for each vertex $\in V$, the value v.d computed by BFS satisfies v.d $>=\delta(s,v)$.

```
BFS(G,s)
1. for each vertex u in V[G] – {s}
             do color[u] \leftarrow white
2
                 d[u] \leftarrow \infty
                 \pi[u] \leftarrow \text{nil}
4
    color[s] \leftarrow gray
   d[s] \leftarrow 0
7 \pi[s] \leftarrow \text{nil}
8 Q \leftarrow \Phi
   enqueue(Q,s)
10 while Q \neq \Phi
11
             do u \leftarrow dequeue(Q)
12
                           for each v in Adj[u]
                                         do if color[v] = white
13
14
                                                      then color[v] \leftarrow gray
                                                              d[v] \leftarrow d[u] + 1
15
16
                                                              \pi[v] \leftarrow u
17
                                                              enqueue(Q,v)
18
                           color[u] \leftarrow black
```

For initial case,

$$-\delta(s,s)=0$$

$$- s.d=0$$

$$- s.d >= \delta(s,s)$$

$$- v.d=\infty for all v \in V-s$$

$$- v.d >= \delta(s,v)$$

- We are modifying distance of a node when it is explored for the first time
- Assuming node v is being explored through node u and for node u, u.d>= $\delta(s,u)$, we have to show it is true for v as well
- v.d=u.d+1>= $\delta(s,u)+1>= \delta(s,v)$

Lemma 3

Suppose that during the execution of BFS on a graph G = (V, E), the queue Q contains the vertices $\langle v_1, v_2, \dots, v_r \rangle$, where v_1 is the head of Q and v_r is the tail. Then, $v_r \cdot d \leq v_1 \cdot d + 1$ and $v_i \cdot d \leq v_{i+1} \cdot d$ for $i = 1, 2, \dots, r-1$.

- After initialization, there is only s in Q, so there is no violation
- Assuming at certain stage there are $v_1, v_2, ..., v_r$ are there in Q and it satisfies the constraints. We have to show dequeue and enqueue does not violate this condition.
- Vr.d<=v1.d+1<=v2.d+1
- Let's say v_{r+1} node is going to be enqueued through node u.
- u.d $<=v_1.d$
- $V_{r+1}.d=u.d+1 <= v_1.d+1$

Lemma 4

Suppose that vertices v_i and v_j are enqueued during the execution of BFS, and that v_i is enqueued before v_j . Then $v_i \cdot d \le v_j \cdot d$ at the time that v_j is enqueued.

Lemma 5

Let G = (V, E) be a directed or undirected graph, and suppose that BFS is run on G from a given source vertex $s \in V$. Then, during its execution, BFS discovers every vertex $v \in V$ that is reachable from the source s, and upon termination, $v.d = \delta(s, v)$ for all $v \in V$. Moreover, for any vertex $v \neq s$ that is reachable from s, one of the shortest paths from s to v is a shortest path from s to $v.\pi$ followed by the edge $(v.\pi, v)$.

- Assume v is assigned a distance which is not equal to its shortest path distance and v is such node with shortest $\delta(s,v)$.
- As we have already shown v.d>= $\delta(s,v)$, it implies that v.d> $\delta(s,v)$
- Let u is the preceding node in shortest path from s to v. However, u.d= $\delta(s,u)$
- v.d > $\delta(s,v) = \delta(s,u) + 1 = u.d + 1$

- v is white:
 - V.d=u.d+1
- v is black:
 - v is already dequeued and hence as per lemma 4,
 v.d<=u.d
- v is grey:
 - Assume v is colored grey when node w was dequeued.
 w.d=v.d-1
 - w.d<=u.d</p>
 - $v.d-1 \le u.d$
 - V.d <= u.d + 1

Breadth-first Tree

- For a graph G = (V, E) with source s, the **predecessor** subgraph of G is $G_{\pi} = (V_{\pi}, E_{\pi})$ where
 - $V_{\pi} = \{ v \in V : \pi[v] \neq \text{NIL} \} \cup \{ s \}$
 - $E_{\pi} = \{ (\pi[v], v) \in E : v \in V_{\pi} \{s\} \}$
- The predecessor subgraph G_{π} is a **breadth-first tree**:
 - V_{π} consists of the vertices reachable from s and
 - for all $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π} that is also a shortest path from s to v in G.
- The edges in E_{π} are called **tree edges**.

$$|E_{\pi}| = |V_{\pi}| - 1.$$

Depth-first Search (DFS)

- Explore edges out of the most recently discovered vertex v.
- When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor).
- "Search as deep as possible first."
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

Depth-first Search

- Input: G = (V, E), directed or undirected. No source vertex given!
- Output:
 - 2 timestamps on each vertex. Integers between 1 and 2 | V |.
 - d[v] = discovery time (v turns from white to gray)
 - f[v] = finishing time (v turns from gray to black)
 - $-\pi[v]$: predecessor of v=u, such that v was discovered during the scan of u's adjacency list.
- Uses the same coloring scheme for vertices as BFS.

Pseudo-code

DFS(G)

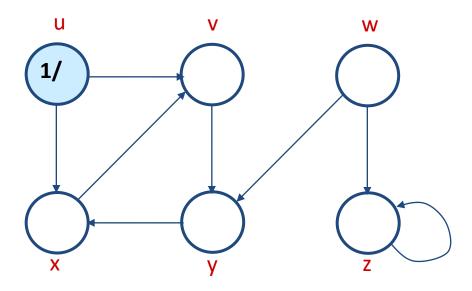
- 1. **for** each vertex $u \in V[G]$
- 2. **do** $color[u] \leftarrow$ white
- 3. $\pi[u] \leftarrow NIL$
- 4. $time \leftarrow 0$
- 5. **for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then** DFS-Visit(u)

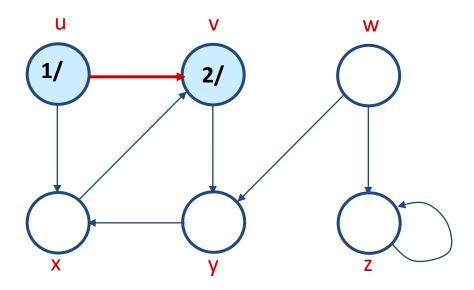
Uses a global timestamp *time*.

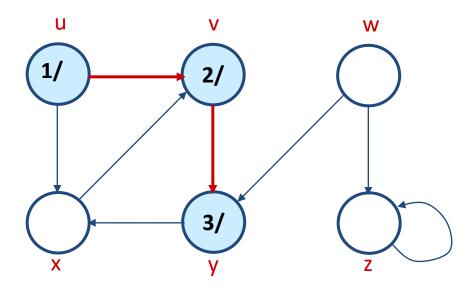
Example: animation.

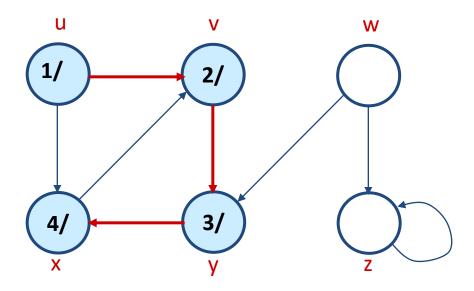
DFS-Visit(u)

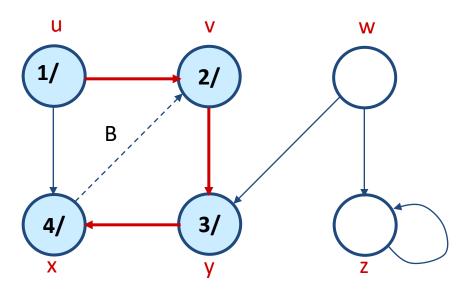
- 1. $color[u] \leftarrow GRAY \ \nabla White vertex \ u$ has been discovered
- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
- 4. **for** each $v \in Adj[u]$
- 5. **do if** color[v] = WHITE
- 6. then $\pi[v] \leftarrow u$
- 7. DFS-Visit(v)
- 8. $color[u] \leftarrow BLACK \quad \nabla Blacken u$; it is finished.
- 9. $f[u] \leftarrow time \leftarrow time + 1$

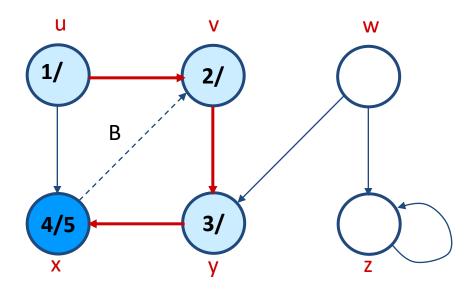


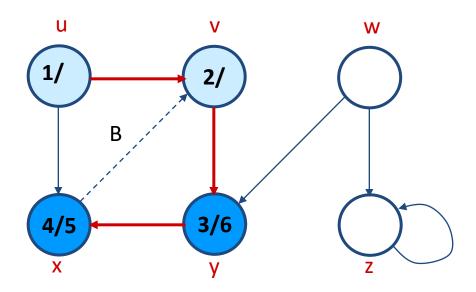


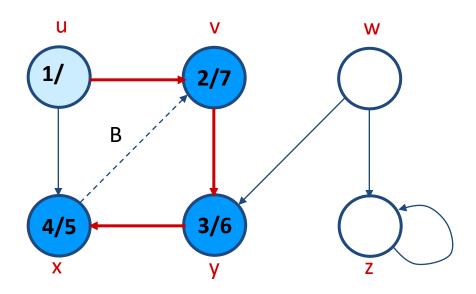


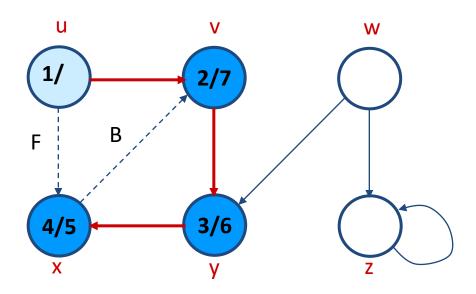


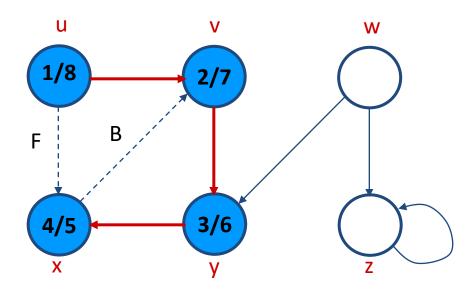


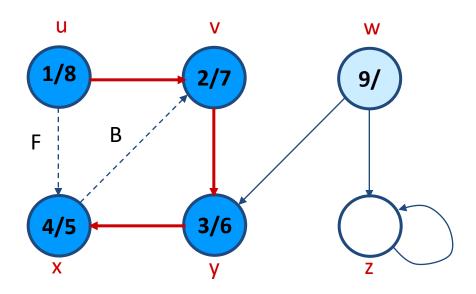


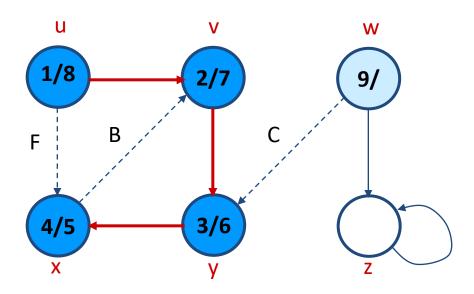


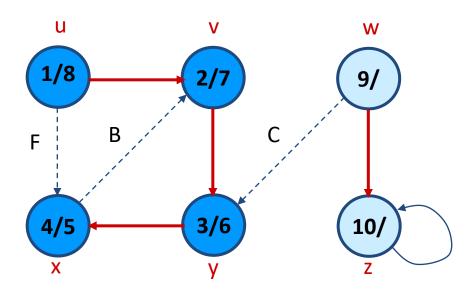


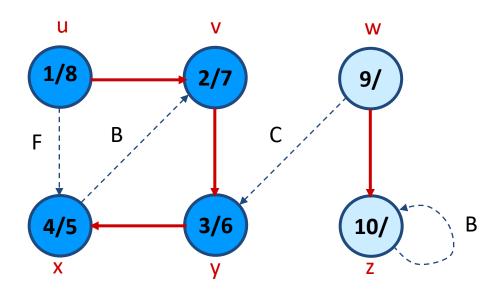


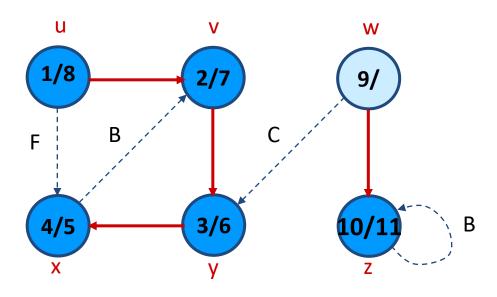


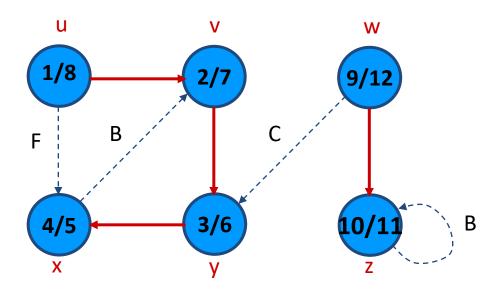












Analysis of DFS

- Loops on lines 1-2 & 5-7 take ⊕(V) time, excluding time to execute DFS-Visit.
- DFS-Visit is called once for each white vertex $v \in V$ when it's painted gray the first time. Lines 4-7 of DFS-Visit is executed |Adj[v]| times. The total cost of executing DFS-Visit is $\sum_{v \in V} |Adj[v]| = \Theta(E)$
- Total running time of DFS is $\Theta(V+E)$.

DFS(G)

- 1. **for** each vertex $u \in V[G]$
- 2. **do** $color[u] \leftarrow$ white
- 3. $\pi[u] \leftarrow NIL$
- 4. time \leftarrow 0
- 5. **for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then** DFS-Visit(u)

DFS-Visit(u)

- 1. $color[u] \leftarrow GRAY \ \nabla$ White vertex u has been discovered
- 2. time \leftarrow time + 1
- 3. $d[u] \leftarrow time$
- 4. for each $v \in Adj[u]$
- 5. do if color[v] = WHITE
- 6. then $\pi[v] \leftarrow u$
- 7. DFS-Visit(v)
- 8. color[u] \leftarrow BLACK ∇ Blacken u; it is finished.
- 9. $f[u] \leftarrow time \leftarrow time + 1$

Parenthesis Theorem

Theorem 22.7

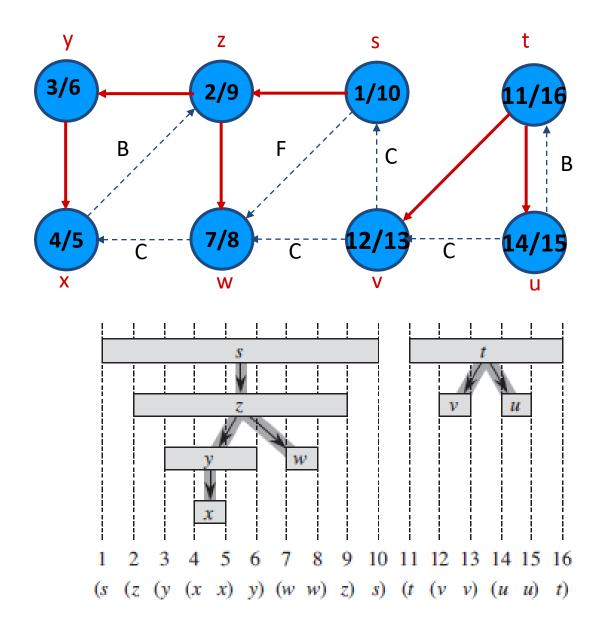
For all u, v, exactly one of the following holds:

- 1. d[u] < f[u] < d[v] < f[v] or d[v] < f[v] < d[u] < f[u] and neither u nor v is a descendant of the other. => ()[] or [] ()
- 2. d[u] < d[v] < f[v] < f[u] and v is a descendant of u = ([])
- 3. d[v] < d[u] < f[u] < f[v] and u is a descendant of v.=>[()]
 - So d[u] < d[v] < f[u] < f[v] cannot happen.
 - Like parentheses:
 - OK:()[]([])[()]
 - Not OK: ([)][(])

Corollary

V is a proper descendant of u if and only if d[u] < d[V] < f[V] < f[u].

Example (Parenthesis Theorem)



Depth-First Trees

- Predecessor subgraph defined slightly different from that of BFS.
- The predecessor subgraph of DFS is $G_{\pi} = (V, E_{\pi})$ where $E_{\pi} = \{(\pi[v], v) : v \in V \text{ and } \pi[v] \neq \text{NIL}\}.$
 - How does it differ from that of BFS?
 - The predecessor subgraph G_{π} forms a *depth-first forest* composed of several *depth-first trees*. The edges in E_{π} are called *tree edges*.

Definition:

Forest: An acyclic graph G that may be disconnected.

White-path Theorem

Theorem 22.9

V is a descendant of u if and only if at time d[u], there is a path $u \sim V$ consisting of only white vertices. (Except for u, which was just colored gray.)

- Classification of Edges
 Tree edge: in the depth-first forest. Found by exploring (u, v).
- Back edge: (u, v), where u is a descendant of v (in the depth-first tree).
- Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
- Cross edge: any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

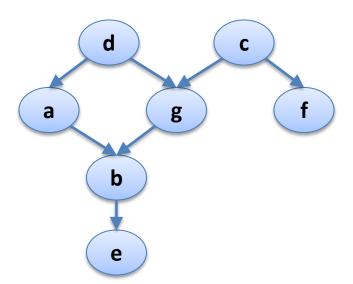
Theorem:

In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

- We have a set of tasks and a set of dependencies (precedence constraints) of form "task A must be done before task B"
- Topological sort: An ordering of the tasks that conforms with the given dependencies
- Goal: Find a topological sort of the tasks or decide that there is no such ordering

Examples

- Scheduling: When scheduling task graphs in distributed systems, usually we first need to <u>sort the</u> <u>tasks topologically</u>
 - ...and then assign them to resources
- Or during compilation to order modules/libraries



Examples

 Resolving dependencies: apt-get uses topological sorting to obtain the admissible sequence in which a set of Debian packages can be installed/removed

Topological sort more formally

- Suppose that in a directed graph G = (V, E)
 vertices V represent tasks, and each edge (u, v)∈E
 means that task u must be done before task v
- What is an ordering of vertices 1, ..., |V| such that for every edge (u, v), u appears before v in the ordering?
- Such an ordering is called a topological sort of G
- Note: there can be multiple topological sorts of G

Topological sort more formally

- Is it possible to execute all the tasks in G in an order that respects all the precedence requirements given by the graph edges?
- The answer is "yes" if and only if the directed graph
 G has no cycle!
 - (otherwise we have a deadlock)
- Such a G is called a Directed Acyclic Graph, or just a
 DAG

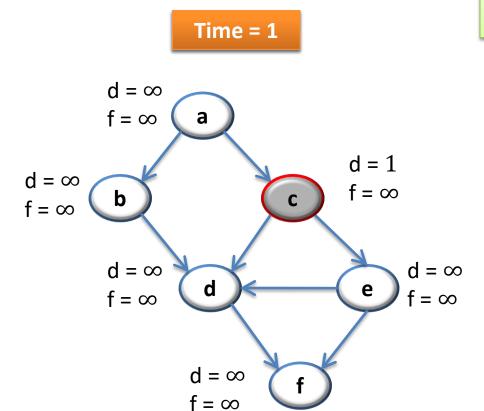
Algorithm for TS

- TOPOLOGICAL-SORT(G):
 - call DFS(G) to compute finishing times f[v] for each vertex v
 - as each vertex is finished, insert it onto the front of a linked list
 - 3) return the linked list of vertices

 Note that the result is just a list of vertices in order of decreasing finish times f[]

DAGs and back edges

- Can there be a back edge in a DFS on a DAG?
- NO! Back edges close a cycle!
- A graph G is a DAG <=> there is no back edge classified by DFS(G)

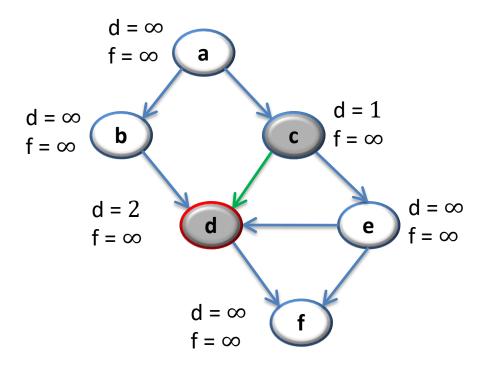


Call DFS(G) to compute the finishing times f[v]

Let's say we start the DFS from the vertex **c**

Next we discover the vertex **d**

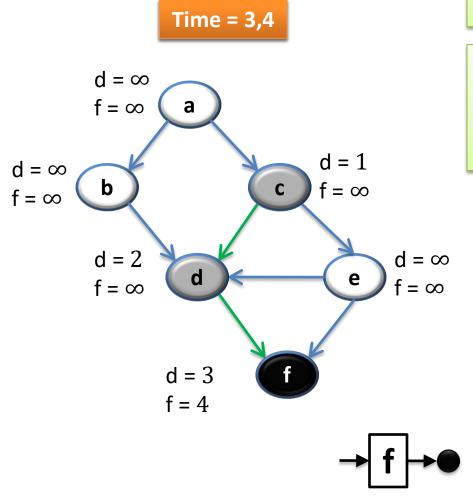
Time = 2



Call DFS(G) to compute the finishing times f[v]

Let's say we start the DFS from the vertex **c**

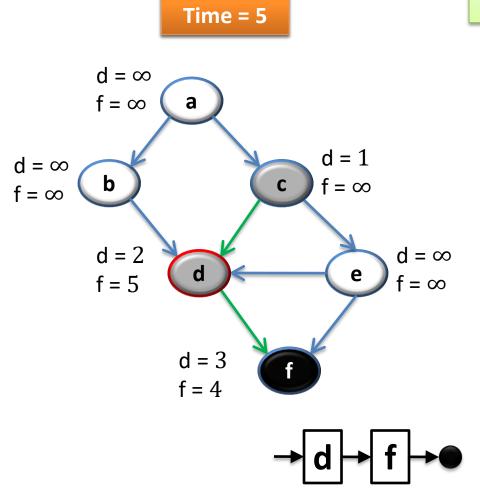
Next we discover the vertex **d**



- Call DFS(G) to compute the finishing times f[v]
- 2) as each vertex is finished, insert it onto the **front** of a linked list

Next we discover the vertex **f**

f is done, move back to d



Call DFS(G) to compute the finishing times f[v]

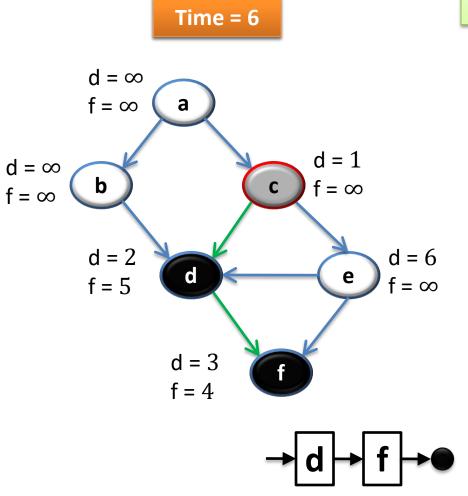
Let's say we start the DFS from the vertex **c**

Next we discover the vertex **d**

Next we discover the vertex **f**

f is done, move back to **d**

d is done, move back to **c**



Call DFS(G) to compute the finishing times f[v]

Let's say we start the DFS from the vertex **c**

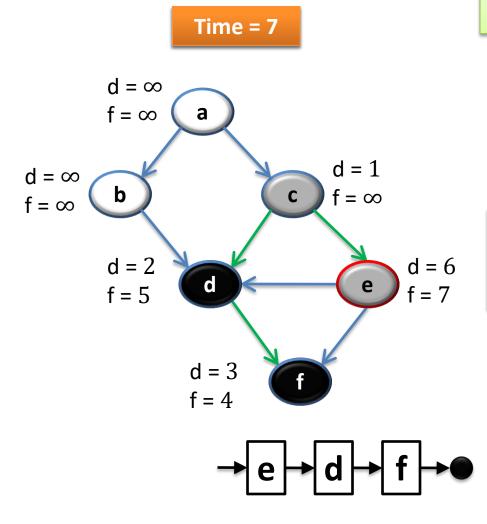
Next we discover the vertex **d**

Next we discover the vertex **f**

f is done, move back to **d**

d is done, move back to **c**

Next we discover the vertex **e**



Call DFS(G) to compute the finishing times f[v]

Let's say we start the DFS from the vertex **c**

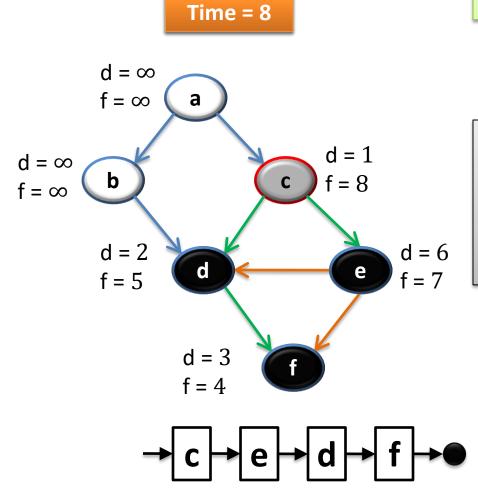
Next we discover the vertex **d**

Both edges from **e** are **cross edges**

d is done, move back to **c**

Next we discover the vertex **e**

e is done, move back to **c**



Call DFS(G) to compute the finishing times f[v]

Let's say we start the DFS from the vertex **c**

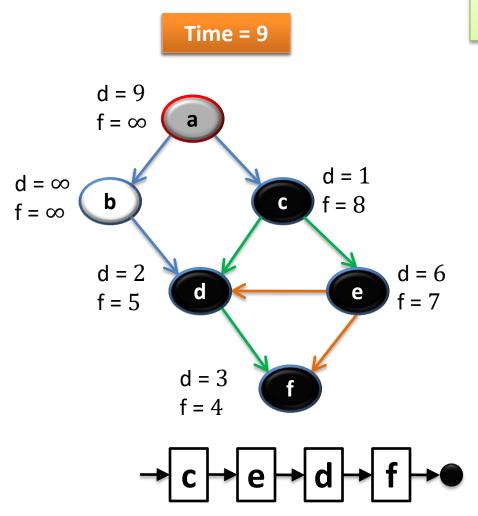
Just a note: If there was (c,f) edge in the graph, it would be classified as a **forward edge** (in this particular DFS run)

d is done, move back to **c**

Next we discover the vertex **e**

e is done, move back to c

c is done as well

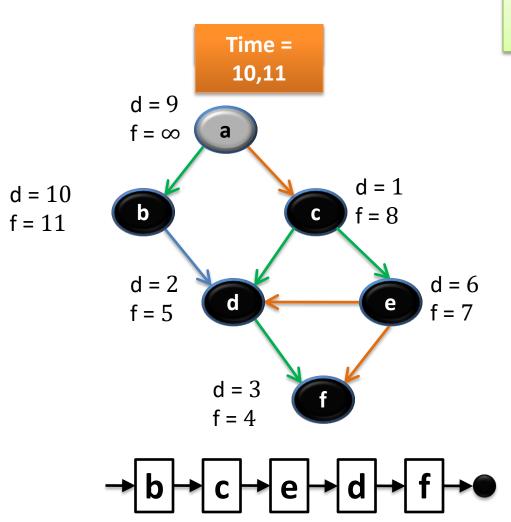


Call DFS(G) to compute the finishing times f[v]

Let's now call DFS visit from the vertex **a**

Next we discover the vertex **c**, but **c** was already processed => (**a**,**c**) is a cross edge

Next we discover the vertex **b**



Call DFS(G) to compute the finishing times f[v]

Let's now call DFS visit from the vertex **a**

Next we discover the vertex **c**, but **c** was already processed => (**a**,**c**) is a cross edge

Next we discover the vertex **b**

b is done as (**b**,**d**) is a cross edge => now move back to **c**

Time = 12 d = 9f = 12d = 1d = 10b f = 8f = 11d = 2d = 6f = 5f = 7d = 3f = 4

Call DFS(G) to compute the finishing times f[v]

Let's now call DFS visit from the vertex **a**

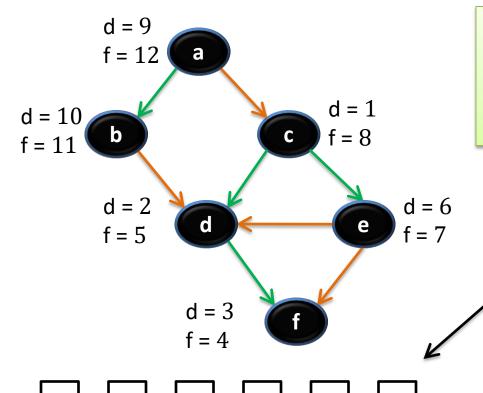
Next we discover the vertex **c**, but **c** was already processed => (**a**,**c**) is a cross edge

Next we discover the vertex **b**

b is done as (**b**,**d**) is a cross edge => now move back to **c**

a is done as well

Call DFS(G) to compute the finishing times f[v]



WE HAVE THE RESULT!

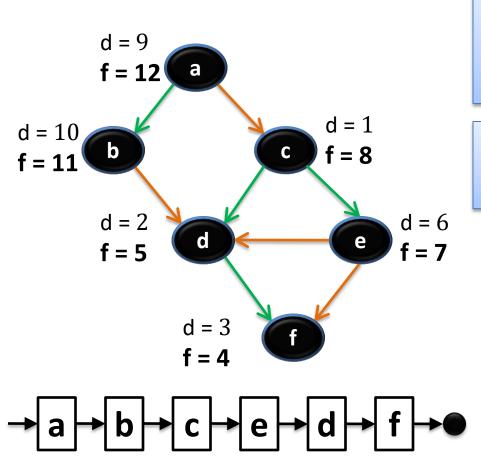
3) return the linked list of vertices

=> (a,c) is a cross edge

Next we discover the vertex **b**

b is done as (**b**,**d**) is a cross edge => now move back to **c**

a is done as well



The linked list is sorted in **decreasing** order of finishing times **f**[]

Try yourself with different vertex order for DFS visit

Time complexity of TS(G)

Running time of topological sort:

$$\Theta(V + E)$$

Why? Depth first search takes $\Theta(V + E)$ time in the worst case, and inserting into the front of a linked list takes $\Theta(1)$ time

Proof of correctness

 Theorem: TOPOLOGICAL-SORT(G) produces a topological sort of a DAG G

- The TOPOLOGICAL-SORT(G) algorithm does a DFS on the DAG G, and it lists the nodes of G in order of decreasing finish times f[]
- We must show that this list satisfies the topological sort property, namely, that for every edge (u,v) of G, u appears before v in the list
- Claim: For every edge (u,v) of G: f[v] < f[u] in DFS

Proof of correctness

"For every edge (u,v) of G, f[v] < f[u] in this DFS"

- The DFS classifies (u,v) as a tree edge, a forward edge or a cross-edge (it cannot be a back-edge since G has no cycles):
 - i. If (u,v) is a **tree** or a **forward edge** $\Rightarrow v$ is a descendant of $u \Rightarrow f[v] < f[u]$
 - ii. If (u,v) is a cross-edge => v will be discovered and finished before u hence f[v] < f[u]

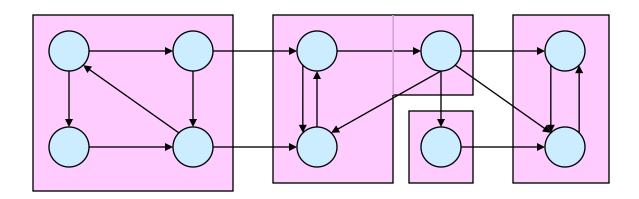
Proof of correctness

 TOPOLOGICAL-SORT(G) lists the nodes of G from highest to lowest finishing times

- By the Claim, for every edge (u,v) of G:
 f[v] < f[u]
- \Rightarrow **u** will appear before **v** in the sorted list

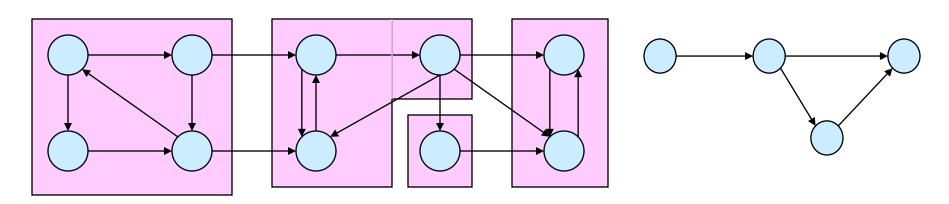
Strongly Connected Components

- *G* is strongly connected if every pair (*u*, *v*) of vertices in *G* is reachable from one another.
- A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all u, $V \in C$, both $u \sim V$ and $V \sim u$ exist.



Component Graph

- $G^{SCC} = (V^{SCC}, E^{SCC}).$
- V^{SCC} has one vertex for each SCC in G.
- E^{SCC} has an edge if there's an edge between the corresponding SCC's in *G*.
- G^{SCC} for the example considered:



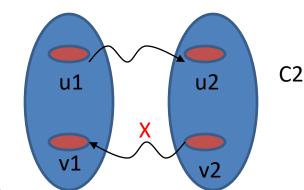
GSCC is a DAG

Lemma

Let C and C' be distinct SCC's in G, let u1, $v1 \in C1$ and u2, $v2 \in C2$, and suppose there is a path $u1 \rightsquigarrow u2$ in G. Then there cannot also be a path $v2 \rightsquigarrow v1$ in G.

Proof:

- Suppose there is a path $v2 \sim v1$ in G.
- Then there are paths $v1^{\sim}u1^{\sim}u2^{\sim}v2$ in G.
- Therefore, v1 and v2 are reachable from each other, so they are not in separate SCC's.



Transpose of a Directed Graph

- G^T = transpose of directed G.
 - $-G^{T} = (V, E^{T}), E^{T} = \{(u, v) : (v, u) \in E\}.$
 - $-G^{T}$ is G with all edges reversed.
- Can create G^T in $\Theta(V + E)$ time if using adjacency lists.
- G and G^T have the *same* SCC's. (u and v are reachable from each other in G if and only if reachable from each other in G^T .)

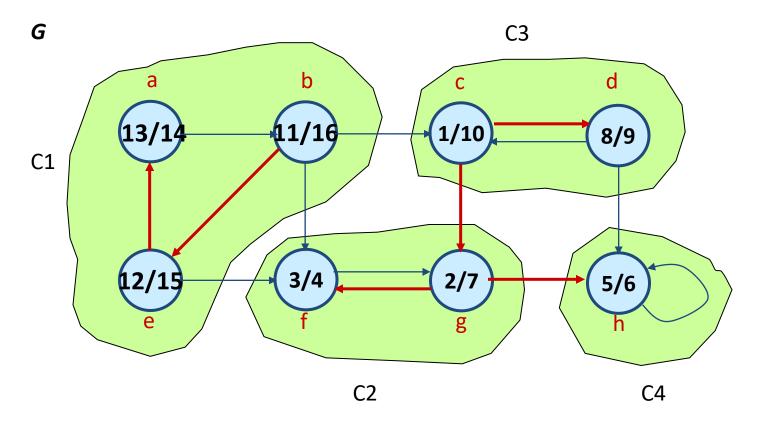
Algorithm to determine SCCs

SCC(G)

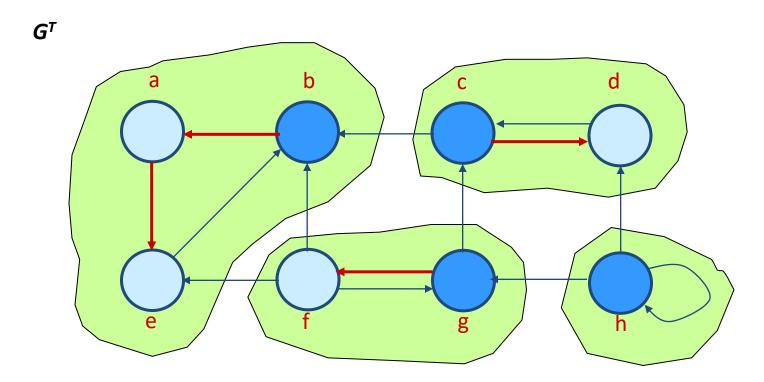
- 1. call DFS(G) to compute finishing times f[u] for all u
- 2. compute G^T
- 3. call DFS(G^T), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: $\Theta(V + E)$.

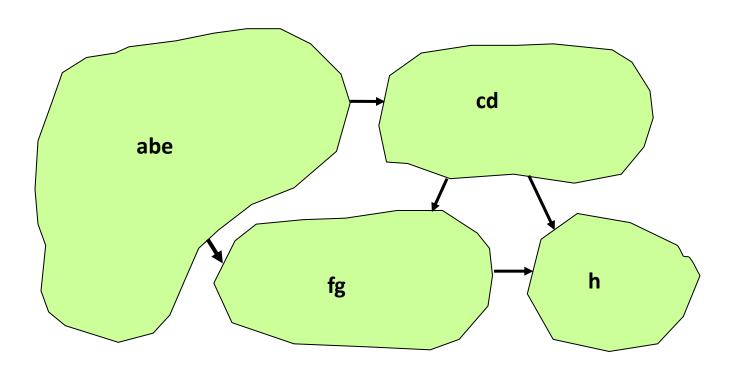
Example



Example



Example



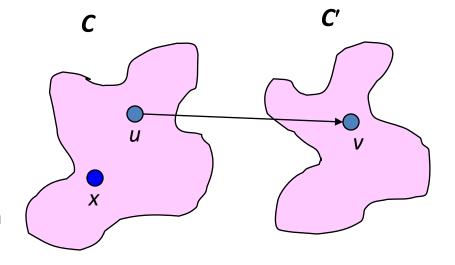
SCCs and DFS finishing times

Lemma 22.14

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then f(C) > f(C').

Proof:

- Case 1: d(C) < d(C')
 - Let x be the first vertex discovered in C.
 - At time d[x], all vertices in C and C' are white. Thus, there exist paths of white vertices from x to all vertices in C and C'.
 - By the white-path theorem, all vertices in C and C' are descendants of x in depthfirst tree.
 - By the parenthesis theorem, f[x] = f(C)> f(C').



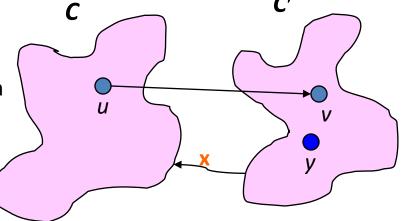
SCCs and DFS finishing times

Lemma 22.14

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then f(C) > f(C').

Proof:

- Case 2: d(C) > d(C')
 - Let y be the first vertex discovered in C'.
 - At time d[y], all vertices in C' are white and there is a white path from y to each vertex in $C' \Rightarrow$ all vertices in C' become descendants of y. Again, f[y] = f(C').
 - At time d[y], all vertices in C are also white.
 - By earlier lemma, since there is an edge (u, v), we cannot have a path from C' to C.
 - So no vertex in C is reachable from y.
 - Therefore, at time f [y], all vertices in C are still white.
 - Therefore, for all $w \in C$, f[w] > f[y], which implies that f(C) > f(C').



Correctness of SCC

- When we do the second DFS, on G^T , start with SCC C such that f(C) is maximum.
 - The second DFS starts from some $x \in C$, and it visits all vertices in C.
 - Corollary 22.15 says that since f(C) > f(C') for all $C \neq C'$, there are no edges from C to C' in G^T .
 - Therefore, DFS will visit only vertices in C.
 - Which means that the depth-first tree rooted at x contains exactly the vertices of C.

Correctness of SCC

- The next root chosen in the second DFS is in SCC C' such that f (C') is maximum over all SCC's other than C.
 - DFS visits all vertices in C', but the only edges out of C' go to C, which we've already visited.
 - Therefore, the only tree edges will be to vertices in C'.
- We can continue the process.
- Each time we choose a root for the second DFS, it can reach only
 - vertices in its SCC—get tree edges to these,
 - vertices in SCC's already visited in second DFS—get no tree edges to these.