
LOOP AND BITWISE OPERATORS

FLOW CONTROL: LOOP

 Sometime we need to repeat a set of action for

several times

 For example you want to print „Happy birthday”

for 10 times.

 We can do it using printf(“Happy birthday”) for

10 times.

 Is there exist any smarter solution?

 Loop is the smart solution for above problem

 We can control the number of repetition

 There are different constructs for looping in C

 while, do..while, for

FLOW CONTROL – WHILE

 while (expr)

 stmt1

 While the expression expr is TRUE execute
statement stmt1. The while loop continues until expr
becomes false. When expr becomes false the
statement following stmt1 is executed.

FLOWCHART OF WHILE LOOP

Take an input N from user, write a program to

print the values 1 to N.

#include<stdio.h>

int main(){

int N,i=1;

printf(“Enter value of N\n”);

scanf(“%d”,&N);

while(i<=N)

printf(“%d\n”,i++)

return 0;

}

 Program to find factorial of a number

#include <stdio.h>

int main() {

int number; long long factorial;

printf("Enter an integer: ");

scanf("%d",&number);

factorial = 1;

while (number > 0) {

factorial *= number--;

}

printf("Factorial= %lld", factorial);

return 0; }

ASSIGNMENT USING WHILE

 Write a C program that accepts n (read from

keyboard) real numbers from the keyboard and

prints out the difference of the maximum and

minimum values of these numbers.

 Find the value of following series with accuracy

up to 4 decimal places.

 cos(x) = 1 - x^2/2! + x^4/4! -x^6/6! + ...

FLOW CONTROL – DO .. WHILE

 do

 stmt1

 while (expr)

 While the expression expr is TRUE (nonzero)
execute statement stmt1. The while loop
continues until expr becomes false.

 What is the difference of the do .. while loop with
that of the while loop?

FLOWCHART DO-WHILE LOOP

 Program to add numbers until user enters zero

#include <stdio.h>

int main() {

double number, sum = 0;

do {

printf("Enter a number: ");

scanf("%lf", &number);

sum += number;

} while(number != 0.0);

printf("Sum = %lf",sum);

return 0; }

ASSIGNMENT USING DO-WHILE

 Write a C program that accepts n (read from

keyboard) real numbers from the keyboard and

prints out the difference of the maximum and

minimum values of these numbers.

 Find the value of following series with accuracy

up to 4 decimal places.

 ln(1+x) = x - x^2/2 + x^3/3 -x^4/4 +

FLOW CONTROL – FOR

 Syntax: for (expr1; expr2; expr3)

 stmt1

 stmt2

 Any or all expression statements (exprs) can
be missing.

FLOWCHART FOR LOOP

Program to print all odd numbers
between 1 and N

 for(i = 1; i <= N; i += 2)

 printf(“%d”, i);

 Program to calculate the sum of first n natural
numbers

#include <stdio.h>

int main() {

int num, count, sum = 0;

printf("Enter a positive integer: ");

scanf("%d", &num);

for(count = 1; count <= num; ++count) {

sum += count;

}

printf("Sum = %d", sum);

return 0; }

ASSIGNMENT USING DO-WHILE

 Read an input integer x from the keyboard and

print the number of digits in x and the sum of all

digits of that integer x. For example if the integer

x is 456378 then your output should be x is a 6

digit number and sum of all digits in x is 33.

 Find the factorial of n

BREAK STATEMENT

 break statement causes to exit from the innermost

enclosing loop or switch statement.

 Example:

 while (1) {

 scanf(“%f”, &input);

 if (input < 0.0)

 break; }

FLOWCHART FOR BREAK

PROGRAM TO CALCULATE THE SUM OF

MAXIMUM OF 10 NUMBERS ; CALCULATES SUM

UNTIL USER ENTERS POSITIVE NUMBER

include <stdio.h>

int main() {

int i; double number, sum = 0.0;

for(i=1; i <= 10; ++i) {

printf("Enter a n%d: ",i);

scanf("%lf",&number);

if(number < 0.0) { break; }

sum += number;

}

printf("Sum = %.2lf",sum);

return 0; }

CONTINUE STATEMENT

while (1) {

 scanf(“%f”, &input);

 if (input < 0.0) {

 printf(“Positive value only\n”);

 continue; }

 printf(“%f\n”,input);

 }

CONTINUE STATEMENT

May occur only inside for, while

and do loops.
 Causes to skip the remaining statement of the loop

and continues with the next iteration of the loop.

FLOWCHART FOR CONTINUE

PROGRAM TO CALCULATE SUM OF MAXIMUM OF

10 NUMBERS ;NEGATIVE NUMBERS ARE

SKIPPED FROM CALCULATION

include <stdio.h>

int main() {

int i; double number, sum = 0.0;

for(i=1; i <= 10; ++i) {
printf("Enter a n%d: ",i);

scanf("%lf",&number);

if(number < 0.0) {

continue;

}

sum += number;

}

printf("Sum = %.2lf",sum);

return 0;

}

FLOW CONTROL - GOTO

 Causes unconditional jump to a labeled

statement.

 Syntax: label: Statement

 begin: for (i = 1; i <= 10; i++) {

 if (i == 5)

 goto begin;

 printf(“%d”, i); }

26

WHAT IS BITWISE STRUCTURE?

 The smallest type is of 8 bits (char).

 Sometimes we need only a single bit.

 For instance, storing the status of the pass/fail in 8

subjects:

 We need to define an array of at least 8 chars.

If a student passed in 3rd subject then corresponding array

position has to be set

 Total memory requires for storing is 64 bits.

27

WHAT IS BITWISE STRUCTURE?

 It is better to define only 8 bits since a bit can also store

the values 0 or 1.

 But the problem is that there is no C type which is

1 bit long (char is the longer with 1 byte).

 Solution: define a char (8 bits) but refer to each bit

separately.

 Bitwise operators, introduced by the C language, provide

one of its more powerful tools for using and manipulating

memory. They give the language the real power of a “low-

level language”.

28

WHAT IS BITWISE STRUCTURE?

 A single bit cannot be accessed directly,
since it has no address of its own.

 The language introduces the bitwise operators, which
help in manipulating a single bit of a byte.

 bitwise operators may be used on integral types only
(unsigned types are preferable).

29

BITWISE OPERATORS

& bitwise AND

| bitwise OR

^ bitwise XOR

~ 1’s compliment

<< Shift left

>> Shift right

30

BITWISE OPERATORS – TRUTH TABLE

~a a^b

a|b

a&b b a

1 0 0 0 0 0

1 1 1 0 1 0

0 1 1 0 0 1

0 0 1 1 1 1

31

BITWISE OPERATORS - EXAMPLES

11010011

&

10001100

10000000

11010011

|

10001100

11011111

11010011

^

10001100

01011111

~11010011

 00101100

11010011>>3

 00011010

11010011<<3

 10011000

32

SETTING BITS

How can we set a bit on or off?

Manipulations on bits are enabled by

mask and bitwise operators.

Bitwise OR of anything with 1 results in

1.

Bitwise AND of anything with 0 results

in 0.

33

SETTING BITS

For instance, how can we set the bit no

#3?

char Subjects = 0x0;

char mask = 0x1;

mask <<= 2;

Subjects |= mask;

Subjects: 00000000

mask: 00000001

mask: 00000100

Subjects: 00000100

34

TURN OFF BITS

For instance, how can we turn off the bit

no #3?

char Subjects = 0x27;

char mask = 0x1;

mask <<= 2;

Mask = ~mask;

Subjects &= mask;

Subjects: 00100111

mask: 00000001

mask: 00000100

Subjects: 00100011

mask: 11111011

04ספטמבר Copyright Meir Kalech 35

GETTING BITS

How can we know if a bit is on or

off?

Manipulations on bits are enabled

by mask and bitwise operators.

Bitwise AND of anything with 1

results in the same value.

36

GETTING BITS

For instance, how can we check if a

student passed in subject #3?

char Subjects = 0x27;

char mask = 0x1;

mask <<= 2;

if(Subjects & mask)

 puts(“Passed”);

else

 puts(“Failed”);

Subjects: 00100111

mask: 00000001

mask: 00000100

Subjects & mask: 00000100

04ספטמבר Copyright Meir Kalech 37

BITWISE - EXAMPLE

Suppose we have 8 Subjects:

 A student passed in certain subjects.

 We like to know which subjects student passed.

void main()

{

unsigned char Subjects = 0;

set_Subjects

print_status

}

#include<stdio.h>

int main(void){

unsigned char Subjects=0;

int j, answer;

unsigned char mask;

for(j=0,mask=1; j<8; j++,mask<<=1)

{

 answer=0;

 printf(“Enter non-zero if you passed or zero if you failed in
subject #%d\n", j+1);

 scanf("%d“,&answer);

 if(answer)

 Subjects |= mask;

}

printf(“Entered status of pass-fail is %d\n",Subjects);

for(j=0,mask=1; j<8; j++,mask<<=1)

 {

 if(Subjects & mask)

 printf("You passed in #%d Subject\n",j+1);

 else

 printf ("You failed in #%d Subject\n",j+1);

 }

return 0;

}

ASSIGNMENT

 Let's say students have 8 courses in a semester and
subjects are 1st, 2nd,...,8th. Student's pass/fail status
on all subjects can be understood from a code say a
student who passed in all subjects except 5th will get
the binary code 11101111 or it's corresponding integer
representation 239. So score can vary in the range of
0 to 255. Read scores of two students say Ram and
Varun and compute

 Number of subjects Ram passed

 Number of subjects where at least one of them
passed

 Number of subjects in which only Ram Passed but
Varun Failed

 Number of subjects in which both passed

 Number of subjects in which their passing status
differ

 #include<stdio.h>

int main(void){

int ram_score;

unsigned char ram_score_bin=0, mask;

int j,number_of_pass = 0;

printf("Enter marks of Ram \n");

scanf("%d",&ram_score);

for(j=0,mask=1;j<8;j++,mask<<=1){

 if(ram_score%2)

 ram_score_bin |= mask;

 ram_score=ram_score/2;

}

for(j=0,mask=1; j<8; j++,mask<<=1)

 {

 if(ram_score_bin & mask)

 number_of_pass ++;

 }

printf("Number of subjects Ram passed is

%d\n",number_of_pass);

return 0;

}

#include<stdio.h>

int main(void){

int ram_score,varun_score;

unsigned char ram_score_bin=0,
varun_score_bin,at_least,mask;

int j,number_of_pass = 0;

printf("Enter marks of Ram and Varun\n");

scanf("%d%d",&ram_score,&varun_score);

for(j=0,mask=1;j<8;j++,mask<<=1){

 if(ram_score%2)

 ram_score_bin |= mask;

 if(varun_score%2)

 varun_score_bin |= mask;

 ram_score=ram_score/2;

 varun_score=varun_score/2;

}

at_least = ram_score_bin | varun_score_bin;

for(j=0,mask=1; j<8; j++,mask<<=1)

 {

 if(at_least & mask)

 number_of_pass ++;

 }

printf("Number of subjects at least one passed is
%d\n",number_of_pass);

return 0;

}

#include<stdio.h>

int main(void){

int ram_score,varun_score;

unsigned char ram_score_bin=0,
varun_score_bin,only_ram,mask;

int j,number_of_pass = 0;

printf("Enter marks of Ram and Varun\n");

scanf("%d%d",&ram_score,&varun_score);

printf("Marks of ram and varun are %d and
%d\n",ram_score,varun_score);

for(j=0,mask=1;j<8;j++,mask<<=1){

 if(ram_score%2)

 ram_score_bin |= mask;

 if(varun_score%2)

 varun_score_bin |= mask;

 ram_score=ram_score/2;

 varun_score=varun_score/2;

}

for(j=0,mask=1; j<8; j++,mask<<=1)

 {

 if((ram_score_bin & mask)&& (!(varun_score_bin
& mask)))

 number_of_pass ++;

 }

printf("Number of subjects where Ram passed but
not Varun is %d\n",number_of_pass);

return 0;

}

