

OPERATOR PRECEDENCE AND

ASSOCIATIVITY

 Operator precedence determines which operator

is performed first in an expression with more

than one operators with different precedence.

 For example

 10 + 20 * 30 is calculated as 10 + (20 * 30) and not as

(10 + 20) * 30.

CONT..

 Associativity is used when two operators of same

precedence appear in an expression. Associativity

can be either Left to Right or Right to Left.

 For example „*‟ and „/‟ have same precedence and

their associativity is Left to Right, so the

expression “100 / 10 * 10” is treated as “(100 / 10)

* 10”.

 All operators with same precedence have

same associativity

 chaining of comparison operators is not

allowed in C

 In Python, expression like “c > b > a” is treated as “a

> b and b > c”, but this type of chaining doesn‟t

happen in C

OPERATORS (1)

Operator Precedence and Associativity

Operator Associativity

() ++(postfix) --(postfix) left to right

+(unary) -(unary) ++(prefix) --(prefix) right to left

* / % left to right

+ - left to right

OPERATORS EXAMPLE

Declarations and Initializations

int a = 1, b = 2, c = 3, d = 4;

Expression Value

a * b / c

a * b % c + 1

++ a * b – c --

7 - - b * ++ d

0

3

1

17

 a*b/c=(a*b)/c =0

 a*b%c+1=((a*b)%c)+1 = 3

 ++a*b-c--=((++a)*b)-(c--)=??

 7 - - b * ++ d=7-((-b)*(++d))=7-(-10)=17

ASSIGNMENT OPERATORS

 C treats = as an operator

 variable = Right_Hand_Side

 Other assignment operators

 variable op (expression)

 +=, -=, *=, /=, %=, >>=, <<=, &=, ^= and |=

OPERATORS (2)

Operator Precedence and Associativity

Operator Associativity

() ++(postfix) --(postfix) left to right

+(unary) -(unary) ++(prefix) --(prefix) right to left

* / % left to right

+ - left to right

= += -= *= /= etc right to left

EXAMPLE

 int x,y,z=5;

 x=y=z

 int x,y,z=5;

 x=z=y

RELATIONAL OPERATORS AND

EXPRESSIONS

 Relational operators are binary.

 Takes two expressions as operands and yields

either the int value 1 (TRUE) or 0 (FALSE)

 The relational operators are

 < (less than), > (greater than)

 <= (less than or equal to), >= (greater than or equal to)

 Same precedence, left to right associativity

OPERATORS (3)

Operator Precedence and Associativity

Operator Associativity

() ++(postfix) --(postfix) left to right

+(unary) -(unary) ++(prefix) --(prefix) right to left

* / % left to right

+ - left to right

< > <= >= left to right

= += -= *= /= etc right to left

RELATIONAL EXPRESSIONS EXAMPLE

 a < 3, a < b, a < c

 a – b < 0

Values of relational expressions

a - b a < b a > b a <= b a >= b

Positive 0 1 0 1

Zero 0 0 1 1

Negative 1 0 1 0

EQUALITY OPERATORS AND EXPRESSIONS

 == and !=

 Lower precedence than relational operators and

left to right associativity

 Binary operators

 Yield either 1 (TRUE) or 0 (FALSE).

 What is the output of this equality expression?

 i + j + k == -2 * -k where i = 1, j = 2, k = 3;

OPERATORS (4)

Operator Precedence and Associativity

Operator Associativity

() ++(postfix) --(postfix) left to right

+(unary) -(unary) ++(prefix) --(prefix) right to left

* / % left to right

+ - left to right

< > <= >= left to right

== != left to right

= += -= *= /= etc right to left

LOGICAL OPERATORS AND EXPRESSIONS

 ! (not) is unary, && (and) and || (or) are binary

 && has higher precedence than ||.

 ! has same precedence as other unary operators.

 Semantics of the ! operator

expr !expr

Zero 1

Non-zero 0

SEMANTICS OF && AND || OPERATOR

expr1 expr2 expr1

&&

expr2

expr1

||

expr2

Zero Zero 0 0

Zero Non-zero 0 1

Non-zero Zero 0 1

Non-zero Non-zero 1 1

OPERATORS (5)

Operator Precedence and Associativity

Operator Associativity

() ++(postfix) --(postfix) left to right

+(unary) -(unary) ++(prefix) --(prefix) ! right to left

* / % left to right

+ - left to right

< > <= >= left to right

== != left to right

&& left to right

|| left to right

= += -= *= /= etc right to left

EXAMPLES OF LOGICAL OPERATORS

 char c = „B‟; int i = 3, j = 3, k = 3;

 double x = 0.0, y = 2.3;

Expression Value

i && j && k

x || i && j – 3

i < j || x < y

c – 1 == „A‟ || c + 1 ==

„Z‟

0

1

1

1

COMMA OPERATOR

 Lowest Precedence, Binary operator

 Syntax: expr1, expr2

 j=10;

 for(i = 1; i <= N; i++)

 j--;

 can be re-written as

 for(i = 1, j = 10; i <= N; i++, j--)

EXAMPLES

 int a=1, b=2, c=3, i=0; // comma acts as separator in this line, not
as an operator ... a=1, b=2, c=3, i=0

 i = (a, b); // stores b into i ... a=1, b=2, c=3, i=2

 i = a, b; // stores a into i. Equivalent to (i = a), b; ... a=1, b=2, c=3,
i=1

 i = (a += 2, a + b); // increases a by 2, then stores a+b = 3+2 into i
... a=3, b=2, c=3, i=5

 i = a += 2, a + b; // increases a by 2, then stores a into i.

 Equivalent to (i = (a += 2)), a + b; ... a=5, b=2, c=3, i=5

 i = a, b, c; // stores a into i ... a=5, b=2, c=3, i=5

 i = (a, b, c); // stores c into i ... a=5, b=2, c=3, i=3

OPERATORS (6)

Operator Precedence and Associativity

Operator Associativity

() ++(postfix) --(postfix) left to right

+(unary) -(unary) ++(prefix) --(prefix) ! right to left

* / % left to right

+ - left to right

< > <= >= left to right

== != left to right

&& left to right

|| left to right

= += -= *= /= etc right to left

, (comma operator) left to right

PUNCTUATORS

 A symbol that has a semantic significance but does not

specify an operation to be performed.

 “{“, “;”, “(“ and “)” are punctuators.

 Both operators and punctuators are collected by the

compiler as tokens.

