OPERATOR PRECEDENCE AND
ASSOCIATIVITY

Operator precedence determines which operator
1s performed first in an expression with more
than one operators with different precedence.

For example

10 + 20 * 30 1s calculated as 10 + (20 * 30) and not as
(10 + 20) * 30.

CONT..

Associativity 1s used when two operators of same
precedence appear 1n an expression. Associativity
can be either Left to Right or Right to Left.

For example “*’ and /" have same precedence and
their associativity is Left to Right, so the

expression “100/10 * 10” 1s treated as “(100 / 10)
*107.

All operators with same precedence have
same associativity

chaining of comparison operators is not
allowed in C

In Python, expression like “c > b > a” is treated as “a

> Db and b > ¢”, but this type of chaining doesn’t
happen in C

OPERATORS (1)

Operator Precedence and Associativity

Operator Associativity
§) ++(postfix) --(postfix) left to right
+(unary) -(unary) ++(prefix) --(prefix) right to left
* / % left to right

+ - left to right

OPERATORS EXAMPLE

Declarations and Initializations
mta=1,b=2,c=3,d=4;
Expression

a*b/c

a*b%c+1

++a*b-c--

7T--b*++d

Value

17

a*b/c=(a*b)/c =0

a*b%c+1=((a*b)%c)+1 =3
++a*b-c--=((++a)*b)-(c--)="??
7--b*++d=7-((-b)*(++d))=7-(-10)=17

ASSIGNMENT OPERATORS

C treats = as an operator

variable = Right_ Hand_Side

Other assignment operators
variable op (expression)

— —_ e — — — —
+_7 -) /_9 %_9 >>_9 <<_9

b

=, "= and |=

OPERATORS (2)

Operator Precedence and Associativity

Operator Associativity
§) ++(postfix) --(postfix) left to right
+(unary) -(unary) ++(prefix) --(prefix) right to left
* / % left to right
+ - left to right

= += .= *= /= etc right to left

EXAMPLE

o 1nt x,y,z=b;
0 X=y=z
o 1nt x,y,z=5;
O X=z=y

RELATIONAL OPERATORS AND
EXPRESSIONS

Relational operators are binary.

Takes two expressions as operands and yields
either the int value 1 (TRUE) or 0 (FALSE)

The relational operators are
< (less than), > (greater than)

<= (less than or equal to), >= (greater than or equal to)
Same precedence, left to right associativity

OPERATORS (3)

Operator Precedence and Associativity

Operator Associativity
0 ++(postfix) --(postfix) left to right
+(unary) -(unary) ++(prefix) --(prefix) right to left
* / % left to right
+ - left to right
< > <= >= left to right

= 4= .= *= [= etc right to left

RELATIONAL EXPRESSIONS EXAMPLE

a<3,a<b,a<c
a—b<0

Values of relational expressions

a-b a<b a>b a<=b a>=b
Positive 0 1 0 1

Z.ero 0 0 1 1
Negative 1 0 1 0

EQUALITY OPERATORS AND EXPRESSIONS

== and !=

Lower precedence than relational operators and
left to right associativity

Binary operators

Yield either 1 (TRUE) or 0 (FALSE).

What 1s the output of this equality expression?
i+j+k==-2*% .k wherei=1,j=2 k=3;

OPERATORS (4)

Operator Precedence and Associativity

Operator Associativity
0 ++(postfix) --(postfix) left to right
+(unary) -(unary) ++(prefix) --(prefix) right to left
* / % left to right
+ - left to right
< > <= >= left to right

— !: left to I'lght
= 4= .= *= [= etc right to left

LOGICAL OPERATORS AND EXPRESSIONS

' (not) 1s unary, && (and) and | | (or) are binary
& & has higher precedence than | |.
 has same precedence as other unary operators.

Semantics of the ! operator

Z.ero 1
Non-zero 0

SEMANTICS OF && AND | | OPERATOR

exprl expr2

Z.ero Zero 0 0
Z.ero Non-zero 0 1
Non-zero Z.ero 0 1
Non-zero Non-zero 1 1

OPERATORS (5)

Operator Precedence and Associativity

Operator Associativity
0 ++(postfix) --(postfix) left to right
+(unary) -(unary) ++(prefix) --(prefix)! right to left

* / % left to right

+ - left to right

< > <= >= left to right
== I= left to right
&& left to right

| left to righ‘

= 4= .= *= [= etc right to left

EXAMPLES OF LOGICAL OPERATORS

charc=‘B’;int1=3,3=3,k =3;
double x = 0.0, y = 2.3;

1 &&] && k 1
X ||1&&7]—3 0

1<j || x<y

c—1=="A’ | | c+ 1 ==
A

COMMA OPERATOR

Lowest Precedence, Binary operator
Syntax: exprl, expr2
1=10;
forG =1;1<=N; 1t++)

1+
can be re-written as
forG=1,)=10;1<= N; 1++, J--)

EXAMPLES

int a=1, b=2, ¢c=3, 1=0; // comma acts as separator in this line, not

as an operator ... a=I1, b=2, c=3, i=0

1= (a, b); // stores b into 1 ... a=1, b=2, c=3, 1=2

1=a, b; // stores a into i. Equivalent to (1 =a), b, ... a=1, b=2, c=3,

1=1

1=(a+=2,a+Db); // increases a by 2, then stores a+b = 3+2 into i

... a=3, b=2, c=3, 1=5

1=a+=2,a+b; // increases a by 2, then stores a into 1.
Equivalent to (1 =(a +=2)), a + b; ... a=5, b=2, c=3, i=5

1=a, b, c; // stores a into i ... a=5, b=2, c=3, i1=5

1=1(a, b, c); // stores cinto i ... a=5, b=2, c=3, i=3

OPERATORS (6)

Operator Precedence and Associativity

Operator Associativity
0 ++(postfix) --(postfix) left to right
+(unary) -(unary) ++(prefix) --(prefix) ! right to left
* / % left to right
+ - left to right
< > <= >= left to right
== I= left to right
&& left to right
| | left to right
= += -= *= /= etc right to left

, (comma operator) left to rigl’

PUNCTUATORS

A symbol that has a semantic significance but does not
specify an operation to be performed.

“{“ €C.2 &«

, 47 4% and)7 are punctuators.

Both operators and punctuators are collected by the
compiler as tokens.

