
YOUR FIRST C PROGRAM

vi hello.c and then type out (in insert mode) the

following, to print “Hello World”

1. #include<stdio.h>

2. int main(void)

3. {

4. printf(“Hello World\n”);

5. return 0;

6. }

REVISIT “HELLO WORLD” PROGRAM

1. #include<stdio.h>

2. int main(void)

3. {

4. printf(“Hello World\n”);

5. return 0;

6. }

REVISIT “HELLO WORLD” PROGRAM

The first line is

#include<stdio.h>
 # is a pre-processing directive

 #include tells the pre-processor to include the

header file stdio.h into the program

 The angle brackets tells the preprocessor that

the header file stdio.h will be available in the

standard directory where all header files are

available.

REVISIT “HELLO WORLD” PROGRAM

1. #include<stdio.h>

2. int main(void)

3. {

4. printf(“Hello World\n”);

5. return 0;

6. }

REVISIT “HELLO WORLD” PROGRAM

The second line is int main(void)

 main() is the name of a function. Execution of all C

programs start with the function main.

 The word int and void are keywords

 int tells the compiler that this function returns an
integer value.

 void tells the compiler that this function does not take
any argument.

REVISIT “HELLO WORLD” PROGRAM

1. #include<stdio.h>

2. int main(void)

3. {

4. printf(“Hello World\n”);

5. return 0;

6. }

REVISIT “HELLO WORLD” PROGRAM

The third and last line are

braces { }

 braces are used to surround the body of a

function

 braces are used to group statements together.

 The right and left braces should match.

REVISIT “HELLO WORLD” PROGRAM

1. #include<stdio.h>

2. int main(void)

3. {

4. printf(“Hello World\n”);

5. return 0;

6. }

REVISIT “HELLO WORLD” PROGRAM

The fourth line is printf(“Hello
World\n”)

 printf is a standard library function.

 Information about printf is included in the header file
stdio.h

 The string Hello World is an argument to printf.

 \n represent a single character called newline. It is
used to move the cursor to the next line

REVISIT “HELLO WORLD” PROGRAM

1. #include<stdio.h>

2. int main(void)

3. {

4. printf(“Hello World\n”);

5. return 0;

6. }

REVISIT “HELLO WORLD” PROGRAM

The fifth line is return 0

 It causes the integer value 0 to be returned to the

operating system.

 The returned value may or may not be used.

COMPILE & RUN A C PROGRAM

 gcc hello.c –o hello

 ./hello

 Compiling Options

 gcc –help

 [sourav@gaya]$ hello

 Output: -bash: hello: command not found

 [sourav@gaya]$ PATH=$PATH:.

 [sourav@gaya]$ hello

Output: Hello World

CONVERT MILES, YARDS TO KMS

1. #include <stdio.h>

2. /* Convert miles, yards to kms */

3. int main(void)

4. {

5. int miles, yards; float kms;

6. miles = 26; yards = 385;

7. kms = 1.609 * (miles + yards / 1760.0);

8. printf(“\nThe distance in kms is %f.\n\n”,

 kms);

9. return 0;

10. }

CONVERT MILES, YARDS TO KMS

1. #include <stdio.h>

2. /* Convert miles, yards to kms */

3. int main(void)

4. {

5. int miles, yards; float kms;

6. miles = 26; yards = 385;

7. kms = 1.609 * (miles + yards / 1760.0);

8. printf(“\nThe distance in kms is %f.\n\n”,

 kms);

9. return 0;

10. }

COMMENTS

 Anything written between /* … */ is a comment

and is ignored by the compiler

 Lines starting with // are also comments and

ignored by the compiler

CONVERT MILES, YARDS TO KMS

1. #include <stdio.h>

2. /* Convert miles, yards to kms */

3. int main(void)

4. {

5. int miles, yards; float kms;

6. miles = 26; yards = 385;

7. kms = 1.609 * (miles + yards / 1760.0);

8. printf(“\nThe distance in kms is %f.\n\n”,

 kms);

9. return 0;

10. }

VARIABLES DECLARATION STMT.

 Line 5: int miles, yards;

 is a declaration statement

 miles and yards are called variables.

 The keyword int tells the compiler that these

 variables are of type integer and take on

 integer values.

 Line 5 float kms;

 is again a declarative statement

 Tells the compiler that variable kms is of

type floating point.

CONVERT MILES, YARDS TO KMS

1. #include <stdio.h>

2. /* Convert miles, yards to kms */

3. int main(void)

4. {

5. int miles, yards; float kms;

6. miles = 26; yards = 385;

7. kms = 1.609 * (miles + yards / 1760.0);

8. printf(“\nThe distance in kms is %f.\n\n”,

 kms);

9. return 0;

10. }

ASSIGNMENT STATEMENTS

Line 6: miles = 26; yards = 385;

 are assignment statements

 = is an assignment operator. Assigns the value

26 to variable miles and 385 to variable yards.

 Place spaces on either side of a binary

 operator. This makes the program more

readable.

CONVERT MILES, YARDS TO KMS

1. #include <stdio.h>

2. /* Convert miles, yards to kms */

3. int main(void)

4. {

5. int miles, yards; float kms;

6. miles = 26; yards = 385;

7. kms = 1.609 * (miles + yards / 1760.0);

8. printf(“\nThe distance in kms is %f.\n\n”,

 kms);

9. return 0;

10. }

EXPRESSIONS

The seventh line:

kms = 1.609 * (miles + yards/1760.0);

 is also an assignment statement.

 the value of the expression on the right

 hand side is computed and assigned to the

 floating type variable kms.

CONVERT MILES, YARDS TO KMS

1. #include <stdio.h>

2. /* Convert miles, yards to kms */

3. int main(void)

4. {

5. int miles, yards; float kms;

6. miles = 26; yards = 385;

7. kms = 1.609 * (miles + yards / 1760.0);

8. printf(“\nThe distance in kms is
%f.\n\n”,

 kms);

9. return 0;

10. }

PRINTF

The eighthth line: printf(“\nThe distance in kms is

%f.\n\n”, kms);

 printf() can take variable number of arguments

 The control string %f is matched with the

variable kms.

 It will print the variable kms as a floating point

number where the format %f occurs.

OUTPUT

 printf(“<control string>”,other argument);

Control String How printed

c as a character

d as a decimal integer

e as a floating-point in scientific

notation

f as a floating-point number

g in e or f format, whichever shorter

s as string

INPUT

Eg: scanf("%d", &integer1);

 Obtains a value from the user

 scanf uses standard input (usually keyboard)

 %d - indicates data should be a decimal integer

 &integer1 - location in memory to store variable

 Change the program to convert miles, yards to

kms. such that the value of miles and yards are

taken as input from the user

CONVERT MILES, YARDS TO KMS

1. #include <stdio.h>

2. /* Convert miles, yards to kms */

3. int main(void)

4. {

5. int miles, yards; float kms;

6. printf(“Enter integer value of mile and
yards\n”);

7. scanf(“%d%d”,&miles,&yards);

8. kms = 1.609 * (miles + yards / 1760.0);

9. printf(“\nThe distance in kms is %f.\n\n”,

 kms);

10. return 0;

11. }

SYNTAX AND SEMANTICS

 Syntax refers to the grammar structure and

semantics to the meaning

 A program may be syntactically correct but

semantically wrong.

 Compiler checks for syntax errors.

COMPILATION PROCESS

Source

Code
Tokens

Object

Code

Groups character

into tokens

Translate tokens

into object code

TOKENS

 Syntactic units of the language

 Six kind of tokens

 Keywords

 Identifiers

 Constants

 String constants

 Operators

 Punctuators

KEYWORDS

 Reserved words have a strict meaning

 Cannot be redefined.

 Keywords

 auto double int struct

 break else long switch

 case enum register typedef

 char extern return union

 const float short unsigned

 continue for signed void

 default goto sizeof volatile

 do if static while

 if, else, switch, case, default – Used for

decision control programming structure.

 break – Used with any loop OR switch case.

 int, float, char, double, long – These are the

data types and used during variable declaration.

 for, while, do – types of loop structures in C.

 void – One of the return type.

 goto – Used for redirecting the flow of execution.

 auto, signed, const, extern, register,

unsigned – defines a variable.

 return – This keyword is used for returning a value.

 continue – It is generally used with for, while and
dowhile loops, when compiler encounters this
statement it performs the next iteration of the loop,
skipping rest of the statements of current iteration.

 enum – Set of constants.

 sizeof – It is used to know the size.

 struct, typedef – Both of these keywords used in
structures (Grouping of data types in a single record).

 union – It is a collection of variables, which shares
the same memory location and memory storage.

 volatile - The Volatile Keyword is used for making
volatile objects. Volatile objects can only be altered by
hardware and not a program.

IDENTIFIERS

 Give unique names to objects in a program.

 Composed of sequence of letters, digits and the

special character _

 Letter or _ should be the first character.

 Examples

 k, principal, i123, _id (Allowed)

 not#me, 1iam,-plus (Not allowed)

PROGRAMMING TIP

 Choose name of the identifiers that are

meaningful to enhance readability and

documentation of the program.

36

CONSTANTS

 Integer Constant: Finite strings of decimal digits,

eg. 0, 77, etc

 Floating point constant: 345.0

 Character constants: „a‟, „b‟

 Octal Integer: 0123

 Hexadecimal Integer: 0x123

STRING CONSTANTS

 Sequence of characters enclosed in a pair of

double quotes.

 Example

 “” (Null String)

 “A String Constant”

 “a = b + c”

 “abc” “def” equivalent to “abcdef”

 “The boy said \”Hello\””

