
C-ARRAYS

1/20

ARRAYS
 An array is a collection of elements of the same type that are

referenced by a common name.

 Compared to the basic data type (int, float) it is an
aggregate or derived data type.

 All the elements of an array occupy a set of contiguous
memory locations.

 Why need to use array type?

 Consider the following issue:

 "We have a list of 1000 students' marks of an
integer type. If using the basic data type
(int), we will declare something like the
following…"

 int studMark0, studMark1, ...studMark999

 Can you imagine how long we have to
write the declaration part by using
normal variable declaration?

int main(void)

{

int studMark1, studMark2, studMark3,

studMark4, …, …, studMark998, stuMark999,

studMark1000;

…

…

return 0;

}

 By using an array, we just declare like this,

 int studMark[1000];

 This will reserve 1000 contiguous memory locations for

storing the students’ marks.

 Graphically, this can be depicted as in the following

figure.

 This absolutely has simplified our declaration of the
variables.

 We can use index or subscript to identify each
element or location in the memory.

 Hence, if we have an index of j, studMark[j]
would refer to the jth element in the array of
studMark.

 For example, studMark[0] will refer to the first
element of the array.

 Thus by changing the value of j, we could refer to
any element in the array.

 So, array has simplified our declaration and of
course, manipulation of the data.

 A single or one dimensional array declaration

has the following form,

 array_element_data_type array_name[array_

size];

 Here, array_element_data_type defines the base

type of the array, which is the type of each

element in the array.

 array_name is any valid C identifier name that

obeys the same rule for the identifier naming.

 array_size defines how many elements the array

will hold.

 For example, to declare an array of 30
characters, that construct a people
name, we could declare,

 char cName[30];

 Which can be depicted as follows,

 In this statement, the array character
can store up to 30 characters with the
first character occupying location
cName[0] and the last character
occupying cName[29].

 Note that the index runs from 0 to
29. In C, an index always starts from 0
and ends with array's (size-1).

 So, take note the difference between the
array size and subscript/index terms.

 Examples of the one-dimensional array declarations,

 int xNum[20], yNum[50];

 float fPrice[10], fYield;

 char chLetter[70];

 The first example declares two arrays named xNum and yNum
of type int. Array xNum can store up to 20 integer numbers
while yNum can store up to 50 numbers.

 The second line declares the array fPrice of type float. It
can store up to 10 floating-point values.

 fYield is basic variable which shows array type can be
declared together with basic type provided the type is
similar.

 The third line declares the array chLetter of type char. It
can store a string up to 69 characters.

 Why 69 instead of 70? Remember, a string has a null
terminating character (\0) at the end, so we must reserve for
it.

ARRAY INITIALIZATION

 An array may be initialized at the time of declaration.

 Initialization of an array may take the following form,
 type array_name[size] = {a_list_of_value};

 For example:
 int idNum[7] = {1, 2, 3, 4, 5, 6, 7};

 float fFloatNum[5] = {5.6, 5.7, 5.8, 5.9, 6.1};

 char chVowel[6] = {'a', 'e', 'i', 'o', 'u',

'\0'};

 The first line declares an integer array idNum and it immediately
assigns the values 1, 2, 3, ..., 7 to idNum[0], idNum[1],
idNum[2],..., idNum[6] respectively.

 The second line assigns the values 5.6 to
fFloatNum[0], 5.7 to fFloatNum[1], and so on.

 Similarly the third line assigns the characters 'a' to chVowel[0],
'e' to chVowel[1], and so on. Note again, for characters we must
use the single apostrophe/quote (') to enclose them.

 Also, the last character in chVowel is NULL character ('\0').

 Initialization of an array of type char for holding strings
may take the following form,

 char array_name[size] =
"string_lateral_constant";

 For example, the array chVowel in the previous example
could have been written more compactly as follows,

 char chVowel[6] = "aeiou";

 When the value assigned to a character array is a string
(which must be enclosed in double quotes), the compiler
automatically supplies the NULL character but we still
have to reserve one extra place for the NULL.

 For unsized array (variable sized), we can declare as
follow,

 char chName[] = "Mr. Dracula";

 C compiler automatically creates an array which is big
enough to hold all the initializer.

RETRIEVING ARRAY ELEMENTS

 If you want to retrieve specific element then then

you have to specify not only the array or variable

name but also the index number of interest.

 For example:

 int Arr[]={1,3,5,6,8};

 printf(“%d\t%d\n”,Arr[1],Arr[2]);

 Output: 3 5

ARRAY EXAMPLE

 Take 10 integer input from user and store then in an
array and find the sum of all numbers stored in array.

#include<stdio.h>

int main(){

int i,sum=0,arr[10];

for(i=0;i<10;i++)

scanf(“%d”,&arr[i]);

for(i=0;i<10;i++)

sum+=arr[i];

printf(“Sum of input integers is %d\n”,sum);

return 0;

}

Summarize the response of a survey.

Input: Response of the survey, can be in the range

between 0 and 10. Assume the population size to

be 40.

Output: Frequency of each response.

 #include<stdio.h>

 #define SIZE 40

 #define ANS 11

 int main(void) {

 int response[SIZE];

 int freq[ANS] = {0};

 int i;

 for(i=0; i< SIZE; i++){

 scanf(“%d”,&response[i]);

 ++freq[response[i]];

 }

 for(i=0;i<ANS;i++)

 printf("Frequency of %d is %d\n",i,freq[i]);

 }

ASSIGNMENT

 Read from user ages of all students in class and

save them in an array which can store floating

point and find average, minimum and maximum

age.

 A six faced die is rolled 600 times. Find the

frequency of the occurrence of each face?

 int rand(void): returns a pseudo-random

number in the range of 0 to RAND_MAX.

 RAND_MAX: is a constant whose default value

may vary between implementations but it is

granted to be at least 32767.

 Issue: If we generate a sequence of random

number with rand() function, it will create the

same sequence again and again every time

program runs.

 The srand() function sets the starting point for

producing a series of pseudo-random integers. If

srand() is not called, the rand() seed is set as if

srand(1) were called at program start.

 The pseudo-random number generator should

only be seeded once, before any calls to rand(),

and the start of the program.

 Standard practice is to use the result of a call

to srand(time(0)) as the seed. However, time()

returns a time_t value which vary everytime and

hence the pseudo-random number vary for every

program call.

#include<stdio.h>

int main(){

int i,j,arr[7]={0};

srand(time(0));

for (i=0;i<600;i++){

 j=rand()%6;

 j=j+1;

 arr[j]++;

}

for(i=1;i<=6;i++)

 printf("%d came out for %d times\n",i,arr[i]);

return 0;

}

 [sourav@gaya]$./a.out

1 came out for 113 times

2 came out for 114 times

3 came out for 102 times

4 came out for 86 times

5 came out for 99 times

6 came out for 86 times

ASSIGNMENT

 Store marks obtained by students in an array.

Find if there is more than one student who scored

same marks. Assume minimum marks obtained

is 30 and maximum marks obtained is 85.

#include<stdio.h>

int main(){

int i,j,x,arr[10];

printf("Enter 10 integer number\n");

for(i=0;i<10;i++){

 scanf("%d",&arr[i]);

}

for(i=0;i<9;i++){

 x=arr[i];

 for(j=i+1;j<10;j++){

 if(x==arr[j])

 printf("%d number appeared more than once\n",x);

 }

}

return 0;

}

 [sourav@gaya]$./a.out

Enter 10 integer number

1

2

3

4

5

6

2

4

8

9

2 number appeared more than once

4 number appeared more than once

TWO DIMENSIONAL/2D ARRAYS

 A two dimensional array has two subscripts/indexes.

 The first subscript refers to the row, and the second, to the
column.

 Its declaration has the following form,

 data_type array_name[1st dimension size][2nd dimension

size];

 For examples,

 int xInteger[3][4];

 float matrixNum[20][25];

 The first line declares xInteger as an integer array with 3
rows and 4 columns.

 Second line declares a matrixNum as a floating-point array
with 20 rows and 25 columns.

DOUBLE SCRIPTED ARRAY WITH 3 ROWS AND 4

COLUMNS

 #include <stdio.h>

 int main() {

 int abc[5][4] ={ {0,1,2,3}, {4,5,6,7}, {8,9,10,11},

{12,13,14,15}, {16,17,18,19} };

 for (int i=0; i<=4; i++) {

 printf("%d ",abc[i]);

 }

 return 0;

 }

 Output: 1600101376 1600101392 1600101408

1600101424 1600101440

LIST OF STUDENTS AND THEIR SUBJECT

MARKS

10 23 31 11

20 43 21 21

12 22 30 13

30 31 26 41

13 03 41 15

Students

Marks

Find the average mark scored by each

student?

#include<stdio.h>

#define ROW 5

#define COL 4

int main(void)

{

 int i, j;

 double total;

 int marks[ROW][COL]= { 10, 23, 31, 11, 20, 43, 21, 21,12,
22, 30, 13, 30, 31, 26, 41,13, 03, 41, 15 };

 for(i = 0; i < ROW ; i++)

 {

 total = 0.0;

 for (j=0; j<COL; j++)

 total+=marks[i][j];

 printf("Average of student %d is %f\n", i, total/4.0);

 }

}

INITIALIZATION OF 2D ARRAY

 int disp[2][4] = { {10, 11, 12, 13}, {14, 15, 16, 17} };

 OR

 int disp[2][4] = { 10, 11, 12, 13, 14, 15, 16, 17};

 1st one is recommended.

THINGS THAT YOU MUST CONSIDER WHILE

INITIALIZING A 2D ARRAY

 We already know, when we initialize a normal array (or
you can say one dimensional array) during declaration, we
need not to specify the size of it. However that’s not the
case with 2D array, you must always specify the second
dimension even if you are specifying elements during the
declaration.

 /* Valid declaration*/

 int abc[2][2] = {1, 2, 3 ,4 }

 /* Valid declaration*/

 int abc[][2] = {1, 2, 3 ,4 }

 /* Invalid declaration – you must specify second
dimension*/

 int abc[][] = {1, 2, 3 ,4 }

 /* Invalid because of the same reason mentioned above*/

 int abc[2][] = {1, 2, 3 ,4 }

 For array storing string

 char Name[6][10] = {"Mr. Bean", "Mr. Bush",

"Nicole", "Kidman", "Arnold", "Jodie"};

 Here, we can initialize the array with 6 strings, each with

maximum 9 characters long.

 If depicted in rows and columns it will look something

like the following and can be considered as contiguous

arrangement in the memory.

ASSIGNMENTS

 Print Transpose of a Matrix

 Add Two Matrix Using Multi-dimensional Arrays

 Multiply to Matrix Using Multi-dimensional

Arrays

#include <stdio.h>

void main()

{

static int array[10][10];

int i, j, m, n;

printf("Enter the order of the matrix \n");

scanf("%d %d", &m, &n);

printf("Enter the coefiicients of the matrix\n");

for (i = 0; i < m; ++i){

for (j = 0; j < n; ++j){

scanf("%d", &array[i][j]);

}

}

printf("The given matrix is \n");

for (i = 0; i < m; ++i){

for (j = 0; j < n; ++j){

printf(" %d", array[i][j]);

}

printf("\n");

}

printf("Transpose of matrix is \n");

for (j = 0; j < n; ++j){

for (i = 0; i < m; ++i){

printf(" %d", array[i][j]);

}

printf("\n");

}

}

#include <stdio.h>

int main()

{

int r, c, a[100][100], b[100][100], sum[100][100], i, j;

printf("Enter number of rows (between 1 and 100): ");

scanf("%d", &r);

printf("Enter number of columns (between 1 and 100): ");

scanf("%d", &c);

printf("\nEnter elements of 1st matrix:\n");

for(i=0; i<r; ++i) {

for(j=0; j<c; ++j) {

printf("Enter element a%d%d: ",i+1,j+1);

scanf("%d",&a[i][j]);

}

}

printf("Enter elements of 2nd matrix:\n");

for(i=0; i<r; ++i)
for(j=0; j<c; ++j) {

printf("Enter element a%d%d: ",i+1, j+1);

scanf("%d", &b[i][j]);

}

// Adding Two matrices

for(i=0;i<r;++i)
for(j=0;j<c;++j) {

sum[i][j]=a[i][j]+b[i][j];

}

// Displaying the result

printf("\nSum of two matrix is: \n\n");

for(i=0;i<r;++i)
for(j=0;j<c;++j) {

printf("%d ",sum[i][j]);

if(j==c-1) { printf("\n\n"); }

}

return 0;

}

 #include <stdio.h>

 int main() {

 int a[10][10], b[10][10], result[10][10], r1, c1, r2, c2, i,

j, k;

 printf("Enter rows and column for first matrix: ");

 scanf("%d %d", &r1, &c1);

 printf("Enter rows and column for second matrix: ");

 scanf("%d %d",&r2, &c2);

 while (c1 != r2) {

 printf("Error! Not compatible for multiplication\n");

 }

 printf("\nEnter elements of matrix 1:\n");

 for(i=0; i<r1; ++i)

 for(j=0; j<c1; ++j) {

 printf("Enter elements a%d%d: ",i+1, j+1);

 scanf("%d", &a[i][j]);

 }

 printf("\nEnter elements of matrix 2:\n");

 for(i=0; i<r2; ++i)

 for(j=0; j<c2; ++j) {

 printf("Enter elements b%d%d: ",i+1, j+1);

scanf("%d",&b[i][j]);

 }

 // Initializing all elements of result matrix to 0

 for(i=0; i<r1; ++i)

 for(j=0; j<c2; ++j) {

 result[i][j] = 0;

 }

 // Multiplying matrices a and b and // storing result in result matrix

for(i=0; i<r1; ++i)

 for(j=0; j<c2; ++j)

 for(k=0; k<c1; ++k) {

 result[i][j]+=a[i][k]*b[k][j];

 }

 // Displaying the result

 printf("\nOutput Matrix:\n");

 for(i=0; i<r1; ++i)

 for(j=0; j<c2; ++j) {

 printf("%d ", result[i][j]);

 if(j == c2-1) printf("\n\n");

 }

 return 0;

 }

3D: A 3D ARRAY IS AN ARRAY OF 2D

ARRAYS.

 #include<stdio.h>

 int main(){

 int
i,j,k,x[][2][3]={{{1,2,3},{4,5,6}},{{7,8,9},{10,11,12}}};

 for(i=0;i<2;i++)

 for(j=0;j<2;j++)

 for(k=0;k<3;k++){


printf("x[%d,%d,%d]=%d\n",i,j,k,x[i][j][k]);

 }

 return 0;

 }

