EE381 - Power Systems

S. Sivasubramani

Associate Professor Electrical Engineering Department Indian Institute of Technology Patna www.iitp.ac.in/~siva

Overview

Power Systems

Indian Power Sector - An Overview

Syllabus

Books

Course Mechanics

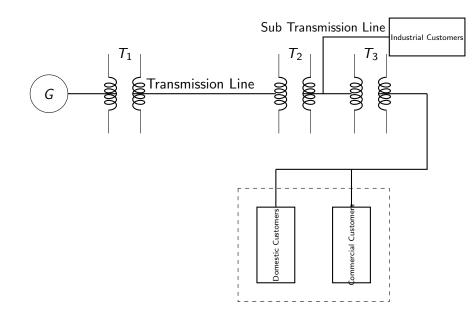
Power Systems

Power systems have the following three components.

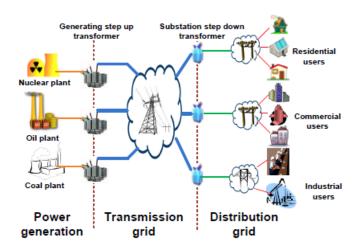
- 1. Generation Source of Energy
- Transmission Transmission of Energy over long distance (close to the speed of light)
- 3. Distribution Consumption of Energy

- Electric Energy is seldom used in its form.
- It is easy to convert from other forms and transmit from sources to loads.
- Power system is the most complex system on earth.
- ▶ In interconnected systems, the frequency has to be the same. In India, it is 50 Hz. In some countries, it is 60 Hz.

Generation


Electric energy is generated at generating stations by converting other forms of energy.

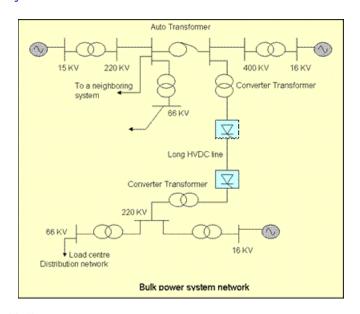
- 1. Conventional
 - Thermal
 - Hydro (Renewable)
 - Nuclear
- 2. Non Conventional (Renewable)
 - Solar
 - Wind
 - Biomass
 - ► Tidal
 - Geo-Thermal
 - Small Hydro
 - Waste


Renewable Energy Sources (RES)

RES have unlimited resources. But they are intermittent.

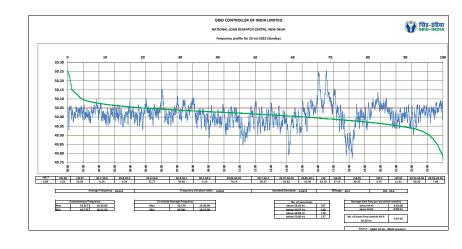
Structure of a Power System

Practical System



Interconnected Systems

Reasons for interconnections


- 1. To improve reliability
- 2. To improve economy
- Several power systems are interconnected to form a grid.
- Several regional grids are interconnected to form a national grid.
- ▶ Interconnections are done at Transmission networks.
- ▶ In interconnected systems, the frequency of generation must be the same.

Power System

Source: NPTEL

Grid Frequency

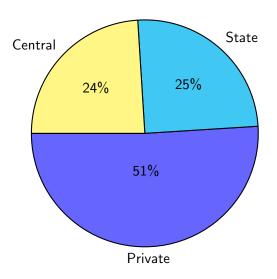
Source: POSOCO

Indian Power Sector - An Overview

- ► India is the third largest producer of electricity (more than 1 TU¹ a year) in the world.
- ▶ India is also the third largest consumer of electricity in the world.
- ► T& D losses are 20 %.
- However, the per capita energy consumption is 1,255 kWh per person per year.
- ▶ It is low compared to many countries. For example, US: 12,154
 & China: 5,885
- ▶ It is even lower than the world average (3,081 kWh).

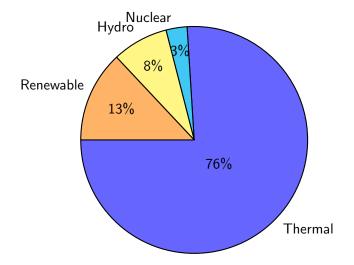
 $^{^{1}1 \}text{ TU} = 1,000,000,000,000 \text{ kWh}$

Installed Capacity

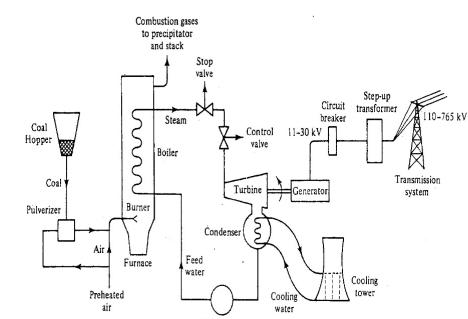

The installed capacity as on 30-06-2023 is **422 GW**.

Туре	Capacity (GW)	% of Total
Thermal ² (Coal, Oil & Gas)	238	56 %
Hydro	47	11 %
Nuclear	7	2 %
RES	130	31 %
Total	422	

Source: Central Electricity Authority, Ministry of Power, Gol


²Coal based power plants account for 90 %

Installed Capacity - Sector Wise


Electricity Generation in May 2023

Total electricity generation in May 2023 was 145.63 BU.

Most of the energy is still from Thermal.

Thermal Power Plant

What We will study in EE381..

We will analyze power systems under

- steady state conditions
- abnormal conditions

In order to analyze, every component of power systems has to be modeled.

- Generator
- Transformer
- ► Transmission line
- Load

Since the steady state model of synchronous machines and transformers have already been studied in EE280, we will only model the following in this course.

► Transmission line

Loads are usually considered as

- 1. Constant power
- 2. Constant impedance
- 3. Constant current

We usually simplify any analysis at the cost of accuracy....

Syllabus

- Basic Concepts
- ► Line Parameter Calculation
- ▶ Performance of Transmission lines
- Per unit calculation
- Network Matrices
- Load Flow
- ► Economic Dispatch
- ► Fault Analysis
- Power System Stability

Books

- ► Text Books
 - W. D. Stevenson, Jr., Elements of Power System Analysis, Tata McGraw-Hill, 4e, 2008.

- Reference Books
 - 1. J. J. Grainger and W. D. Stevenson, Jr., Power System Analysis, Tata McGraw-Hill, 2008.

2. D. P. Kothari and I. J. Nagrath, Modern Power System Analysis, Tata McGraw-Hill, 4e, 2011.

Course Mechanics

- ► Two Quizzes 20 %
- ► Mid Sem 30 %
- ► End Sem 50 %

Course Page

https://www.iitp.ac.in/~siva/2023/ee381/index.html