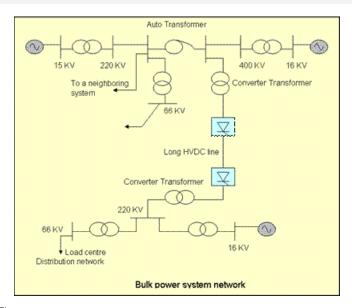
EE549 - Power System Dynamics and Control

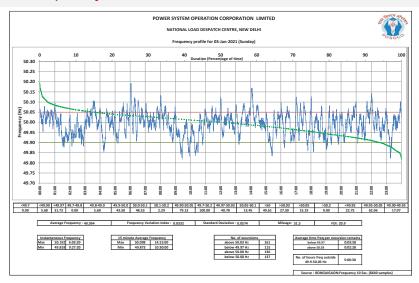
S. Sivasubramani


Associate Professor Electrical Engineering Department Indian Institute of Technology Patna www.iitp.ac.in/~siva

Overview

- Practical Power System
- Operating States
- Course Contents
- 4 Reference Books
- Course Mechanics

A Typical Power System

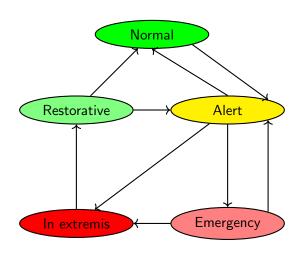

Source: NPTEL

Interconnection

Reasons for interconnections

- To improve reliability
- 2 To improve economy
 - Several power systems are interconnected to form a grid.
 - Several regional grids are interconnected to form a national grid.
- Interconnections are done at Transmission networks.
- In interconnected systems, the frequency of generation must be the same in steady state.

Grid Frequency



Source: POSOCO

Requirements of a Power System

- The system must be able to meet the continually changing load demand.
- The quality of power supply must meet certain minimum standards with regard to the following factors.
 - constancy of frequency
 - constancy of voltage
 - level of reliability
- The system should supply energy at minimum cost and with minimum ecological impacts.

Operating States of a Power System

- Normal State
 - All the system variables are within the normal range.
 - The system is able to withstand a contingency.
- Alert State
 - All the system variables are within the normal range.
 - But the system is not able to withstand any contingency.
 - Preventive actions will bring back the system to the normal state.
- Emergency State
 - System variables are not normal.
 - Emergency control actions may bring the system back to the alert state.

- In extremis State
 - Shut down of a major portion of the system.
 - Load shedding and controlled system separation are done to avoid a complete black out.
- Restorative State
 - Control actions are taken to restore the system.
 - The system will go to Alert or Normal depending on the system conditions

Criteria for Stability

- It is clear that a power system is subjected to a wide variety of disturbances.
- 2 For reliable service, the system must remain intact and be capable of withstanding disturbances.
- Therefore, it is essential that the system be designed and operated so that it sustains disturbances with no loss of load.
- The design of a large interconnected system to ensure stable operation at minimum cost is a very complex problem.
- ② Every major component of a system has an effect on system stability.
- Therefore, their characteristics need to be studied for the understanding and study of power system stability.

Course Contents

What we will study in EE549 are the following.

- Introduction to Power System Stability
- Power system stability by classical model
 - Small disturbances
 - Large disturbances
- Oetailed modelling of the following.
 - Synchronous Generator
 - Exciter, Turbine and Load
 - Transformer
 - Transmission line
- Power system stability using the detailed model
 - Small disturbances
 - 2 Large disturbances
- Voltage Stability

Prerequisites

- Electrical Machines
- Power Systems

Reference Books

- P. Kundur, "Power System Stability and Control", Tata McGraw-Hill, 1994.
- ② P. W. Sauer and M. A. Pai," Power System Dynamics and Stability", Prentice Hall, 1998.

Course Mechanics

The following pattern may be adopted.

- Two Quizzes 40 %
- Mid Sem Exam 20 %
- End Sem Exam 20 %
- ullet Attendance and Sincerity 10 %
- Seminar 10 %