CS5201: Advanced Artificial Intelligence

Planning

Arijit Mondal

Dept of Computer Science and Engineering Indian Institute of Technology Patna www.iitp.ac.in/~arijit/

Problem types

- Search
 - Most fundamental approach
 - Need to define states, moves, statetransiton rules, etc.
- CSP
 - Search through constraint propagation
- Propositional logic
 - Deduction in a single state, no state change

- Probabilistic reasoning
 - Logic augmented with probabilities
- Temporal logic
 - Logic involving time
- Planning
 - Search involving logic
 - Change of states

Real world planning problems

- Autonomous vehicle navigation
- Robotics movement
- Travel planning
- Process control
- Assembly line
- Military operations
- Information gathering
- many more ...

A simple planning problem

Get me milk, bananas and a book

Given

- Initial state agent is at home without milk, bananas and book
- Goal state agent is at home with milk, bananas and book
- Actions / Moves agent can perform on a given state
 - Buy(X) buy item X where $X \in \{milk, bananas, book\}$
 - Steal(X) steal item X where $X \in \{milk, bananas, book\}$
 - Goto(X) move to X where $X \in \{market, home\}$
 - ...

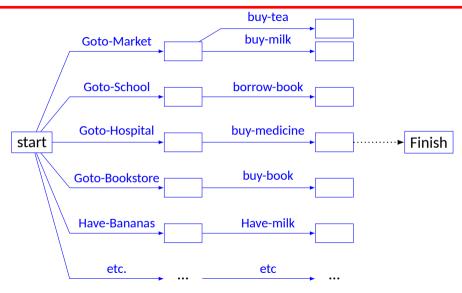
The planning problem

 Generate one possible way to achieve a certain goal given an initial situation and a set of actions

CS5201, SPRING, 2025

- Similar to search problems
 - Start state
 - List of moves
 - Result of moves
 - Goal state

Search



Planning vs Search

- Actions have requirements and consequences that should constrain applicability in a given state
 - Stronger interaction between actions and states needed
- Most parts of the world are independent of most other parts
 - Solve subgoals independently
- Human beings plan goal-directed, they construct important intermediate solutions first
 - Flexible sequence for construction of solution
- Planning systems do the following
 - Unify action and goal representation to allow selection (use logical language for both)
 - Divide-and-conquer by subgoaling
 - Relax requirement for sequential construction of solutions

STRIPS

- STanford Research Institute Problem Solver
- Many planners today use specification languages that are variants of the one used in STRIPS

Representation

- States conjunction of propositions
 - Example: AT(Home)∧¬ Have(tea)∧¬Have(bananas)∧¬Have(book)
- Close world assumption atoms that are not present are treated as false
- Actions Serves as names
 - Precondition conjunction of literals
 - Effect conjunction of literals
 - Example:
 - Action: Goto(Market)
 - Precondition: AT(home)
 - Effect: AT(Market)
- Plan Solution for the problem
 - A set of plan steps. Each step is one of the operators for the problem.
 - A set of step ordering constraints. Each ordering constraint is of the form $S_i \prec S_j$, indicating S_i must occur sometime before S_i .

Example - Flight operation

- Flying a plane from one location to another
- Actions FLY(plane-id, from, to)
 - Preconditions AT(plane-id,from) \(\triangle Airport(from) \(\triangle Airport(to) \)
 - Effects ¬AT(plane-id,from)∧AT(plane-id, to)

• Cargo transport involving loading, unloading and flying it from one place to another

- Cargo transport involving loading, unloading and flying it from one place to another
- Initial state $AT(C_1, PAT) \wedge AT(C_2, DEL) \wedge AT(P_1, PAT) \wedge AT(P_2, DEL)$

- Cargo transport involving loading, unloading and flying it from one place to another
- Initial state $AT(C_1, PAT) \wedge AT(C_2, DEL) \wedge AT(P_1, PAT) \wedge AT(P_2, DEL)$
- Goal state $AT(C_1, DEL) \wedge AT(C_2, PAT)$

- Cargo transport involving loading, unloading and flying it from one place to another
- Initial state $AT(C_1, PAT) \wedge AT(C_2, DEL) \wedge AT(P_1, PAT) \wedge AT(P_2, DEL)$
- Goal state $AT(C_1, DEL) \wedge AT(C_2, PAT)$
- Action Load(c, p, a)

- Cargo transport involving loading, unloading and flying it from one place to another
- Initial state $AT(C_1, PAT) \wedge AT(C_2, DEL) \wedge AT(P_1, PAT) \wedge AT(P_2, DEL)$
- Goal state $AT(C_1, DEL) \wedge AT(C_2, PAT)$
- Action Load(c, p, a)
 - Precondition AT(c, a) ∧ AT(p, a)
 - Effect \neg AT(c, a) \wedge In(c, p)

- Cargo transport involving loading, unloading and flying it from one place to another
- Initial state $AT(C_1, PAT) \wedge AT(C_2, DEL) \wedge AT(P_1, PAT) \wedge AT(P_2, DEL)$
- Goal state $AT(C_1, DEL) \wedge AT(C_2, PAT)$
- Action Load(c, p, a)
 - Precondition AT(c, a) ∧ AT(p, a)
 - **Effect** ¬AT(c, a) ∧ In(c, p)
- Action Unload(c, p, a)

- Cargo transport involving loading, unloading and flying it from one place to another
- Initial state $AT(C_1, PAT) \wedge AT(C_2, DEL) \wedge AT(P_1, PAT) \wedge AT(P_2, DEL)$
- Goal state $AT(C_1, DEL) \wedge AT(C_2, PAT)$
- Action Load(c, p, a)
 - Precondition AT(c, a) ∧ AT(p, a)
 - **Effect** ¬AT(c, a) ∧ In(c, p)
- Action Unload(c, p, a)
 - Precondition In(c, p) ∧ AT(p, a)
 - Effect AT(c, a) ∧ ¬In(c, p)

- Cargo transport involving loading, unloading and flying it from one place to another
- Initial state $AT(C_1, PAT) \wedge AT(C_2, DEL) \wedge AT(P_1, PAT) \wedge AT(P_2, DEL)$
- Goal state $AT(C_1, DEL) \wedge AT(C_2, PAT)$
- Action Load(c, p, a)
 - Precondition AT(c, a) ∧ AT(p, a)
 - Effect ¬AT(c, a) ∧ In(c, p)
- Action Unload(c, p, a)
 - Precondition In(c, p) ∧ AT(p, a)
 - **Effect AT**(c, a) ∧ ¬In(c, p)
- Action Fly(p, from, to)

- Cargo transport involving loading, unloading and flying it from one place to another
- Initial state $AT(C_1, PAT) \wedge AT(C_2, DEL) \wedge AT(P_1, PAT) \wedge AT(P_2, DEL)$
- Goal state $AT(C_1, DEL) \wedge AT(C_2, PAT)$
- Action Load(c, p, a)
 - Precondition AT(c, a) ∧ AT(p, a)
 - **Effect** ¬AT(c, a) ∧ In(c, p)
- Action Unload(c, p, a)
 - Precondition In(c, p) ∧ AT(p, a)
 - Effect AT(c, a) ∧ ¬In(c, p)
- Action Fly(p, from, to)
 - Precondition AT(p, from)
 - Effect \neg AT(p, from) \wedge AT(p, to)

- Cargo transport involving loading, unloading and flying it from one place to another
- Initial state $AT(C_1, PAT) \wedge AT(C_2, DEL) \wedge AT(P_1, PAT) \wedge AT(P_2, DEL)$
- Goal state $AT(C_1, DEL) \wedge AT(C_2, PAT)$
- Action Load(c, p, a)

Plan

- Precondition AT(c, a) ∧ AT(p, a)
- Effect \neg AT(c, a) \wedge In(c, p)
- Action Unload(c, p, a)
 - Precondition In(c, p) ∧ AT(p, a)
 - Effect AT(c, a) ∧ ¬In(c, p)
- Action Fly(p, from, to)
 - Precondition AT(p, from)
 - Effect \neg AT(p, from) \wedge AT(p, to)

- Cargo transport involving loading, unloading and flying it from one place to another
- Initial state $AT(C_1, PAT) \wedge AT(C_2, DEL) \wedge AT(P_1, PAT) \wedge AT(P_2, DEL)$
- Goal state $AT(C_1, DEL) \wedge AT(C_2, PAT)$
- Action Load(c, p, a)
 - Precondition AT(c, a) ∧ AT(p, a)
 - Effect \neg AT(c, a) \wedge In(c, p)
- Action Unload(c, p, a)
 - Precondition In(c, p) ∧ AT(p, a)
 - Effect AT(c, a) ∧ ¬In(c, p)
- Action Fly(p, from, to)
 - Precondition AT(p, from)
 - Effect \neg AT(p, from) \wedge AT(p, to)

- Plan
 - Load(C_1 , P_1 , PAT)

- Cargo transport involving loading, unloading and flying it from one place to another
- Initial state $AT(C_1, PAT) \wedge AT(C_2, DEL) \wedge AT(P_1, PAT) \wedge AT(P_2, DEL)$
- Goal state $AT(C_1, DEL) \wedge AT(C_2, PAT)$
- Action Load(c, p, a)
 - Precondition AT(c, a) ∧ AT(p, a)
 - Effect \neg AT(c, a) \wedge In(c, p)
- Action Unload(c, p, a)
 - Precondition In(c, p) ∧ AT(p, a)
 - **Effect AT**(c, a) ∧ ¬In(c, p)
- Action Fly(p, from, to)
 - Precondition AT(p, from)
 - Effect \neg AT(p, from) \wedge AT(p, to)

- Plan
 - Load(C_1 , P_1 , PAT)
 - Fly(*P*₁, PAT, DEL)

- Cargo transport involving loading, unloading and flying it from one place to another
- Initial state $AT(C_1, PAT) \wedge AT(C_2, DEL) \wedge AT(P_1, PAT) \wedge AT(P_2, DEL)$
- Goal state $AT(C_1, DEL) \wedge AT(C_2, PAT)$
- Action Load(c, p, a)
 - Precondition AT(c, a) ∧ AT(p, a)
 - Effect \neg AT(c, a) \wedge In(c, p)
- Action Unload(c, p, a)
 - Precondition In(c, p) ∧ AT(p, a)
 - Effect AT(c, a) ∧ ¬In(c, p)
- Action Fly(p, from, to)
 - Precondition AT(p, from)
 - Effect \neg AT(p, from) \wedge AT(p, to)

- Plan
 - Load(C_1 , P_1 , PAT)
 - **Fly(***P*₁, **PAT**, **DEL)**
 - **Unload(***C*₁, *P*₁, **DEL)**

- Cargo transport involving loading, unloading and flying it from one place to another
- Initial state $AT(C_1, PAT) \wedge AT(C_2, DEL) \wedge AT(P_1, PAT) \wedge AT(P_2, DEL)$
- Goal state $AT(C_1, DEL) \wedge AT(C_2, PAT)$
- Action Load(c, p, a)
 - Precondition AT(c, a) ∧ AT(p, a)
 - Effect \neg AT(c, a) \wedge In(c, p)
- Action Unload(c, p, a)
 - Precondition In(c, p) ∧ AT(p, a)
 - Effect AT(c, a) ∧ ¬In(c, p)
- Action Fly(p, from, to)
 - Precondition AT(p, from)
 - Effect ¬AT(p, from) ∧ AT(p, to)

- Plan
 - Load(C_1 , P_1 , PAT)
 - Fly(P_1 , PAT, DEL)
 - Unload(C_1 , P_1 , DEL)
 - Load(*C*₂, *P*₂, DEL)
 - Fly(*P*₂, DEL, PAT)
 - Unload(*C*₂, *P*₂, PAT)

• Change a flat tire with a spare one

- Change a flat tire with a spare one
- Initial state Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)

- Change a flat tire with a spare one
- Initial state Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
- Goal state AT(Spare, Axle)

- Change a flat tire with a spare one
- Initial state Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
- Goal state AT(Spare, Axle)
- Action Remove(obj, loc)

- Change a flat tire with a spare one
- Initial state Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
- Goal state AT(Spare, Axle)
- Action Remove(obj, loc)
 - Preconditions AT(obj, loc)
 - Effects ¬AT(obj,loc) ∧ AT(obj, Ground)

- Change a flat tire with a spare one
- Initial state Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
- Goal state AT(Spare, Axle)
- Action Remove(obj, loc)
 - Preconditions AT(obj, loc)
 - Effects ¬AT(obj,loc) ∧ AT(obj, Ground)
- Action PutOn(t, axle)

- Change a flat tire with a spare one
- Initial state Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
- Goal state AT(Spare, Axle)
- Action Remove(obj, loc)
 - Preconditions AT(obj, loc)
 - Effects ¬AT(obj,loc) ∧ AT(obj, Ground)
- Action PutOn(t, axle)
 - Preconditions Tire(t) \wedge AT(t, Ground) \wedge \neg AT(Flat, axle)
 - Effects ¬AT(t, Ground) ∧ AT(t, axle)

- Change a flat tire with a spare one
- Initial state Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
- Goal state AT(Spare, Axle)
- Action Remove(obj, loc)
 - Preconditions AT(obj, loc)
 - Effects ¬AT(obj,loc) ∧ AT(obj, Ground)
- Action PutOn(t, axle)
 - Preconditions Tire(t) \wedge AT(t, Ground) \wedge \neg AT(Flat, axle)
 - Effects ¬AT(t, Ground) ∧ AT(t, axle)
- Plan

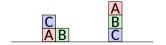
- Change a flat tire with a spare one
- Initial state Tire(flat) ∧ Tire(Spare) ∧ AT(Flat, Axle) ∧ At(Spare, Trunk)
- Goal state AT(Spare, Axle)
- Action Remove(obj, loc)
 - Preconditions AT(obj, loc)
 - Effects ¬AT(obj,loc) ∧ AT(obj, Ground)
- Action PutOn(t, axle)
 - Preconditions Tire(t) \wedge AT(t, Ground) \wedge \neg AT(Flat, axle)
 - Effects ¬AT(t, Ground) ∧ AT(t, axle)
- Plan
 - Remove(Flat, Axle)
 - Remove(Spare, Trunk)
 - PutOn(Spare, Axle)

Example - Blocks world

• Build a 3-block tower

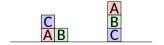
Example - Blocks world

- Build a 3-block tower
- Initial state ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)



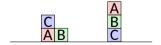
Example - Blocks world

- Build a 3-block tower
- Initial state ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
- Goal state ON(A,B) ∧ ON(B,C)

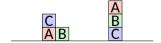


13

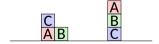
- Build a 3-block tower
- Initial state ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
- Goal state ON(A,B) ∧ ON(B,C)
- Action move(x, y)



- Build a 3-block tower
- Initial state ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
- Goal state ON(A,B) ∧ ON(B,C)
- Action move(x, y)
 - Precondition Clear(x) ∧ Clear(y)
 - Effect ON(x, y), Clear(x), ¬Clear(y)



- Build a 3-block tower
- Initial state ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
- Goal state ON(A,B) ∧ ON(B,C)
- Action move(x, y)
 - Precondition Clear(x) ∧ Clear(y)
 - Effect ON(x, y), Clear(x), ¬Clear(y)
- Action moveToTable(x, Table)



- Build a 3-block tower
- Initial state ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
- Goal state ON(A,B) ∧ ON(B,C)
- Action move(x, y)
 - Precondition Clear(x) ∧ Clear(y)
 - Effect ON(x, y), Clear(x), ¬Clear(y)
- Action moveToTable(x, Table)
 - Precondition Clear(x)
 - Effect ON(x, Table), Clear(x)

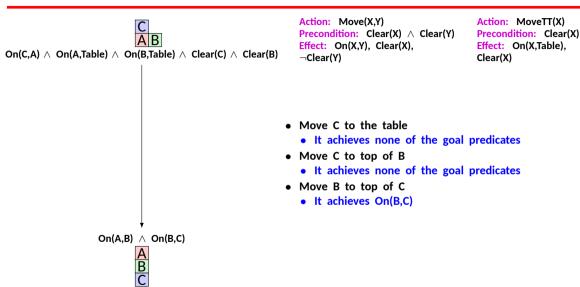
- Build a 3-block tower
- Initial state ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
- Goal state ON(A,B) ∧ ON(B,C)
- Action move(x, y)
 - Precondition Clear(x) ∧ Clear(y)
 - Effect ON(x, y), Clear(x), ¬Clear(y)
- Action moveToTable(x, Table)
 - Precondition Clear(x)
 - Effect ON(x, Table), Clear(x)

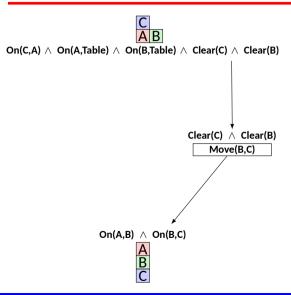
- Build a 3-block tower
- Initial state ON(A,Table) ∧ ON(B,Table) ∧ ON(C,A) ∧ Clear(B) ∧ Clear(C)
- Goal state ON(A,B) ∧ ON(B,C)
- Action move(x, y)
 - Precondition Clear(x) ∧ Clear(y)
 - Effect ON(x, y), Clear(x), ¬Clear(y)
- Action moveToTable(x, Table)
 - Precondition Clear(x)
 - Effect ON(x, Table), Clear(x)
 - C A B

•

Plan

- moveToTable(C, Table)
- move(B, C)
- move(A, B)





Action: Move(X,Y)
Precondition: Clear(X) ∧ Clear(Y)
Effect: On(X,Y), Clear(X),
¬Clear(Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table),
Clear(X)

We obtain the following

 $On(C,A) \land On(A,Table) \land On(B,Table) \land Clear(C) \land Clear(B)$

 $On(C,A) \land On(A,Table) \land On(B,Table) \land Clear(C) \land Clear(B)$

Action: Move(X,Y)
Precondition: Clear(X) ∧ Clear(Y)
Effect: On(X,Y), Clear(X),
¬Clear(Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table),
Clear(X)

 $\begin{array}{c} \text{On(A,B)} \ \land \ \text{On(B,C)} \\ \hline \textcolor{red}{\textbf{A}} \\ \hline \textbf{B} \end{array}$

Action: Move(X,Y)
Precondition: Clear(X) ∧ Clear(Y)
Effect: On(X,Y), Clear(X),

¬Clear(Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table),
Clear(X)

MoveTT(C)

Move(A.B)

 $\begin{array}{c} \text{On(A,B)} \ \land \ \text{On(B,C)} \\ \hline \textcolor{red}{\textbf{A}} \\ \hline \textbf{B} \end{array}$

Action: Move(X,Y)
Precondition: Clear(X) ∧ Clear(Y)
Effect: On(X,Y), Clear(X),

¬Clear(Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table),
Clear(X)

Clear(C)

MoveTT(C)

Clear(A) \(\widehindrightarrow \text{On(C,Table)} \)

Move(A.B)

On(A,B) \wedge On(B,C)

Action: Move(X,Y)
Precondition: Clear(X) ∧ Clear(Y)
Effect: On(X,Y), Clear(X),
¬Clear(Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table),
Clear(X)

Clear(C)

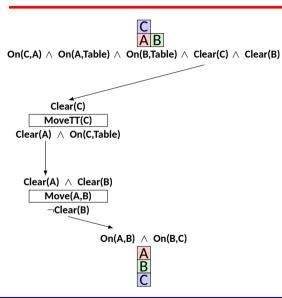
MoveTT(C)

Clear(A) ∧ On(C,Table)

Clear(A) ∧ Clear(B)

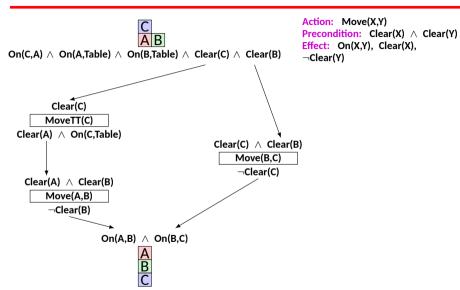
Move(A,B)

¬Clear(B)

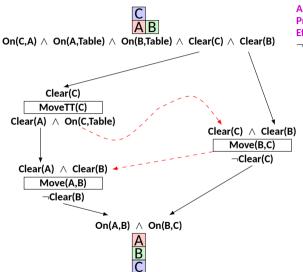


Action: Move(X,Y)
Precondition: Clear(X) ∧ Clear(Y)
Effect: On(X,Y), Clear(X),
¬Clear(Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table),
Clear(X)

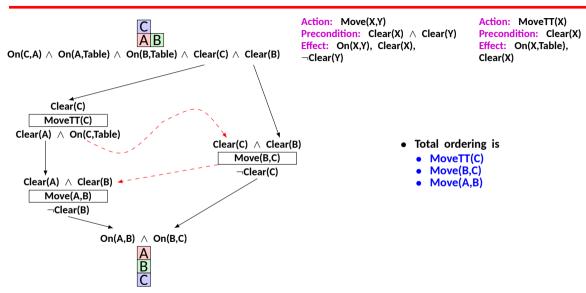


Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table),
Clear(X)



Action: Move(X,Y)
Precondition: Clear(X) ∧ Clear(Y)
Effect: On(X,Y), Clear(X),
¬Clear(Y)

Action: MoveTT(X)
Precondition: Clear(X)
Effect: On(X,Table),
Clear(X)



- Initial state : ∅
- Goal state: LeftShoeOn ∧ RightShoeOn
- Action LeftSock
 - Precondition: 0
 - Effect: LeftSockOn
- Action RightSock
 - Precondition: Ø
 - Effect: RightSockOn
- Action LeftShoe
 - Precondition: LeftSockOn
 - Effect: LeftShoeOn
- Action RightShoe
 - Precondition: RightSockOn
 - Effect: RightShoeOn

- Initial state : ∅
- Goal state: LeftShoeOn ∧ RightShoeOn
- Action LeftSock
 - Precondition: ∅
 - Effect: LeftSockOn
- Action RightSock
 - Precondition: 0
 - Effect: RightSockOn
- Action LeftShoe
 - Precondition: LeftSockOn
 - Effect: LeftShoeOn
- Action RightShoe
 - Precondition: RightSockOn
 - Effect: RightShoeOn

Start

Finish

- Initial state : \emptyset
- Goal state: LeftShoeOn ∧ RightShoeOn
- Action LeftSock
 - Precondition: Ø
 - Effect: LeftSockOn
- Action RightSock
 - Precondition: 0
 - Effect: RightSockOn
- Action LeftShoe
 - Precondition: LeftSockOn
 - Effect: LeftShoeOn
- Action RightShoe
 - Precondition: RightSockOn
 - Effect: RightShoeOn

Start

LeftShoe ∧ RightShoe

Finish

- Initial state : Ø
- Goal state: LeftShoeOn ∧ RightShoeOn
- Action LeftSock
 - Precondition: 0
 - Effect: LeftSockOn
- Action RightSock
 - Precondition: 0
 - Effect: RightSockOn
- Action LeftShoe
 - Precondition: LeftSockOn
 - Effect: LeftShoeOn
- Action RightShoe
 - Precondition: RightSockOn
 - Effect: RightShoeOn

Start

RightShoe

LeftShoe \(\triangle \text{RightShoe} \)

Finish

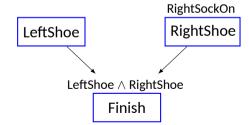
- Initial state : Ø
- Goal state: LeftShoeOn ∧ RightShoeOn
- Action LeftSock
 - Precondition: ∅
 - Effect: LeftSockOn
- Action RightSock
 - Precondition: 0
 - Effect: RightSockOn
- Action LeftShoe
 - Precondition: LeftSockOn
 - Effect: LeftShoeOn
- Action RightShoe
 - Precondition: RightSockOn
 - Effect: RightShoeOn

Start

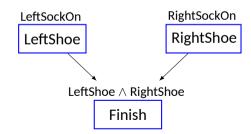
RightSockOn RightShoe LeftShoe ∧ RightShoe

Finish

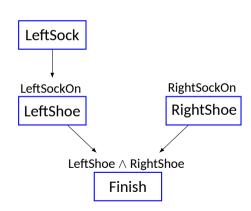
- Initial state : ∅
- Goal state: LeftShoeOn ∧ RightShoeOn
- Action LeftSock
 - Precondition: 0
 - Effect: LeftSockOn
- Action RightSock
 - Precondition: 0
 - Effect: RightSockOn
- Action LeftShoe
 - Precondition: LeftSockOn
 - Effect: LeftShoeOn
- Action RightShoe
 - Precondition: RightSockOn
 - Effect: RightShoeOn



- Initial state : Ø
- Goal state: LeftShoeOn ∧ RightShoeOn
- Action LeftSock
 - Precondition: ∅
 - Effect: LeftSockOn
- Action RightSock
 - Precondition: 0
 - Effect: RightSockOn
- Action LeftShoe
 - Precondition: LeftSockOn
 - Effect: LeftShoeOn
- Action RightShoe
 - Precondition: RightSockOn
 - Effect: RightShoeOn



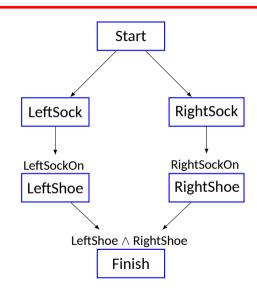
- Initial state : ∅
- Goal state: LeftShoeOn ∧ RightShoeOn
- Action LeftSock
 - Precondition: ∅
 - Effect: LeftSockOn
- Action RightSock
 - Precondition: 0
 - Effect: RightSockOn
- Action LeftShoe
 - Precondition: LeftSockOn
 - Effect: LeftShoeOn
- Action RightShoe
 - Precondition: RightSockOn
 - Effect: RightShoeOn



- Initial state : ∅
- Goal state: LeftShoeOn ∧ RightShoeOn
- Action LeftSock
 - Precondition: ∅
 - Effect: LeftSockOn
- Action RightSock
 - Precondition: 0
 - Effect: RightSockOn
- Action LeftShoe
 - Precondition: LeftSockOn
 - Effect: LeftShoeOn
- Action RightShoe
 - Precondition: RightSockOn
 - Effect: RightShoeOn



- Initial state : ∅
- Goal state: LeftShoeOn ∧ RightShoeOn
- Action LeftSock
 - Precondition: 0
 - Effect: LeftSockOn
- Action RightSock
 - Precondition: 0
 - Effect: RightSockOn
- Action LeftShoe
 - Precondition: LeftSockOn
 - Effect: LeftShoeOn
- Action RightShoe
 - Precondition: RightSockOn
 - Effect: RightShoeOn



Partial order planning

- Basic idea: Make choices only that are relevant for solving the current part of the problem
- Least commitment choices
 - Ordering Leave actions unordered, unless they must be sequential
 - Binding Leave variable unbound, unless needed to unify with conditions being achieved
 - Actions Usually not subjected to least commitment

Initial State: Action: Start

Effect: At(Home) ∧ Sells(BS,Book) ∧ Sells(M,Milk) ∧ Sells(M,Bananas)

Goal State: Action: Finish

Precondition: Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Action: Go(y) Action: Buy(x)

Precondition: At(x) Precondition: $At(y) \land Sells(y,x)$

Effect: At(y) $\land \neg At(x)$ Effect: Have(x)

Action: Go(y)

Precondition: At(x)

Effect: At(y) $\land \neg At(x)$

Start

 $At(Home) \ \land \ Sells(BS,Book) \ \land \ Sells(M,Milk) \ \land \ Sells(M,Bananas)$

Action: Buy(x)

Precondition: $At(y) \wedge Sells(y,x)$

Action: Go(y)

Precondition: At(x)Effect: $At(y) \land \neg At(x)$ Start

 $\mathsf{At}(\mathsf{Home}) \ \land \ \mathsf{Sells}(\mathsf{BS},\mathsf{Book}) \ \land \ \mathsf{Sells}(\mathsf{M},\mathsf{Milk}) \ \land \ \mathsf{Sells}(\mathsf{M},\mathsf{Bananas})$

Action: Buy(x)

Precondition: At(y) \land Sells(y,x)

Effect: Have(x)

Have(Book) ∧ Have(Milk) ∧ Have(Bananas) ∧ At(Home)

Action: Go(y)

Precondition: At(x)

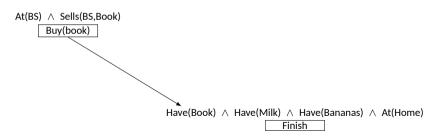
Effect: $At(y) \land \neg At(x)$

Start

At(Home) \(\triangle \text{ Sells(BS,Book)} \(\triangle \text{ Sells(M,Milk)} \(\triangle \text{ Sells(M,Bananas)} \)

Action: Buy(x)

Precondition: $At(y) \wedge Sells(y,x)$



Action: Go(y)

Precondition: At(x)

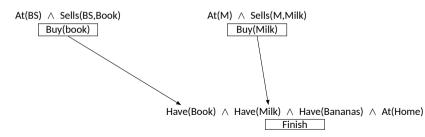
Effect: $At(y) \land \neg At(x)$

Start

 $At(Home) \ \land \ Sells(BS,Book) \ \land \ Sells(M,Milk) \ \land \ Sells(M,Bananas)$

Action: Buy(x)

Precondition: At(y) \land Sells(y,x)



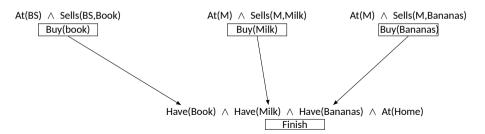
Action: Go(y)

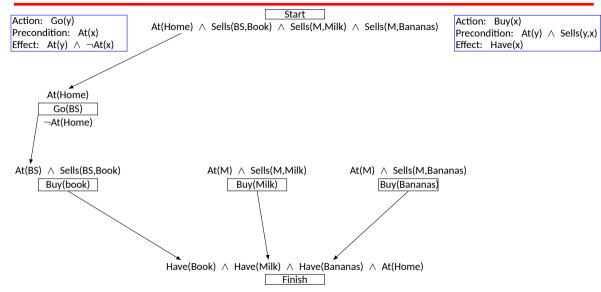
Precondition: At(x)Effect: $At(y) \land \neg At(x)$ Start

 $At(Home) \ \land \ Sells(BS,Book) \ \land \ Sells(M,Milk) \ \land \ Sells(M,Bananas)$

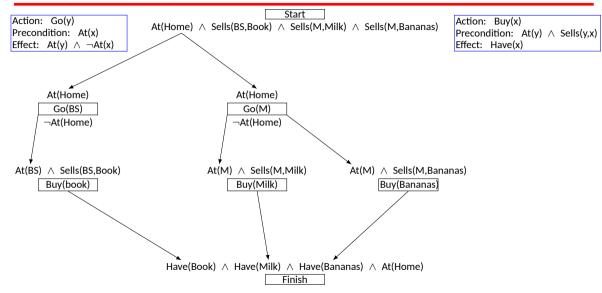
Action: Buy(x)

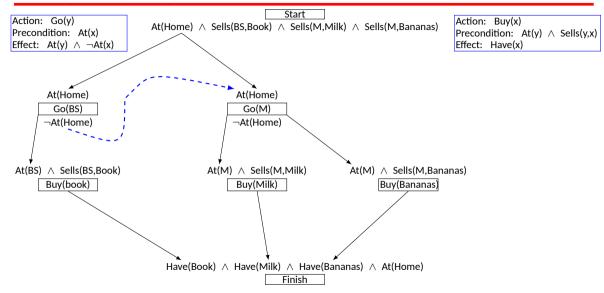
Precondition: $At(y) \land Sells(y,x)$

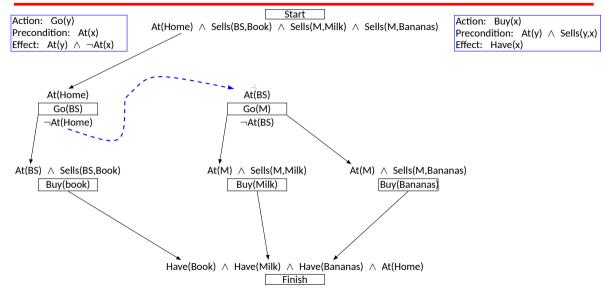


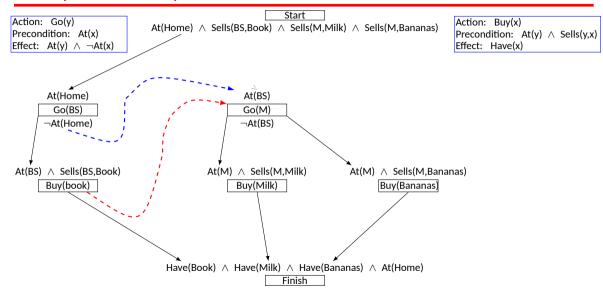


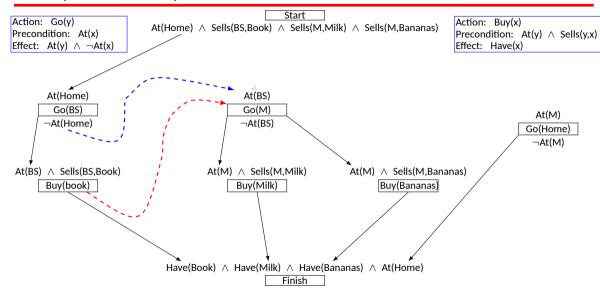
20

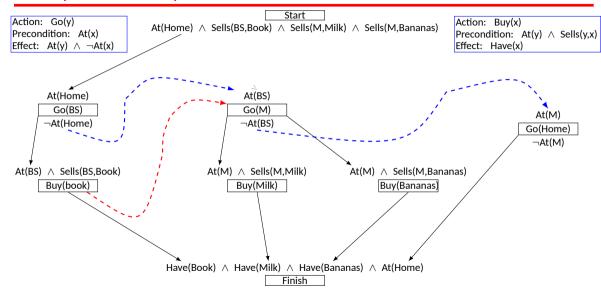


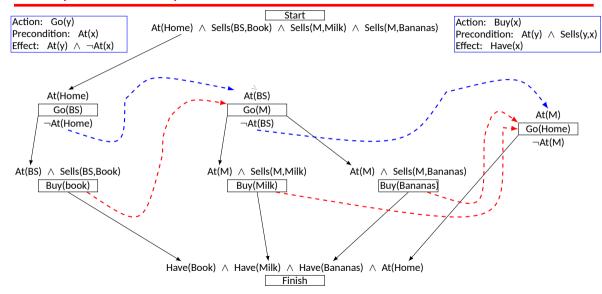












- Consists of a sequence of levels that correspond to time steps in the plan
- Each level contains a set of actions and a set of literals that could be true at that time step depending on the actions taken in previous time steps
- For every +ve and -ve literal C, we add a persistence action with precondition C and effect C

Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

22

Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)

Precondition: Have(Cake)

Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)

Precondition: ¬Have(Cake)

Effect: Have(Cake)

Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)

Precondition: Have(Cake)

Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)

Precondition: ¬Have(Cake)

Effect: Have(Cake)

 S_0

Have(Cake)

 A_0

Start: Have(Cake)

 S_0

Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)

Precondition: Have(Cake)

Effect: Eaten(Cake) $\land \neg$ Have(Cake)

Action: Bake(Cake)

Precondition: ¬Have(Cake)

Effect: Have(Cake)

Have(Cake)

Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)

Precondition: Have(Cake)

Effect: Eaten(Cake) \(\sigma \text{Have(Cake)}

Action: Bake(Cake)

Precondition: ¬Have(Cake)

Effect: Have(Cake)

 S_0 A_0

Have(Cake)

Eat(Cake)

Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)

Precondition: Have(Cake)

Effect: Eaten(Cake) $\land \neg$ Have(Cake)

Action: Bake(Cake)

Precondition: ¬Have(Cake)

Effect: Have(Cake)

 S_0 A_0

Have(Cake) Eat(Cake)

Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)

Precondition: Have(Cake)

Effect: Eaten(Cake) $\land \neg$ Have(Cake)

Action: Bake(Cake)

Precondition: ¬Have(Cake)

Effect: Have(Cake)

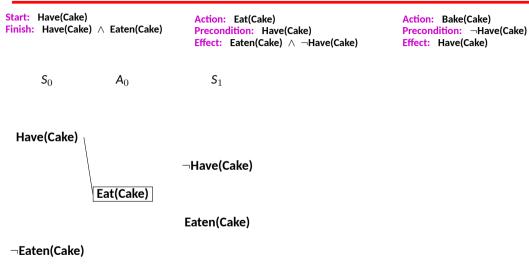
 S_0

 A_0

 S_1

Have(Cake)

Eat(Cake)



Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)

Precondition: Have(Cake)

Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)

Precondition: ¬Have(Cake)

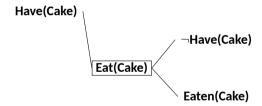
22

Effect: Have(Cake)

 S_0

 A_0

 S_1



Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)

Precondition: Have(Cake)

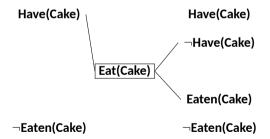
Effect: Eaten(Cake) ∧ ¬Have(Cake)

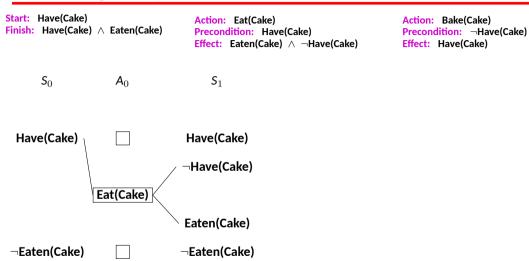
Action: Bake(Cake)

Precondition: ¬Have(Cake)

Effect: Have(Cake)

 S_0 A_0 S_1





Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)

Precondition: Have(Cake)

Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)

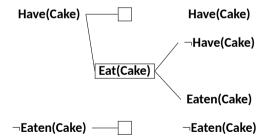
Precondition: ¬Have(Cake)

22

Effect: Have(Cake)

 S_0

 A_0



Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)

Precondition: Have(Cake)

Effect: Eaten(Cake) \(\cap \text{Have(Cake)} \)

Action: Bake(Cake)

Precondition: ¬Have(Cake)

Effect: Have(Cake)

 S_0

 A_0

 S_1

Have(Cake)

Have(Cake)

Have(Cake)

Eat(Cake)

Eaten(Cake)

Eaten(Cake)

Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)

Precondition: Have(Cake)

Effect: Eaten(Cake) \(\cap \text{Have(Cake)} \)

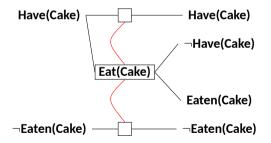
Action: Bake(Cake)

Precondition: ¬Have(Cake)

Effect: Have(Cake)

 S_0

 A_0



Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)

Precondition: Have(Cake)

Effect: Eaten(Cake) ∧ ¬Have(Cake)

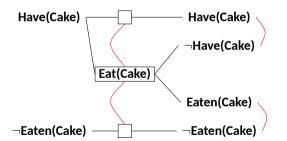
Action: Bake(Cake)

Precondition: ¬Have(Cake)

Effect: Have(Cake)

 S_0

 A_0



Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)

Precondition: Have(Cake)

Effect: Eaten(Cake) \(\cap \text{Have(Cake)} \)

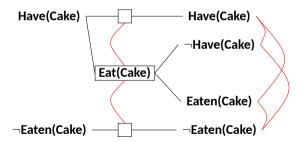
Action: Bake(Cake)

Precondition: ¬Have(Cake)

Effect: Have(Cake)

 S_0

 A_0



Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

Action: Eat(Cake)

Precondition: Have(Cake)

Effect: Eaten(Cake) ∧ ¬Have(Cake)

Action: Bake(Cake)

Precondition: ¬Have(Cake)

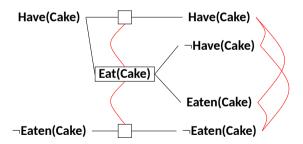
Effect: Have(Cake)

 S_0

 A_0

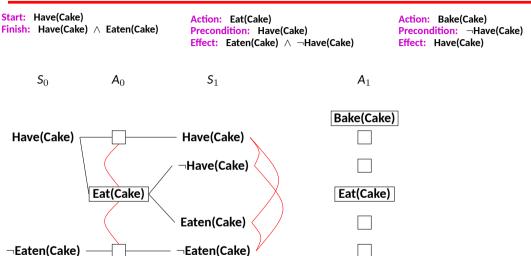
 S_1

 A_1



¬Eaten(Cake)

Have(Cake) Start: Action: Eat(Cake) Action: Bake(Cake) Finish: Have(Cake) ∧ Eaten(Cake) Precondition: Have(Cake) Precondition: ¬Have(Cake) Effect: Eaten(Cake) ∧ ¬Have(Cake) Effect: Have(Cake) S_0 S_1 A_0 A_1 Bake(Cake) Have(Cake) Have(Cake) ¬Have(Cake) Eat(Cake) Eat(Cake) Eaten(Cake)

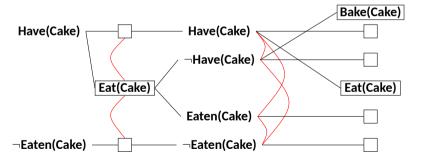


Start: Have(Cake) Action: Eat(Cake) Action: Bake(Cake)

Finish: Have(Cake) \(\Lambda \) Eaten(Cake) \(Precondition: \) Have(Cake) \(Precondition: \) \(\tau \) Have(Cake)

Effect: Eaten(Cake) ∧ ¬Have(Cake) Effect: Have(Cake)

 S_0 A_0 S_1 A_1

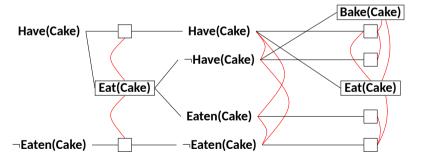


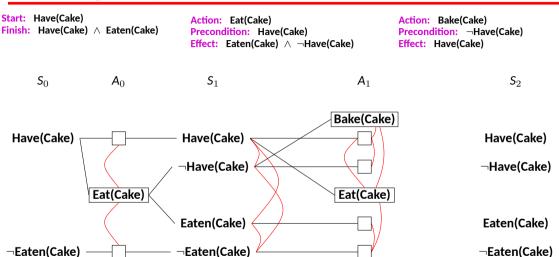
Start: Have(Cake) Action: Eat(Cake) Action: Bake(Cake)

Finish: Have(Cake) ∧ Eaten(Cake) Precondition: Have(Cake) Precondition: ¬Have(Cake)

Effect: Eaten(Cake) ∧ ¬Have(Cake) Effect: Have(Cake)

 S_0 A_0 S_1 A_1



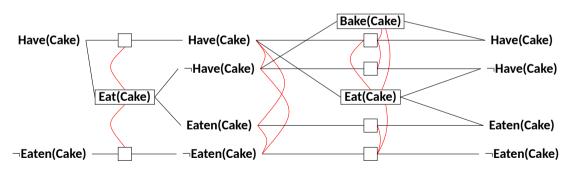


Finish: Have(Cake) \(\triangle \text{ Eaten(Cake)} \) Precondition: \(\triangle \triangle \text{ Precondition: } \triangle \

Effect: Eaten(Cake) \(\triangle = \triangle Have(Cake) \)

Effect: Have(Cake)

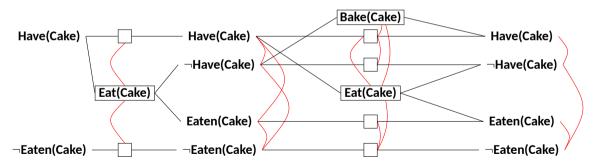
 $\mathsf{S}_0 \qquad \mathsf{A}_0 \qquad \mathsf{S}_1 \qquad \mathsf{A}_1 \qquad \mathsf{S}_2$



22

Finish: Have(Cake) \(\lambda\) Eaten(Cake) \(Precondition:\) Have(Cake) \(Precondition:\) Precondition: \(Precondition:\) Have(Cake) \(Precondition:\) Have(Cake) \(Precondition:\) Effect: Eaten(Cake) \(Precondition:\) Have(Cake)

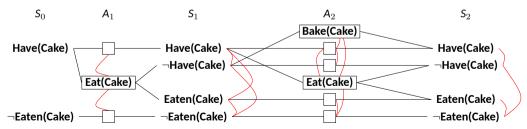
 S_0 A_0 S_1 A_1 S_2



22

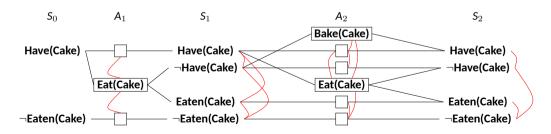
Mutex actions

- Mutual exclusion relation exists between two actions if
 - Inconsistent effects once action negates an effect of the other
 - Eat(Cake) causes ¬Have(Cake) and Bake(Cake) causes Have(Cake)
 - Interference one of the effects of one action is the negation of a precondition of the other
 - Eat(Cake) causes ¬Have(Cake) and the persistence of Have(Cake) needs Have(Cake)
 - Competing needs one of the preconditions of one action is mutually exclusive with a precondition of the other
 - Bake(Cake) needs ¬Have(Cake) and Eat(Cake) needs Have(Cake)



Mutex literals

- Mutual exclusion relation exists between two literals if
 - One is the negation of the other, OR
 - Each possible pair of actions that could achieve the two literals is mutually exclusive (inconsistent support)



GraphPLAN algorithm

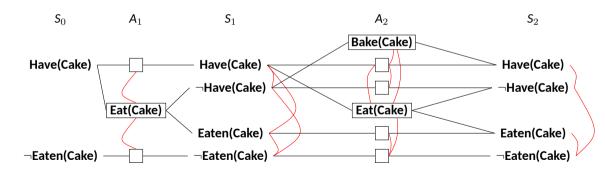
```
Function GraphPlan
graph ← Initial-Planning-Graph( problem )
goals ← Goals[ problem ]
do

if goals are all non-mutex in last level of graph then do
solution ← Extract-Solution( graph )
if solution ≠ failure then return solution
else if No-Solution-Possible (graph )
then return failure
graph ← Expand-Graph( graph, problem )
```

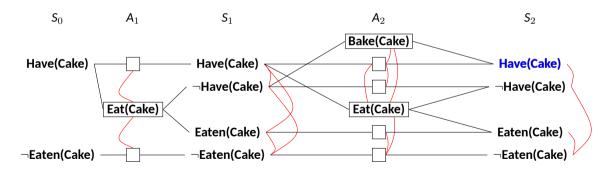
Termination

- Termination when no plan exists
 - Literals increase monotonically
 - Actions increase monotonically
 - Mutexes decrease monotonically

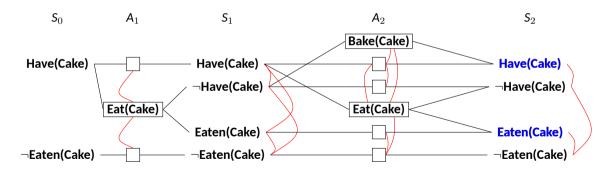
- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.



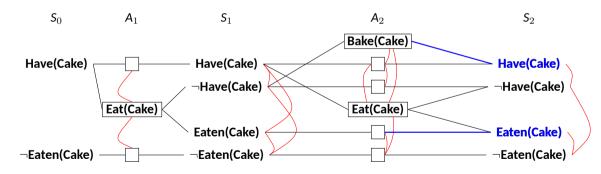
- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.



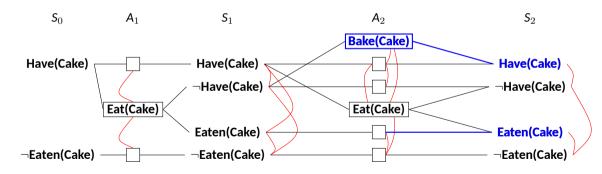
- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.



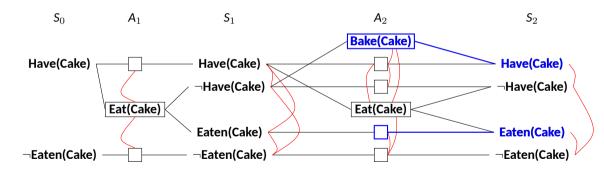
- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.



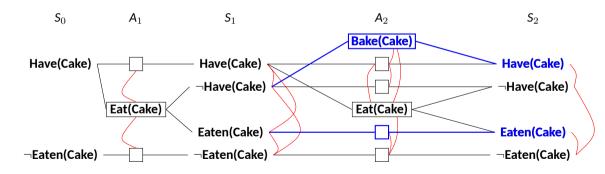
- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.



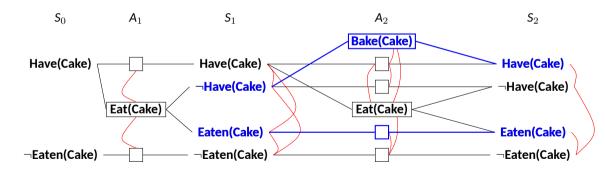
- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.



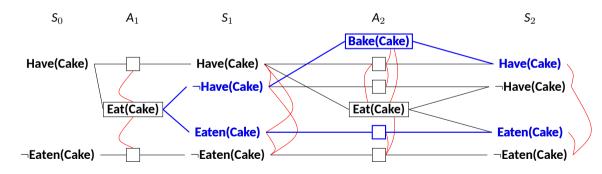
- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.



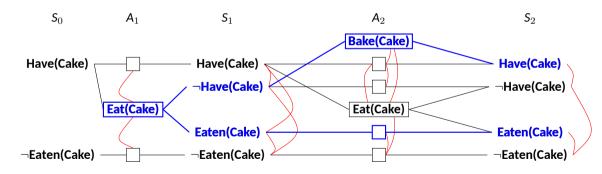
- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.



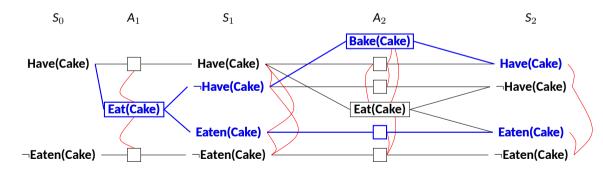
- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.



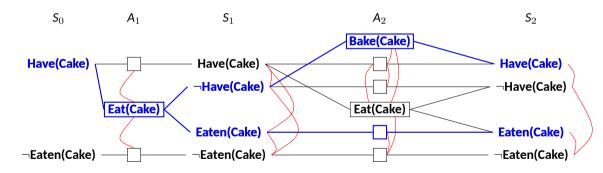
- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.



- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.



- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.



Planning with Propositional Logic

- The planning problem is translated into a CNF satisfiability problem
- The goal is asserted to hold at a time step T, and clauses are included for each time step up to T.
- If the clauses are satisfiable, then a plan is extracted by examining the actions that are true.
- Otherwise, we increment T and repeat
- Constructing formulas to encode bounded planning problems into satisfiability problems
 - If f is a fluent At(M), we write At(M, i) as f_i , i denotes time stamp
 - If a is an action Move(A, B), we write Move(A, B, i) as a_i .
 - Notations: PC precondition, E effects, E⁺ effects in the +ve form, E⁻ effect in the -ve form, s_0 start state, g goal state, g^+ literals in +ve form in goal state, g^- literals in -ve form in goal state, A set of actions

• Formula is built with these five kinds of sets of formulas:

- Formula is built with these five kinds of sets of formulas:
- Initial state:

- Formula is built with these five kinds of sets of formulas:
- Initial state:

•
$$C_1: \left(\bigwedge_{f \in s_0} f_0\right) \wedge \left(\bigwedge_{f \notin s_0} \neg f_0\right)$$

- Formula is built with these five kinds of sets of formulas:
- Initial state:

•
$$C_1: \left(\bigwedge_{f \in s_0} f_0\right) \wedge \left(\bigwedge_{f \not \in s_0} \neg f_0\right)$$

Goal state:

- Formula is built with these five kinds of sets of formulas:
- Initial state:

•
$$C_1: \left(\bigwedge_{f \in s_0} f_0\right) \wedge \left(\bigwedge_{f \notin s_0} \neg f_0\right)$$

Goal state:

•
$$C_2: \left(\bigwedge_{f \in g^+} f_T\right) \wedge \left(\bigwedge_{f \in g^-} f_T\right)$$

- Formula is built with these five kinds of sets of formulas:
- Initial state:

•
$$C_1: \left(\bigwedge_{f \in s_0} f_0\right) \wedge \left(\bigwedge_{f \notin s_0} \neg f_0\right)$$

Goal state:

•
$$C_2: \left(\bigwedge_{f \in g^+} f_T\right) \wedge \left(\bigwedge_{f \in g^-} f_T\right)$$

Action

- Formula is built with these five kinds of sets of formulas:
- Initial state:

$$\bullet \ \ C_1: \ \left(\bigwedge_{f \in s_0} f_0\right) \wedge \left(\bigwedge_{f \not \in s_0} \neg f_0\right)$$

Goal state:

•
$$C_2: \left(\bigwedge_{f \in g^+} f_T\right) \wedge \left(\bigwedge_{f \in g^-} f_T\right)$$

Action

$$\bullet \ \ C_3: \ a_i \Longrightarrow \\ \left(\bigwedge_{p \in PC(a)} p_i \land \bigwedge_{e \in E(a)} e_{i+1}\right)$$

- Formula is built with these five kinds of sets of formulas:
- Initial state:

•
$$C_1: \left(\bigwedge_{f \in s_0} f_0\right) \wedge \left(\bigwedge_{f \notin s_0} \neg f_0\right)$$

Goal state:

•
$$C_2: \left(\bigwedge_{f \in g^+} f_T\right) \wedge \left(\bigwedge_{f \in g^-} f_T\right)$$

Action

$$\bullet \ \ \mathsf{C}_3: \ a_i \Longrightarrow \\ \left(\bigwedge_{p \in \mathsf{PC}(a)} \mathsf{p}_i \wedge \bigwedge_{e \in \mathsf{E}(a)} e_{i+1}\right)$$

An action changes only the fluents that are in its effects.

- Formula is built with these five kinds of sets of formulas:
- Initial state:

•
$$C_1: \left(\bigwedge_{f \in s_0} f_0\right) \wedge \left(\bigwedge_{f \not \in s_0} \neg f_0\right)$$

Goal state:

•
$$C_2: \left(\bigwedge_{f \in g^+} f_T\right) \wedge \left(\bigwedge_{f \in g^-} f_T\right)$$

Action

$$\bullet \ \ \mathsf{C}_3: \ \ \mathsf{a}_i \implies \\ \left(\bigwedge_{p \in \mathsf{PC}(a)} \mathsf{p}_i \land \bigwedge_{e \in \mathsf{E}(a)} e_{i+1}\right)$$

An action changes only the fluents that are in its effects.

•
$$C_4: \left(\neg f_i \wedge f_{i+1} \implies \left(\bigvee_{\{a \in A \mid f_i \in E^+(a_i)\}} a_i \right) \right) \wedge \left(f_i \wedge \neg f_{i+1} \implies \left(\bigvee_{\{a \in A \mid f_i \in E^-(a_i)\}} a_i \right) \right)$$

 Explanatory frame axioms - set of propositions that enumerate the set of actions that could have occurred in order to account for a state change.

- Formula is built with these five kinds of sets of formulas:
- Initial state:

•
$$C_1: \left(\bigwedge_{f \in s_0} f_0\right) \wedge \left(\bigwedge_{f \not \in s_0} \neg f_0\right)$$

Goal state:

•
$$C_2: \left(\bigwedge_{f \in g^+} f_T\right) \wedge \left(\bigwedge_{f \in g^-} f_T\right)$$

Action

$$\bullet \ \ \mathsf{C}_3: \ a_i \Longrightarrow \\ \left(\bigwedge_{p \in \mathit{PC}(a)} \mathsf{p}_i \land \bigwedge_{e \in E(a)} e_{i+1}\right)$$

An action changes only the fluents that are in its effects.

$$\bullet \ \, C_4: \ \, \left(\neg f_i \wedge f_{i+1} \ \Longrightarrow \ \, \left(\bigvee_{\{a \in A \mid f_i \in E^+(a_i)\}} a_i \right) \right) \wedge \\ \left(f_i \wedge \neg f_{i+1} \ \Longrightarrow \ \, \left(\bigvee_{\{a \in A \mid f_i \in E^-(a_i)\}} a_i \right) \right)$$

- Explanatory frame axioms set of propositions that enumerate the set of actions that could have occurred in order to account for a state change.
- Complete exclusion axiom only one action occurs at each step.

- Formula is built with these five kinds of sets of formulas:
- Initial state:

•
$$C_1: \left(\bigwedge_{f \in s_0} f_0\right) \wedge \left(\bigwedge_{f \not \in s_0} \neg f_0\right)$$

Goal state:

•
$$C_2: \left(\bigwedge_{f \in g^+} f_T\right) \wedge \left(\bigwedge_{f \in g^-} f_T\right)$$

Action

$$\bullet \ \ \mathsf{C}_3: \ a_i \implies \\ \left(\bigwedge_{p \in \mathit{PC}(a)} p_i \land \bigwedge_{e \in \mathsf{E}(a)} e_{i+1}\right)$$

An action changes only the fluents that are in its effects.

$$\bullet \ \, C_4: \ \, \left(\neg f_i \wedge f_{i+1} \ \Longrightarrow \ \, \left(\bigvee_{\{a \in A \mid f_i \in E^+(a_i)\}} a_i \right) \right) \wedge \\ \left(f_i \wedge \neg f_{i+1} \ \Longrightarrow \ \, \left(\bigvee_{\{a \in A \mid f_i \in E^-(a_i)\}} a_i \right) \right)$$

- Explanatory frame axioms set of propositions that enumerate the set of actions that could have occurred in order to account for a state change.
- Complete exclusion axiom only one action occurs at each step.
 - C_5 : $\neg a_i \lor \neg b_i$

- Formula is built with these five kinds of sets of formulas:
- Initial state:

•
$$C_1: \left(\bigwedge_{f \in s_0} f_0\right) \wedge \left(\bigwedge_{f \not \in s_0} \neg f_0\right)$$

Goal state:

•
$$C_2: \left(\bigwedge_{f \in g^+} f_T\right) \wedge \left(\bigwedge_{f \in g^-} f_T\right)$$

Action

$$\bullet C_3: a_i \Longrightarrow \left(\bigwedge_{p \in PC(a)} p_i \wedge \bigwedge_{e \in E(a)} e_{i+1} \right)$$

- An action changes only the fluents that are in its effects.
 - $\bullet \ \, C_4: \ \, \left(\neg f_i \wedge f_{i+1} \ \Longrightarrow \ \, \left(\bigvee_{\{a \in A \mid f_i \in E^+(a_i)\}} a_i \right) \right) \wedge \\ \left(f_i \wedge \neg f_{i+1} \ \Longrightarrow \ \, \left(\bigvee_{\{a \in A \mid f_i \in E^-(a_i)\}} a_i \right) \right)$
 - Explanatory frame axioms set of propositions that enumerate the set of actions that could have occurred in order to account for a state change.
- Complete exclusion axiom only one action occurs at each step.
 - C_5 : $\neg a_i \lor \neg b_i$
- Need to check satisfiability of $C_1 \wedge C_2 \wedge C_3 \wedge C_4 \wedge C_5$

Exercise

• Consider a simple example where we have one robot r and two locations l_1 and l_2 . Let us suppose that the robot can move between the two locations. In the initial state, the robot is at l_1 ; in the goal state, it is at l_2 . The operator that moves the robot is: Action: move(r, l, l'), Precond: At(r, l), Effects: At(r, l'), $\neg At(r, l)$. In this planning problem, a plan of length 1 is enough to reach the goal state. Write the constraints.

Summary

- Search involving logic along with change of state
- We looked into planning problem where the environment is fully observable, deterministic and static
- We looked into planning graph and SAT based planning
- Application domains robotics, autonomous systems, etc.

Thank you!