CS5201: Advanced Artificial Intelligence

SAT Solvers

Arijit Mondal

Dept of Computer Science and Engineering Indian Institute of Technology Patna www.iitp.ac.in/~arijit/

Introduction

- SAT is one of the central problems in computer science community that has both theoretical as well as practical challenges
- This was the first NP-Complete problem
- Wide variety of application domains formal verification, test pattern generation, planning, scheduling, time tabling, etc.
- Provides a generic framework for combinatorial reasoning and search platform
- It is based upon propositional logic (Boolean logic)
- CSP problems can be mapped to SAT
- There exists good open-source industrial strength SAT solvers

SAT problems

- Propositions $\mathcal{P} = \{a, b, c, \ldots\}$
- Literals $\{a, \neg a, b, \neg b, \ldots\}$
- Clause $C_1 = (a \lor b \lor \neg c), C_2 = (\neg a \lor b \lor \neg d), \dots$
 - Clause is disjunction of literals
- Formula $\mathcal{F} = C_1 \wedge C_2 \wedge \dots$
 - Conjunctive normal form (CNF)
- ullet Goal is to find an assignment (interpretation) to the propositions such that ${\mathcal F}$ is true
 - ullet is satisfiable if there exists at least one valid interpretation
 - \bullet \mathcal{F} is unsatisfiable if there exists none

SAT tools

- Very good open-source SAT solvers are available
 - MiniSAT
 - zChaff
 - CaDiCaL
 - Glucose
 - Lingeling

- PicoSAT
- Cryptominisat
- Rsat
- Riss
- many others

• http://www.satcompetition.org/

Input format - DIMACS

- There is standard format to specify clauses and its literals
- To specify comments

c This line is comment

Input format - DIMACS

- There is standard format to specify clauses and its literals
- To specify comments

```
c This line is comment
```

• To specify problem, you need to provide number of variables and number of clauses

```
c p cnf num_of_variables num_of_clauses
p cnf 3 4
```

Input format - DIMACS

- There is standard format to specify clauses and its literals
- To specify comments

```
c This line is comment
```

• To specify problem, you need to provide number of variables and number of clauses

```
c p cnf num_of_variables num_of_clauses
p cnf 3 4
```

• To specify CNF

```
c list_of_literals 0
1 -2 3 0
2 4 0
-3 0
-1 2 3 -4 0
```

Output format

- Outputs from a SAT solver are SATISFIABLE / UNSATISFIABLE, an assignment of Boolean variables
- Typically it will be as follows

```
SAT
-1 2 -3 4 0
```

- The last line needs to be interpreted as follows: $\neg a \land b \land \neg c \land d$
- There may be additional messages to provide information on resource usage, statistics, etc.

• If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- Propositions: *a* : Rajat is the Director, *b* : Rajat is well known.

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- Propositions: *a* : Rajat is the Director, *b* : Rajat is well known.
- Formula (\mathcal{F}) : $a \rightarrow b$, a

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- Propositions: *a* : Rajat is the Director, *b* : Rajat is well known.
- Formula (\mathcal{F}) : $a \rightarrow b$, a
- Goal (\mathcal{G}) : b. That is $\mathcal{M} = (\mathcal{F} \to \mathcal{G}) \equiv ((a \to b) \land a) \to b$

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- Propositions: *a* : Rajat is the Director, *b* : Rajat is well known.
- Formula (\mathcal{F}) : $a \rightarrow b$, a
- Goal (\mathcal{G}) : b. That is $\mathcal{M}=(\mathcal{F} \to \mathcal{G}) \equiv ((a \to b) \land a) \to b$
 - If $\mathcal M$ is tautology then $\mathcal F \wedge \bar{\mathcal G}$ will be false ie. $\mathcal F \wedge \mathcal G = \emptyset$
 - If $\mathcal M$ is satisfiable then so is $\mathcal F \wedge \bar{\mathcal G}$

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- Propositions: *a* : Rajat is the Director, *b* : Rajat is well known.
- Formula (\mathcal{F}) : $a \rightarrow b$, a
- Goal (\mathcal{G}) : b. That is $\mathcal{M}=(\mathcal{F} \to \mathcal{G}) \equiv ((a \to b) \land a) \to b$
 - If $\mathcal M$ is tautology then $\mathcal F \wedge \bar{\mathcal G}$ will be false ie. $\mathcal F \wedge \mathcal G = \emptyset$
 - If $\mathcal M$ is satisfiable then so is $\mathcal F \wedge \bar{\mathcal G}$
- SAT modeling

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- Propositions: *a* : Rajat is the Director, *b* : Rajat is well known.
- Formula (\mathcal{F}) : $a \rightarrow b$, a
- Goal (\mathcal{G}) : b. That is $\mathcal{M}=(\mathcal{F} o \mathcal{G}) \equiv ((a o b) \wedge a) o b$
 - If $\mathcal M$ is tautology then $\mathcal F \wedge \bar{\mathcal G}$ will be false ie. $\mathcal F \wedge \mathcal G = \emptyset$
 - If ${\mathcal M}$ is satisfiable then so is ${\mathcal F}\wedge \bar{\mathcal G}$
- SAT modeling

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- Propositions: *a* : Rajat is the Director, *b* : Rajat is well known.
- Formula (\mathcal{F}) : $a \rightarrow b$, a
- Goal (\mathcal{G}) : b. That is $\mathcal{M}=(\mathcal{F} o \mathcal{G}) \equiv ((a o b) \wedge a) o b$
 - If $\mathcal M$ is tautology then $\mathcal F \wedge \bar{\mathcal G}$ will be false ie. $\mathcal F \wedge \mathcal G = \emptyset$
 - If $\mathcal M$ is satisfiable then so is $\mathcal F \wedge \bar{\mathcal G}$
- SAT modeling

```
p cnf 2 3
```

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- Propositions: *a* : Rajat is the Director, *b* : Rajat is well known.
- Formula (\mathcal{F}) : $a \rightarrow b$, a
- Goal (\mathcal{G}) : b. That is $\mathcal{M}=(\mathcal{F} o \mathcal{G}) \equiv ((a o b) \wedge a) o b$
 - If $\mathcal M$ is tautology then $\mathcal F \wedge \bar{\mathcal G}$ will be false ie. $\mathcal F \wedge \mathcal G = \emptyset$
 - If ${\mathcal M}$ is satisfiable then so is ${\mathcal F}\wedge ar{\mathcal G}$
- SAT modeling

```
p cnf 2 3
-1 2 0
1 0
```

- If Rajat is the Director then Rajat is well known. Rajat is the Director. So, Rajat is well known.
- Propositions: *a* : Rajat is the Director, *b* : Rajat is well known.
- Formula (\mathcal{F}) : $a \rightarrow b$, a
- Goal (\mathcal{G}) : b. That is $\mathcal{M}=(\mathcal{F} \to \mathcal{G}) \equiv ((a \to b) \land a) \to b$
 - If $\mathcal M$ is tautology then $\mathcal F \wedge \bar{\mathcal G}$ will be false ie. $\mathcal F \wedge \mathcal G = \emptyset$
 - If $\mathcal M$ is satisfiable then so is $\mathcal F \wedge \bar{\mathcal G}$
- SAT modeling

```
p cnf 2 3
-1 2 0
1 0
-2 0
```

UNSATISFIABLE.

- If Rajat is the Director then Rajat is well known. Rajat is not the Director. So, Rajat is not well known.
- Propositions: *a* : Rajat is the Director, *b* : Rajat is well known.
- Formula (\mathcal{F}) : $a \rightarrow b$, $\neg a$
- Goal (*G*): ¬*b*

- If Rajat is the Director then Rajat is well known. Rajat is not the Director. So, Rajat is not well known.
- Propositions: *a* : Rajat is the Director, *b* : Rajat is well known.
- Formula (\mathcal{F}) : $a \rightarrow b$, $\neg a$
- Goal (*G*): ¬*b*
- SAT modeling

- If Rajat is the Director then Rajat is well known. Rajat is not the Director. So, Rajat is not well known.
- Propositions: *a* : Rajat is the Director, *b* : Rajat is well known.
- Formula (\mathcal{F}) : $a \rightarrow b$, $\neg a$
- Goal (*G*): ¬*b*
- SAT modeling

```
p cnf 2 3
-1 2 0
-1 0
```

- If Rajat is the Director then Rajat is well known. Rajat is not the Director. So, Rajat is not well known.
- Propositions: *a* : Rajat is the Director, *b* : Rajat is well known.
- Formula (\mathcal{F}) : $a \rightarrow b$, $\neg a$
- Goal (*G*): ¬*b*
- SAT modeling

```
p cnf 2 3
-1 2 0
-1 0
2 0
```

SATISFIABLE

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :
 - $a \rightarrow \neg \dot{b}$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :
 - $a \rightarrow \neg b \equiv \neg a \vee \neg b$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :
 - $a \rightarrow \neg b \equiv \neg a \vee \neg b$
 - $\neg a \rightarrow (b \land c)$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :
 - $a \rightarrow \neg b \equiv \neg a \vee \neg b$
 - $\neg a \rightarrow (b \land c) \equiv (a \lor b) \land (a \lor c)$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :
 - $a \rightarrow \neg b \equiv \neg a \vee \neg b$

•
$$(\neg b \lor c) \to d$$

• $\neg a \rightarrow (b \land c) \equiv (a \lor b) \land (a \lor c)$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical. then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :
 - $a \rightarrow \neg b = \neg a \vee \neg b$
 - $\neg a \rightarrow (b \land c) \equiv (a \lor b) \land (a \lor c)$

• $(\neg b \lor c) \to d \equiv (b \lor d) \land (\neg c \lor d)$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :
 - $a \rightarrow \neg b \equiv \neg a \vee \neg b$
 - $\neg a \rightarrow (b \land c) \equiv (a \lor b) \land (a \lor c)$

- $(\neg b \lor c) \to d \equiv (b \lor d) \land (\neg c \lor d)$
- $d \rightarrow e$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :
 - $a \rightarrow \neg b \equiv \neg a \vee \neg b$
 - $\neg a \rightarrow (b \land c) \equiv (a \lor b) \land (a \lor c)$

- $(\neg b \lor c) \to d \equiv (b \lor d) \land (\neg c \lor d)$
- $d \rightarrow e \equiv (\neg d \lor e)$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :

•
$$a \rightarrow \neg b \equiv \neg a \vee \neg b$$

•
$$\neg a \rightarrow (b \land c) \equiv (a \lor b) \land (a \lor c)$$

Goal (𝒢): a, e, d

•
$$(\neg b \lor c) \to d \equiv (b \lor d) \land (\neg c \lor d)$$

•
$$d \rightarrow e \equiv (\neg d \lor e)$$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :
 - $a \rightarrow \neg b \equiv \neg a \vee \neg b$
 - $\neg a \rightarrow (b \land c) \equiv (a \lor b) \land (a \lor c)$
- Goal (𝒢): a, e, d
- SAT modeling

- $(\neg b \lor c) \to d \equiv (b \lor d) \land (\neg c \lor d)$
- $d \rightarrow e \equiv (\neg d \lor e)$

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical. then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :
 - $a \rightarrow \neg b = \neg a \vee \neg b$
 - $\neg a \rightarrow (b \land c) \equiv (a \lor b) \land (a \lor c)$
- **Goal** (*G*): *a*, *e*, *d*

- $(\neg b \lor c) \to d \equiv (b \lor d) \land (\neg c \lor d)$
- $d \rightarrow e \equiv (\neg d \lor e)$

- SAT modeling
 - p cnf 5 7 2 4 0 -1 -2 0 -340-4501 2 0 1 3 0

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical. then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :

•
$$a \rightarrow \neg b \equiv \neg a \vee \neg b$$

•
$$\neg a \rightarrow (b \land c) \equiv (a \lor b) \land (a \lor c)$$

•
$$(\neg b \lor c) \to d \equiv (b \lor d) \land (\neg c \lor d)$$

•
$$d \rightarrow e \equiv (\neg d \lor e)$$

SAT modeling

• **Goal** (*G*): *a*, *e*, *d*

p cnf 5 7 2 4 0 -1 -2 0 -340-4501 2 0 1 3 0 -1 0 // a -

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical. then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :
 - $a \rightarrow \neg b = \neg a \vee \neg b$
 - $\neg a \rightarrow (b \land c) \equiv (a \lor b) \land (a \lor c)$
- **Goal** (*G*): *a*, *e*, *d*

- $(\neg b \lor c) \to d \equiv (b \lor d) \land (\neg c \lor d)$
- $d \rightarrow e \equiv (\neg d \lor e)$

SAT modeling

1 3 0

p cnf 5 7 2 4 0 -1 -2 0 -340-4501 2 0

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :

•
$$a \rightarrow \neg b \equiv \neg a \vee \neg b$$

•
$$\neg a \rightarrow (b \land c) \equiv (a \lor b) \land (a \lor c)$$

- $(\neg b \lor c) \to d \equiv (b \lor d) \land (\neg c \lor d)$ • $d \to e \equiv (\neg d \lor e)$
- Goal (*G*): *a*, *e*, *d*
- SAT modeling

-50 // e -

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical. then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :
 - $a \rightarrow \neg b = \neg a \vee \neg b$
 - $\neg a \rightarrow (b \land c) \equiv (a \lor b) \land (a \lor c)$
- **Goal** (*G*): *a*, *e*, *d*

- $(\neg b \lor c) \to d \equiv (b \lor d) \land (\neg c \lor d)$
- $d \rightarrow e \equiv (\neg d \lor e)$

- SAT modeling
 - p cnf 5 7 2 4 0 -1 -2 0 -340-4501 2 0 -1 0 // a - SAT1 3 0

-5 0 // e - UNSAT

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical. then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :
 - $a \rightarrow \neg b = \neg a \vee \neg b$
 - $\neg a \rightarrow (b \land c) \equiv (a \lor b) \land (a \lor c)$
- **Goal** (*G*): *a*, *e*, *d*

• $(\neg b \lor c) \to d \equiv (b \lor d) \land (\neg c \lor d)$

-5 0 // e - UNSAT

-4 0 // d -

• $d \rightarrow e \equiv (\neg d \lor e)$

SAT modeling

1 3 0

p cnf 5 7 -1 -2 0 1 2 0

- 2 4 0 -340-450
- -1 0 // a SAT

- Knowledge base: If the unicorn is mythical, then it is immortal, but if it is not mythical. then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned
- Target: Can we prove that the unicorn is mythical? Magical? Horned?
- Propositions: a-mythical, b-mortal, c-mammal, d-horned, e-magical
- Formula (\mathcal{F}) :
 - $a \rightarrow \neg b = \neg a \vee \neg b$
 - $\neg a \rightarrow (b \land c) \equiv (a \lor b) \land (a \lor c)$
- **Goal** (*G*): *a*, *e*, *d*

- $(\neg b \lor c) \to d \equiv (b \lor d) \land (\neg c \lor d)$
- $d \rightarrow e \equiv (\neg d \lor e)$

- SAT modeling

1 3 0

$$-1 0 // a - SAT$$

- Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie

- Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :

- Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$

- Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday. Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit. 2-ts-tweed suit. 3-s-sandals. 4-ps-purple shirt. 5-t-tie
- Formula (\mathcal{F}) :
- $\neg bs \lor \neg ts$ $ts \lor s$

- Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday. Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit. 2-ts-tweed suit. 3-s-sandals. 4-ps-purple shirt. 5-t-tie
- Formula (\mathcal{F}) :

- $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \rightarrow \neg t$

- Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday. Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit. 2-ts-tweed suit. 3-s-sandals. 4-ps-purple shirt. 5-t-tie
- Formula (\mathcal{F}) :

- $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \rightarrow \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$

- Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday. Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit. 2-ts-tweed suit. 3-s-sandals. 4-ps-purple shirt. 5-t-tie
- Formula (\mathcal{F}) :

 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \rightarrow \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \rightarrow (ps \lor s)$

- Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \rightarrow \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \rightarrow (ps \lor s) \equiv (\neg ts \lor ps \lor s)$

- Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday. Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit. 2-ts-tweed suit. 3-s-sandals. 4-ps-purple shirt. 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \rightarrow \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \rightarrow (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \rightarrow ps$

- Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \rightarrow \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \rightarrow (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \rightarrow ps \equiv (\neg s \lor ps)$

- Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \rightarrow \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \rightarrow (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \rightarrow ps \equiv (\neg s \lor ps)$ t

- Holmes owns two suits: one black and one tweed. He always wears either a tweed suit or sandals. Whenever he wears his tweed suit and a purple shirt, he chooses to not wear a tie. He never wears the tweed suit unless he is also wearing either a purple shirt or sandals. Whenever he wears sandals, he also wears a purple shirt. Yesterday, Holmes wore a bow tie.
- Target: What else did he wear?
- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \rightarrow \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \to (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \to ps \equiv (\neg s \lor ps)$ t
- Goal (G): All satisfying solutions

- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :
 - $\neg bs \lor \neg ts$ $ts \lor s$ $(ts \land ps) \rightarrow \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)$
 - $ts \rightarrow (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \rightarrow ps \equiv (\neg s \lor ps)$ t
- Goal (G): All satisfying solutions
- SAT modeling

- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :

```
• \neg bs \lor \neg ts • ts \lor s • (ts \land ps) \rightarrow \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)
```

- $ts \rightarrow (ps \lor s) \equiv (\neg ts \lor ps \lor s)$ $s \rightarrow ps \equiv (\neg s \lor ps)$ t
- Goal (G): All satisfying solutions
- SAT modeling

```
p cnf 5 6

-1 -2 0

2 3 0

-2 -4 -5 0

-2 4 3 0

-3 4 0

5 0
```

- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :

```
• \neg bs \lor \neg ts • ts \lor s • (ts \land ps) \to \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)
• ts \to (ps \lor s) \equiv (\neg ts \lor ps \lor s) • s \to ps \equiv (\neg s \lor ps) • t
```

- Goal (G): All satisfying solutions
- SAT modeling

```
p cnf 5 6

-1 -2 0

2 3 0

-2 -4 -5 0

-2 4 3 0

-3 4 0

5 0
```

```
SAT: -1 -2 3 4 5 0
```

- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :

```
• \neg bs \lor \neg ts • ts \lor s • (ts \land ps) \to \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)
• ts \to (ps \lor s) \equiv (\neg ts \lor ps \lor s) • s \to ps \equiv (\neg s \lor ps) • t
```

- Goal (G): All satisfying solutions
- SAT modeling

```
p cnf 5 6

-1 -2 0

2 3 0

-2 -4 -5 0

-2 4 3 0

-3 4 0

5 0
```

```
SAT: -1 -2 3 4 5 0
Add: 1 2 -3 -4 -5 0
```

- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :

```
• \neg bs \lor \neg ts • ts \lor s • (ts \land ps) \to \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)
• ts \to (ps \lor s) \equiv (\neg ts \lor ps \lor s) • s \to ps \equiv (\neg s \lor ps) • t
```

- Goal (G): All satisfying solutions
- SAT modeling

5.0

```
SAT: -1 -2 3 4 5 0
Add: 1 2 -3 -4 -5 0
SAT: 1 -2 3 4 5 0
```

- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :

```
• \neg bs \lor \neg ts • ts \lor s • (ts \land ps) \to \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)
• ts \to (ps \lor s) \equiv (\neg ts \lor ps \lor s) • s \to ps \equiv (\neg s \lor ps) • t
```

- Goal (G): All satisfying solutions
- SAT modeling

```
p cnf 5 6

-1 -2 0

2 3 0

-2 -4 -5 0

-2 4 3 0

-3 4 0

5 0
```

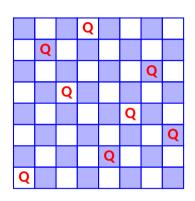
```
SAT: -1 -2 3 4 5 0
Add: 1 2 -3 -4 -5 0
SAT: 1 -2 3 4 5 0
Add: -1 2 -3 -4 -5 0
```

- Propositions: 1-bs-black suit, 2-ts-tweed suit, 3-s-sandals, 4-ps-purple shirt, 5-t-tie
- Formula (\mathcal{F}) :

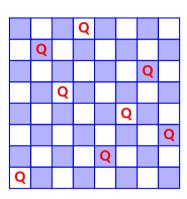
```
• \neg bs \lor \neg ts • ts \lor s • (ts \land ps) \to \neg t \equiv (\neg ts \lor \neg ps \lor \neg t)
• ts \to (ps \lor s) \equiv (\neg ts \lor ps \lor s) • s \to ps \equiv (\neg s \lor ps) • t
```

- Goal (G): All satisfying solutions
- SAT modeling

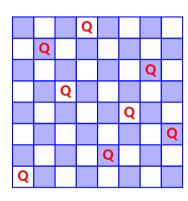
```
SAT: -1 -2 3 4 5 0
Add: 1 2 -3 -4 -5 0
SAT: 1 -2 3 4 5 0
Add: -1 2 -3 -4 -5 0
UNSAT
```



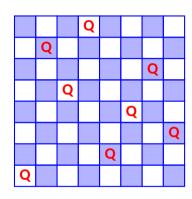
• Define x_{ij} as (i, j)th cell contains a queen



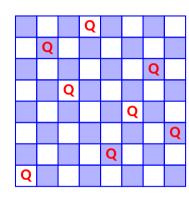
- Define x_{ij} as (i, j)th cell contains a queen
- Constraints

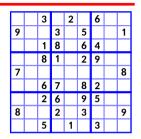


- Define x_{ij} as (i, j)th cell contains a queen
- Constraints
 - $x_{ii} \rightarrow \neg x_{ii'}$ (row)
 - $x_{ij} \rightarrow \neg x_{i'j}$ (column)
 - $x_{ij} \rightarrow \neg x_{(i+k)(j+k)}$ (diagonal)
 - $x_{ij} \rightarrow \neg x_{(i+k)(j-k)}$ (diagonal)



- Define x_{ii} as (i, j)th cell contains a queen
- Constraints
 - $x_{ii} \rightarrow \neg x_{ii'}$ (row)
 - $x_{ii} \rightarrow \neg x_{i'i}$ (column)
 - $x_{ij} \rightarrow \neg x_{(i+k)(j+k)}$ (diagonal)
 - $x_{ij} \rightarrow \neg x_{(i+k)(i-k)}$ (diagonal)
 - $\bigvee_{i} x_{ij}$ (column) $\bigvee_{i} x_{ij}$ (row)





• Define x_{ijk} as (i, j)th cell contains k

			_			
	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

- Define x_{ijk} as (i, j)th cell contains k
- Constraints:

	3		2		6		
9	_	3	_	5	Ť	Т	1
	1	8		6	4		
	8	1		2	9		
7							8
	6	7		8	2		
	2	6		9	5		
8		2		3			9
	5		1		3		

- Define x_{ijk} as (i, j)th cell contains k
- Constraints:
 - $x_{ijk} \rightarrow \neg x_{ij'k} \quad \forall i, k, j \neq j'$ (same row)

	_		_		_	_
	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

- Define x_{ijk} as (i, j)th cell contains k
- Constraints:
 - $x_{ijk} \rightarrow \neg x_{ij'k} \quad \forall i, k, j \neq j'$ (same row)
 - $x_{ijk} \rightarrow \neg x_{i'jk} \quad \forall j, k, i \neq i'$ (same column)

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

- Define x_{iik} as (i, j)th cell contains k
- Constraints:
 - $x_{ijk} \rightarrow \neg x_{ij'k} \quad \forall i, k, j \neq j'$ (same row)
 - $x_{iik} \rightarrow \neg x_{i'ik} \quad \forall j, k, i \neq i'$ (same column)
 - $x_{ijk} \rightarrow \neg x_{i'j'k} \quad \forall k, i \neq i', j \neq j', 1 \leq i, i', j, j' \leq 3$ every block

ı		_	_					
L			3		2		6	
Γ	9			3		5		1
			1	8		6	4	
Γ			8	1		2	9	
I	7							8
I				7		8	2	
I			2	6		9	5	
I	8			2		3		9
I			5		1		3	

- Define x_{ijk} as (i, j)th cell contains k
- Constraints:
 - $x_{ijk} \rightarrow \neg x_{ij'k} \quad \forall i, k, j \neq j'$ (same row)
 - $x_{ijk} \rightarrow \neg x_{i'jk} \quad \forall j, k, i \neq i'$ (same column)
 - $x_{ijk} \rightarrow \neg x_{i'j'k} \quad \forall k, i \neq i', j \neq j', 1 \leq i, i', j, j' \leq 3$ every block

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

•	$\bigvee x_{ijk}$	$\forall i, k$	(row)
	i		

- Define x_{ijk} as (i, j)th cell contains k
- Constraints:
 - $x_{ijk} \rightarrow \neg x_{ij'k} \quad \forall i, k, j \neq j'$ (same row)
 - $x_{iik} \rightarrow \neg x_{i'ik} \quad \forall j, k, i \neq i'$ (same column)
 - $x_{ijk} \rightarrow \neg x_{i'j'k} \quad \forall k, i \neq i', j \neq j', 1 \leq i, i', j, j' \leq 3$ every block

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

•
$$\bigvee_{j} x_{ijk} \quad \forall i, k \text{ (row)}$$

• $\bigvee_{i} x_{ijk} \quad \forall j, k \text{ (column)}$

- Define x_{iik} as (i, j)th cell contains k
- Constraints:
 - $x_{ijk} \rightarrow \neg x_{ij'k} \quad \forall i, k, j \neq j'$ (same row)
 - $x_{ijk} \rightarrow \neg x_{i'ik} \quad \forall j, k, i \neq i'$ (same column)
 - $x_{ijk} \rightarrow \neg x_{i'j'k} \quad \forall k, i \neq i', j \neq j', 1 < i, i', j, j' < 3$ every block

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

- $\bigvee_{j} x_{ijk} \quad \forall i, k \text{ (row)}$
- $\bigvee_{i}^{j} x_{ijk} \quad \forall j, k \text{ (column)}$ $x_{ijk}^{i} \rightarrow \neg x_{ijk'} \quad \forall i, j, k \neq k' \text{ (same cell)}$

- Define x_{iik} as (i, j)th cell contains k
- Constraints:
 - $x_{ijk} \rightarrow \neg x_{ij'k} \quad \forall i, k, j \neq j'$ (same row)
 - $x_{ijk} \rightarrow \neg x_{i'ik} \quad \forall j, k, i \neq i'$ (same column)
 - $x_{ijk} \rightarrow \neg x_{i'i'k} \quad \forall k, i \neq i', j \neq j', 1 < i, i', j, j' < 3$ every block

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

•
$$\bigvee_{j} x_{ijk} \quad \forall i, k \text{ (row)}$$

• $\bigvee_{i} x_{ijk} \quad \forall k \text{ every block}$

- $\bigvee_{j} x_{ijk} \quad \forall i, k \text{ (row)}$ $\bigvee_{i} x_{ijk} \quad \forall j, k \text{ (column)}$ $x_{ijk} \rightarrow \neg x_{ijk'} \quad \forall i, j, k \neq k' \text{ (same cell)}$

- Define x_{iik} as (i, j)th cell contains k
- Constraints:
 - $x_{ijk} \rightarrow \neg x_{ij'k} \quad \forall i, k, j \neq j'$ (same row)
 - $x_{iik} \rightarrow \neg x_{i'ik} \quad \forall j, k, i \neq i'$ (same column)
 - $x_{ijk} \rightarrow \neg x_{i'j'k} \quad \forall k, i \neq i', j \neq j', 1 < i, i', j, j' < 3$ every block

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

•
$$\bigvee_{j} x_{ijk} \quad \forall i, k \text{ (row)}$$

- $\bigvee_{j} x_{ijk} \quad \forall i, k \text{ (row)}$ $\bigvee_{i} x_{ijk} \quad \forall j, k \text{ (column)}$ $x_{ijk} \rightarrow \neg x_{ijk'} \quad \forall i, j, k \neq k' \text{ (same cell)}$

•
$$\bigvee_{i,j} x_{ijk} \quad \forall k \text{ every block}$$

• $\bigvee_{k} x_{ijk} \quad \forall i,j \text{ (every cell)}$

•
$$\bigvee_{k} x_{ijk} \quad \forall i, j \text{ (every cell)}$$

- Define x_{iik} as (i, j)th cell contains k
- Constraints:
 - $x_{ijk} \rightarrow \neg x_{ij'k} \quad \forall i, k, j \neq j'$ (same row)
 - $x_{ijk} \rightarrow \neg x_{i'jk} \quad \forall j, k, i \neq i'$ (same column)
 - $x_{ijk} \rightarrow \neg x_{i'j'k} \quad \forall k, i \neq i', j \neq j', 1 < i, i', j, j' < 3$ every block

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7	П		П			8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

•
$$\bigvee_{j} x_{ijk} \quad \forall i, k \text{ (row)}$$

- $\bigvee_{j} x_{ijk} \quad \forall i, k \text{ (row)}$ $\bigvee_{i} x_{ijk} \quad \forall j, k \text{ (column)}$ $x_{ijk} \rightarrow \neg x_{ijk'} \quad \forall i, j, k \neq k' \text{ (same cell)}$

•
$$\bigvee_{i,j} x_{ijk} \quad \forall k \text{ every block}$$

• $\bigvee_{k} x_{ijk} \quad \forall i, j \text{ (every cell)}$

- X_{133} , X_{176} , ...

SAT modeling: Langford sequence

- Given the bag of numbers $\{1, 1, 2, 2, 3, 3, ..., n, n\}$, can they be arranged in a sequence L(n) such that for $1 \le i \le n$ there are i numbers between the two occurrences of i?
 - L(4) = 41312432
 - L(3) = ?

SAT modeling: Langford sequence

- Given the bag of numbers $\{1, 1, 2, 2, 3, 3, ..., n, n\}$, can they be arranged in a sequence L(n) such that for $1 \le i \le n$ there are i numbers between the two occurrences of i?
 - L(4) = 41312432
 - L(3) = ?

	1	2	3	4	5	6
X 1	1		1			
X ₂ X ₃		1		1		
X 3			1		1	
x_4				1		1
X 5	2			2		
X ₆ X ₇		2			2	
X 7			2			2
X 8	3				3	
X ₈ X ₉		3				3

SAT modeling: Langford sequence

- Given the bag of numbers $\{1, 1, 2, 2, 3, 3, ..., n, n\}$, can they be arranged in a sequence L(n) such that for $1 \le i \le n$ there are i numbers between the two occurrences of i?
 - L(4) = 41312432
 - L(3) = ?
- Constraints:
 - $\bullet \ \mathsf{x}_1 \lor \mathsf{x}_2 \lor \mathsf{x}_3 \lor \mathsf{x}_4$
 - $\mathbf{x_k} \rightarrow \neg \mathbf{x_{k'}}$ $1 \le \mathbf{k} < \mathbf{k'} \le 4$
 - Similarly for the other numbers
 - $x_1 \lor x_5 \lor x_8$
 - $\mathbf{x}_1 \rightarrow \neg \mathbf{x}_5, \dots$
 - Similarly for the other columns

	1	2	3	4	5	6
X 1	1		1			
x_2		1		1		
X 3			1		1	
x_4				1		1
X 5	2			2		
x ₆		2			2	
X 7			2			2
X 8	3				3	
X ₈ X ₉		3				3

• Consider a parking area that has the facility to charge electric vehicles. There are m number of ports to charge the vehicles. Each port can charge one vehicle at a time. Let us assume that there are n number of vehicles. Each vehicle has an arrival time (a_i) in the parking area and an departure time (d_i) . While the vehicle is in the parking area, it needs to be chaged uninterruptedly for a given duration (e_i) . Given a set of vehicles and their arrival and departure time, does there exist a schedule such that each vehicle can be charged for its stipulated duration while it is in the parking area? A sample input will look as follows - m = 10 and

Vehicle	Arrival time	Departure time	Charging time
1	4	10	3
2	7	20	6
3	8	27	10
:	:	:	:

• Consider a parking area that has the facility to charge electric vehicles. There are m number of ports to charge the vehicles. Each port can charge one vehicle at a time. Let us assume that there are n number of vehicles. Each vehicle has an arrival time (a_i) in the parking area and an departure time (d_i) . While the vehicle is in the parking area, it needs to be chaged uninterruptedly for a given duration (e_i) . Given a set of vehicles and their arrival and departure time, does there exist a schedule such that each vehicle can be charged for its stipulated duration while it is in the parking area? A sample input will look as follows – m=10 and

Vehicle	Arrival time	Departure time	Charging time
1	4	10	3
2	7	20	6
3	8	27	10
:	:	:	:

• Develop a SAT based formulation to model the problem

• Consider a parking area that has the facility to charge electric vehicles. There are m number of ports to charge the vehicles. Each port can charge one vehicle at a time. Let us assume that there are n number of vehicles. Each vehicle has an arrival time (a_i) in the parking area and an departure time (d_i) . While the vehicle is in the parking area, it needs to be chaged uninterruptedly for a given duration (e_i) . Given a set of vehicles and their arrival and departure time, does there exist a schedule such that each vehicle can be charged for its stipulated duration while it is in the parking area? A sample input will look as follows – m=10 and

Vehicle	Arrival time	Departure time	Charging time
1	4	10	3
2	7	20	6
3	8	27	10
:	:	:	:

- Develop a SAT based formulation to model the problem
- Can there be other encoding schemes to model the problem?

• Consider a parking area that has the facility to charge electric vehicles. There are m number of ports to charge the vehicles. Each port can charge one vehicle at a time. Let us assume that there are n number of vehicles. Each vehicle has an arrival time (a_i) in the parking area and an departure time (d_i) . While the vehicle is in the parking area, it needs to be chaged uninterruptedly for a given duration (e_i) . Given a set of vehicles and their arrival and departure time, does there exist a schedule such that each vehicle can be charged for its stipulated duration while it is in the parking area? A sample input will look as follows – m=10 and

Vehicle	Arrival time	Departure time	Charging time
1	4	10	3
2	7	20	6
3	8	27	10
:	:	:	÷

- Develop a SAT based formulation to model the problem
- Can there be other encoding schemes to model the problem?
- Which encoding scheme is better?

• Consider a parking area that has the facility to charge electric vehicles. There are m number of ports to charge the vehicles. Each port can charge one vehicle at a time. Let us assume that there are n number of vehicles. Each vehicle has an arrival time (a_i) in the parking area and an departure time (d_i) . While the vehicle is in the parking area, it needs to be chaged uninterruptedly for a given duration (e_i) . Given a set of vehicles and their arrival and departure time, does there exist a schedule such that each vehicle can be charged for its stipulated duration while it is in the parking area? A sample input will look as follows – m=10 and

Vehicle	Arrival time	Departure time	Charging time
1	4	10	3
2	7	20	6
3	8	27	10
:	:	:	÷

- Develop a SAT based formulation to model the problem
- Can there be other encoding schemes to model the problem?
- Which encoding scheme is better?
- Explore the performance of different encoding schemes using various solvers.

Thank you!