CS514: Design and Analysis of Algorithms

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in
https://www.iitp.ac.in/~arijit/

- We have three containers whose sizes are 10 liters, 7 liters, and 4 liters, respectively. The 7-liter and 4-liter containers start out full of water, but the 10-liter container is initially empty. We are allowed one type of operation: pouring the contents of one container into another, stopping only when the source container is empty or the destination container is full. We want to know if there is a sequence of pourings that leaves exactly 2 liters in the 7- or 4-liter container.
- Model this as a graph problem: give a precise definition of the graph involved and state the specific question about this graph that needs to be answered. What algorithm should be applied to solve the problem?

CS514

- A factory must periodically replace its equipment because of machine wear. As a machine ages, it breaks down more frequently and so becomes more expensive to operate. Furthermore, with years its salvage value decreases.
 - Let $c_{j,k}$ denote:

the cost of buying a machine at the beginning of year jplus the cost of operating the machine over years $j, j + 1, \ldots, k - 1$ minus the salvage cost of the machine at the beginning of year k

• To find a plan that minimizes the total cost of buying, selling, and operating the machine over a planning horizon of *n* years assuming that the factory must have one machine in service at all times. Selling / procurement of machine can happen at the end of a year.

• Bus driver allocation problem: The following table illustrates a number of possible duties for the drivers of a bus company. We wish to ensure at the lowest possible cost, that at least one driver is on duty for each hour of the planning period (0900 to 1700)

Hours							
Cost	300	180	210	380	200	340	90

- A farmer wishes to transport a truckload of eggs from one city to another city through a given road network. The truck will incur a certain amount of breakage on each road segment. Let $w_{j,k}$ denote the fraction of the eggs broken if the truck traverses the road segment (j, k)
 - How should the truck be routed to minimize the total breakage?

- A bipartite graph is a graph G = (V, E) whose vertices can be partitioned into two sets (V = V₁ ∪ V₂ and V₁ ∩ V₂ = Ø) such that there are no edges between vertices in the same set (for instance, if u, v ∈ V₁, then there is no edge between u and v).
- Give a linear-time algorithm to determine whether an undirected graph is bipartite.

• For each node u in an undirected graph, let twodegree[u] be the sum of the degrees of u's neighbors. Show how to compute the entire array of twodegree[] values in linear time, given a graph in adjacency list format.

Suppose a CS curriculum consists of n courses, all of them mandatory. The prerequisite graph G has a node for each course, and an edge from course v to course w if and only if v is a prerequisite for w. Find an algorithm that works directly with this graph representation, and computes the minimum number of semesters necessary to complete the curriculum (assume that a student can take any number of courses in one semester). The running time of your algorithm should be linear.

 Give an efficient algorithm that takes as input a directed acyclic graph G = (V, E), and two vertices s, t ∈ V, and outputs the number of different directed paths from s to t in G.

- Here's a proposal for how to find the length of the shortest cycle in an undirected graph with unit edge lengths. When a back edge, say (v, w), is encountered during a depth-first search, it forms a cycle with the tree edges from w to v. The length of the cycle is level[v] level[w] + 1, where the level of a vertex is its distance in the DFS tree from the root vertex. This suggests the following algorithm:
 - 1. Do a depth-first search, keeping track of the level of each vertex.
 - 2. Each time a back edge is encountered, compute the cycle length and save it if it is smaller than the shortest one previously seen.
 - Comment on this algorithm