CS514: Design and Analysis of Algorithms

Network Flow

Arijit Mondal

Dept of CSE

arijit@iitp.ac.in
https://www.iitp.ac.in/~arijit/

A flow network G = (V, E) is a directed graph in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0. We further assume that if E contains an edge (u, v), then there is no edge (v, u) in the reverse direction

- A flow network G = (V, E) is a directed graph in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0. We further assume that if E contains an edge (u, v), then there is no edge (v, u) in the reverse direction
- Each flow network contains a source (s) and a target (t) nodes
- In case of multiple source and target nodes, dummy source and target nodes can be added

- A flow network G = (V, E) is a directed graph in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0. We further assume that if E contains an edge (u, v), then there is no edge (v, u) in the reverse direction
- Each flow network contains a source (s) and a target (t) nodes
- In case of multiple source and target nodes, dummy source and target nodes can be added
- A flow f is a real valued function $f: V \times V \rightarrow \mathbb{R}$

- A flow network G = (V, E) is a directed graph in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0. We further assume that if E contains an edge (u, v), then there is no edge (v, u) in the reverse direction
- Each flow network contains a source (s) and a target (t) nodes
- In case of multiple source and target nodes, dummy source and target nodes can be added
- A flow f is a real valued function $f: V \times V \to \mathbb{R}$
- Capacity constraint: for all $u, v \in V$ we have $0 \le f(u, v) \le c(u, v)$, c is the capacity

- A flow network G = (V, E) is a directed graph in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0. We further assume that if E contains an edge (u, v), then there is no edge (v, u) in the reverse direction
- Each flow network contains a source (s) and a target (t) nodes
- In case of multiple source and target nodes, dummy source and target nodes can be added
- A flow f is a real valued function $f \colon V \times V \to \mathbb{R}$
- Capacity constraint: for all $u, v \in V$ we have $0 \le f(u, v) \le c(u, v)$, c is the capacity
- Flow conservation: for all $u \in V \{s, t\}$ we have $\sum_{v \in V} f(u, v) = \sum_{w \in V} f(w, u)$

- A flow network G = (V, E) is a directed graph in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0. We further assume that if E contains an edge (u, v), then there is no edge (v, u) in the reverse direction
- Each flow network contains a source (s) and a target (t) nodes
- In case of multiple source and target nodes, dummy source and target nodes can be added
- A flow f is a real valued function $f \colon V \times V \to \mathbb{R}$
- Capacity constraint: for all $u, v \in V$ we have $0 \le f(u, v) \le c(u, v)$, c is the capacity
- Flow conservation: for all $u \in V \{s, t\}$ we have $\sum_{v \in V} f(u, v) = \sum_{w \in V} f(w, u)$

• Flow in a network
$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

- A flow network G = (V, E) is a directed graph in which each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0. We further assume that if E contains an edge (u, v), then there is no edge (v, u) in the reverse direction
- Each flow network contains a source (s) and a target (t) nodes
- In case of multiple source and target nodes, dummy source and target nodes can be added
- A flow f is a real valued function $f \colon V \times V \to \mathbb{R}$
- Capacity constraint: for all $u, v \in V$ we have $0 \le f(u, v) \le c(u, v)$, c is the capacity
- Flow conservation: for all $u \in V \{s, t\}$ we have $\sum_{v \in V} f(u, v) = \sum_{w \in V} f(w, u)$
- Flow in a network $|f| = \sum_{v \in V} f(s, v) \sum_{v \in V} f(v, s)$
- Goal is to find maximum f for the given network G

Ford Fulkerson Method

- Steps: Ford-Fulkerson(*G*, *s*, *t*)
 - 1. Initialize flow f to 0
 - 2. while there exists an augmenting path p in the residual network G_f
 - 3. Augment flow f in path p
 - 4. return f

Ford Fulkerson Method

- Steps: Ford-Fulkerson(*G*, *s*, *t*)
 - 1. Initialize flow f to 0
 - 2. while there exists an augmenting path p in the residual network G_f
 - 3. Augment flow f in path p

4. return f

• For a flow network G = (V, E) with source *s*, target *t* and a flow of *f*, consider a pair of vertices *u*, *v*, residual capacity will be

$$c_f(u, v) = \begin{cases} c(u, v) - f(u, v) & \text{ if } (u, v) \in E \\ f(v, u) & \text{ if } (v, u) \in E \end{cases}$$

Ford Fulkerson Method: pseudocode

- Steps: Ford-Fulkerson(G, s, t)
 - 1. for each edge $(u, v) \in E$ do (u, v).f = 0
 - 2. while there exists an augmenting path p in the residual network G_f
 - 3. $c_f(p) = \min\{c_f(u, v) : (u, v) \in p\}$
 - 4. for each edge $(u, v) \in p$ do
 - if $(u, v) \in E$ then

$$(u, v).f = (u, v).f + c_f(p)$$

else

$$(v, u).f = (v, u).f - c_f(p)$$

5.

6. 7.

8

6

Augmentation

• If f is a flow in G and f' is a flow in the corresponding residual network G_f , we define $f \uparrow f'$ the augmentation of flow f by f', to be a function from $V \times V$ to \mathbb{R} defined by $(f \uparrow f') = \begin{cases} f(u, v) + f'(u, v) - f'(v, u) & \text{if } (u, v) \in E \\ 0 & \text{otherwise} \end{cases}$

Augmentation

• If f is a flow in G and f' is a flow in the corresponding residual network G_{f} , we define $f \uparrow f'$ the augmentation of flow f by f', to be a function from $V \times V$ to \mathbb{R} defined by

$$(f \uparrow f') = \begin{cases} f(u, v) + f'(u, v) - f'(v, u) & \text{if } (u, v) \in E\\ 0 & \text{otherwise} \end{cases}$$

• Let G = (V, E) be a flow network with source s and sink t and let f be a flow in G. Let G_f be the residual network of G induced by f, and let f' be a flow in G_f . Then, $f \uparrow f' = |f| + |f'|$ holds

• We have,

 $(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$

• We have,

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u) \\ \ge f(u, v) + f'(u, v) - f(u, v)$$

• We have,

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u) \geq f(u, v) + f'(u, v) - f(u, v) = f'(u, v)$$

• We have,

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u) \geq f(u, v) + f'(u, v) - f(u, v) = f'(u, v) \geq 0$$

• We have,

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u) \geq f(u, v) + f'(u, v) - f(u, v) = f'(u, v) \geq 0$$

• We have

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

• We have,

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u) \geq f(u, v) + f'(u, v) - f(u, v) = f'(u, v) \geq 0$$

• We have $(f \uparrow f')(u, v) = f(u)$

$$\begin{array}{ll} f')(u,v) &= f(u,v) + f'(u,v) - f'(v,u) \\ &\leq f(u,v) + f'(u,v) \end{array}$$

• We have,

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u) \ge f(u, v) + f'(u, v) - f(u, v) = f'(u, v) \ge 0$$

• We have $(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$ $\leq f(u, v) + f'(u, v)$ $\leq f(u, v) + c_f(u, v)$

• We have,

$$(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

$$\geq f(u, v) + f'(u, v) - f(u, v)$$

$$= f'(u, v)$$

$$\geq 0$$

• We have $(f \uparrow f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$ $\leq f(u, v) + f'(u, v)$ $\leq f(u, v) + c_f(u, v)$ = f(u, v) + c(u, v) - f(u, v)= c(u, v)
• We have,

 $\sum_{v \in V} (f \uparrow f')(u, v) - \sum_{v \in V} (f \uparrow f')(v, u)$

$$\begin{split} &\sum_{v \in V} (f \uparrow f')(u, v) - \sum_{v \in V} (f \uparrow f')(v, u) \\ &= \sum_{v \in V_i(u)} (f \uparrow f')(u, v) - \sum_{v \in V_e(u)} (f \uparrow f')(v, u) \end{split}$$

$$\begin{split} &\sum_{v \in V} (f \uparrow f')(u, v) - \sum_{v \in V} (f \uparrow f')(v, u) \\ &= \sum_{v \in V_l(u)} (f \uparrow f')(u, v) - \sum_{v \in V_e(u)} (f \uparrow f')(v, u) \\ &= \sum_{v \in V_l(u)} (f(u, v) + f'(u, v) - f'(v, u)) - \sum_{v \in V_e(u)} (f(v, u) + f'(v, u) - f'(u, v)) \end{split}$$

$$\begin{split} &\sum_{v \in V} (f \uparrow f')(u, v) - \sum_{v \in V} (f \uparrow f')(v, u) \\ &= \sum_{v \in V_l(u)} (f \uparrow f')(u, v) - \sum_{v \in V_e(u)} (f \uparrow f')(v, u) \\ &= \sum_{v \in V_l(u)} (f(u, v) + f'(u, v) - f'(v, u)) - \sum_{v \in V_e(u)} (f(v, u) + f'(v, u) - f'(u, v)) \\ &= \sum_{v \in V_l(u)} f(u, v) + \sum_{v \in V_l(u)} f'(u, v) - \sum_{v \in V_l(u)} f'(v, u) - \sum_{v \in V_e(u)} f(v, u) - \sum_{v \in V_e(u)} f'(v, u) + \sum_{v \in V_e(u)} f'(u, v) \end{split}$$

$$\begin{split} &\sum_{v \in V} (f \uparrow f')(u, v) - \sum_{v \in V} (f \uparrow f')(v, u) \\ &= \sum_{v \in V_l(u)} (f \uparrow f')(u, v) - \sum_{v \in V_e(u)} (f \uparrow f')(v, u) \\ &= \sum_{v \in V_l(u)} (f(u, v) + f'(u, v) - f'(v, u)) - \sum_{v \in V_e(u)} (f(v, u) + f'(v, u) - f'(u, v)) \\ &= \sum_{v \in V_l(u)} f(u, v) + \sum_{v \in V_l(u)} f'(u, v) - \sum_{v \in V_l(u)} f'(v, u) - \sum_{v \in V_e(u)} f(v, u) - \sum_{v \in V_e(u)} f'(v, u) + \sum_{v \in V_e(u)} f'(u, v) \\ &= \sum_{v \in V_l(u)} f(u, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_l(u)} f'(u, v) + \sum_{v \in V_e(u)} f'(u, v) - \sum_{v \in V_e(u)} f'(v, u) - \sum_{v \in V_e(u)} f'(v, u) \\ &= \sum_{v \in V_l(u)} f(u, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_l(u)} f'(u, v) + \sum_{v \in V_e(u)} f'(u, v) - \sum_{v \in V_e(u)} f'(v, u) \\ &= \sum_{v \in V_l(u)} f(u, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_l(u)} f'(u, v) + \sum_{v \in V_e(u)} f'(v, u) - \sum_{v \in V_e(u)} f'(v, u) \\ &= \sum_{v \in V_l(u)} f(v, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_l(u)} f'(u, v) + \sum_{v \in V_e(u)} f'(v, u) - \sum_{v \in V_e(u)} f'(v, u) \\ &= \sum_{v \in V_l(u)} f(v, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_e(u)} f'(u, v) + \sum_{v \in V_e(u)} f'(v, v) - \sum_{v \in V_e(u)} f'(v, u) \\ &= \sum_{v \in V_l(u)} f(v, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_e(u)} f'(v, v) + \sum_{v \in V_e(u)} f'(v, v) \\ &= \sum_{v \in V_l(u)} f(v, v) - \sum_{v \in V_e(u)} f(v, v) + \sum_{v \in V_e(u)} f'(v, v) + \sum_{v \in V_e(u)} f'(v, v) \\ &= \sum_{v \in V_e(u)} f(v, v) + \sum_{v \in V_e(u)} f(v, v) + \sum_{v \in V_e(u)} f'(v, v) + \sum_{v \in V_e(u)} f'(v, v) \\ &= \sum_{v \in V_e(u)} f(v, v) + \sum_{v \in V_e(u)} f(v, v) \\ &= \sum_{v \in V_e(u)} f(v, v) + \sum_{v \in V_e(v, v)} f(v, v) + \sum_{v \in V_e(v, v)}$$

$$\begin{split} &\sum_{v \in V} (f \uparrow f')(u, v) - \sum_{v \in V} (f \uparrow f')(v, u) \\ &= \sum_{v \in V_l(u)} (f \uparrow f')(u, v) - \sum_{v \in V_e(u)} (f \uparrow f')(v, u) \\ &= \sum_{v \in V_l(u)} (f(u, v) + f'(u, v) - f'(v, u)) - \sum_{v \in V_e(u)} (f(v, u) + f'(v, u) - f'(u, v)) \\ &= \sum_{v \in V_l(u)} f(u, v) + \sum_{v \in V_l(u)} f'(u, v) - \sum_{v \in V_l(u)} f'(v, u) - \sum_{v \in V_e(u)} f(v, u) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_e(u)} f'(u, v) \\ &= \sum_{v \in V_l(u)} f(u, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_l(u)} f'(u, v) + \sum_{v \in V_e(u)} f'(u, v) - \sum_{v \in V_l(u)} f'(v, u) - \sum_{v \in V_e(u)} f'(v, u) \\ &= \sum_{v \in V_l(u)} f(u, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_l(u) \cup V_e(u)} f'(u, v) - \sum_{v \in V_l(u) \cup V_e(u)} f'(v, u) \\ &= \sum_{v \in V_l(u)} f(u, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_l(u) \cup V_e(u)} f'(u, v) - \sum_{v \in V_l(u) \cup V_e(u)} f'(v, u) \\ &= \sum_{v \in V_l(u)} f(u, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_l(u) \cup V_e(u)} f'(u, v) - \sum_{v \in V_l(u) \cup V_e(u)} f'(v, u) \\ &= \sum_{v \in V_l(u)} f(u, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_l(u) \cup V_e(u)} f'(u, v) - \sum_{v \in V_l(u) \cup V_e(u)} f'(v, u) \\ &= \sum_{v \in V_l(u)} f(u, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_l(u) \cup V_e(u)} f'(u, v) - \sum_{v \in V_l(u) \cup V_e(u)} f'(v, u) \\ &= \sum_{v \in V_l(u)} f(u, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_l(u) \cup V_e(u)} f'(u, v) - \sum_{v \in V_l(u) \cup V_e(u)} f'(v, u) \\ &= \sum_{v \in V_l(u)} f(v, v) - \sum_{v \in V_e(u)} f(v, v) + \sum_{v \in V_e(u)} f'(v, v) \\ &= \sum_{v \in V_e(u)} f(v, v) - \sum_{v \in V_e(u)} f(v, v) + \sum_{v \in V_e(u)} f'(v, v) \\ &= \sum_{v \in V_e(u)} f(v, v) + \sum_{v \in V_e(u)} f(v, v) \\ &= \sum_{v \in V_e(u)} f(v, v) + \sum_{v \in V_e(u)} f(v, v) \\ &= \sum_{v \in V_e(u)} f(v, v) + \sum_{v \in V_e(u)} f(v, v) \\ &= \sum_{v \in V_e(u)} f(v, v) + \sum_{v \in V_e(u)} f(v, v) \\ &= \sum_{$$

• We have,

$$\begin{split} &\sum_{v \in V} (f \uparrow f')(u, v) - \sum_{v \in V} (f \uparrow f')(v, u) \\ &= \sum_{v \in V_l(u)} (f \uparrow f')(u, v) - \sum_{v \in V_e(u)} (f \uparrow f')(v, u) \\ &= \sum_{v \in V_l(u)} (f(u, v) + f'(u, v) - f'(v, u)) - \sum_{v \in V_e(u)} (f(v, u) + f'(v, u) - f'(u, v)) \\ &= \sum_{v \in V_l(u)} f(u, v) + \sum_{v \in V_l(u)} f'(u, v) - \sum_{v \in V_l(u)} f'(v, u) - \sum_{v \in V_e(u)} f(v, u) - \sum_{v \in V_e(u)} f'(v, u) + \sum_{v \in V_e(u)} f'(u, v) \\ &= \sum_{v \in V_l(u)} f(u, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_l(u)} f'(u, v) + \sum_{v \in V_e(u)} f'(u, v) - \sum_{v \in V_l(u)} f'(v, u) - \sum_{v \in V_e(u)} f'(v, u) \\ &= \sum_{v \in V_l(u)} f(u, v) - \sum_{v \in V_e(u)} f(v, u) + \sum_{v \in V_l(u) \cup V_e(u)} f'(u, v) - \sum_{v \in V_l(u) \cup V_e(u)} f'(v, u) \end{split}$$

• Choose u = s

CS514

• A cut (S, T) of a flow network G = (V, E) is a partition of V into S and T = V - S such that $s \in S$ and $t \in T$

- A cut (S, T) of a flow network G = (V, E) is a partition of V into S and T = V S such that $s \in S$ and $t \in T$
- If f is flow, then the net flow f(S, T) across the cut (S, T) is defined to be

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

- A cut (S, T) of a flow network G = (V, E) is a partition of V into S and T = V S such that $s \in S$ and $t \in T$
- If f is flow, then the net flow f(S, T) across the cut (S, T) is defined to be

$$f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

• The capacity of the cut (S, T) is $c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$

- A cut (S, T) of a flow netwrok G = (V, E) is a partition of V into S and T = V S such that $s \in S$ and $t \in T$
- If f is flow, then the net flow f(S, T) across the cut (S, T) is defined to be

$$(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

- The capacity of the cut (S, T) is $c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)$
 - A minimum cut of a netwrok is a cut whose capacity is minimum over all cuts of the network

cS514

• Let f be a flow in a flow network G with source s and sink t, and let (S, T) be any cut of G. Then the net flow across (S, T) is f(S, T) = |f|

- Let f be a flow in a flow network G with source s and sink t, and let (S, T) be any cut of G. Then the net flow across (S, T) is f(S, T) = |f|
- **Proof**: For any vertex $u \in V \{s, t\}$, using flow conservation condition, we can say

$$\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) = 0$$

- Let f be a flow in a flow network G with source s and sink t, and let (S, T) be any cut of G. Then the net flow across (S, T) is f(S, T) = |f|
- **Proof**: For any vertex $u \in V \{s, t\}$, using flow conservation condition, we can say

$$\sum_{\mathbf{v}\in \mathbf{V}} f(\mathbf{u},\mathbf{v}) - \sum_{\mathbf{v}\in \mathbf{V}} f(\mathbf{v},\mathbf{u}) = 0$$

Flow at node s can be defined as

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

- Let f be a flow in a flow network G with source s and sink t, and let (S, T) be any cut of G. Then the net flow across (S, T) is f(S, T) = |f|
- **Proof**: For any vertex $u \in V \{s, t\}$, using flow conservation condition, we can say

$$\sum_{\mathbf{v}\in \mathbf{V}} f(\mathbf{u},\mathbf{v}) - \sum_{\mathbf{v}\in \mathbf{V}} f(\mathbf{v},\mathbf{u}) = 0$$

Flow at node s can be defined as

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$

CS514

- Let f be a flow in a flow network G with source s and sink t, and let (S, T) be any cut of G. Then the net flow across (S, T) is f(S, T) = |f|
- **Proof**: For any vertex $u \in V \{s, t\}$, using flow conservation condition, we can say

$$\sum_{\mathbf{v}\in \mathbf{V}} f(\mathbf{u},\mathbf{v}) - \sum_{\mathbf{v}\in \mathbf{V}} f(\mathbf{v},\mathbf{u}) = 0$$

Flow at node s can be defined as

$$\begin{aligned} |f| &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\ &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \sum_{v \in V} f(u, v) - \sum_{u \in S - \{s\}} \sum_{v \in V} f(v, u) \end{aligned}$$

- Let f be a flow in a flow network G with source s and sink t, and let (S, T) be any cut of G. Then the net flow across (S, T) is f(S, T) = |f|
- **Proof**: For any vertex $u \in V \{s, t\}$, using flow conservation condition, we can say

$$\sum_{\mathbf{v}\in \mathbf{V}} f(\mathbf{u},\mathbf{v}) - \sum_{\mathbf{v}\in \mathbf{V}} f(\mathbf{v},\mathbf{u}) = 0$$

Flow at node s can be defined as

$$\begin{aligned} &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right) \\ &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \sum_{v \in V} f(u, v) - \sum_{u \in S - \{s\}} \sum_{v \in V} f(v, u) \right) \\ &= \sum_{v \in V} \left(f(s, v) + \sum_{u \in S - \{s\}} f(u, v) \right) - \sum_{v \in V} \left(f(v, s) + \sum_{u \in S - \{s\}} f(v, u) \right) \end{aligned}$$

f

- Let f be a flow in a flow network G with source s and sink t, and let (S, T) be any cut of G. Then the net flow across (S, T) is f(S, T) = |f|
- **Proof**: For any vertex $u \in V \{s, t\}$, using flow conservation condition, we can say

$$\sum_{\mathbf{v}\in \mathbf{V}} f(\mathbf{u},\mathbf{v}) - \sum_{\mathbf{v}\in \mathbf{V}} f(\mathbf{v},\mathbf{u}) = 0$$

Flow at node s can be defined as

$$f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$
$$= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{u \in S - \{s\}} \sum_{v \in V} f(u, v) - \sum_{u \in S - \{s\}} \sum_{v \in V} f(v, u))$$
$$= \sum_{v \in V} \left(f(s, v) + \sum_{u \in S - \{s\}} f(u, v) \right) - \sum_{v \in V} \left(f(v, s) + \sum_{u \in S - \{s\}} f(v, u) \right)$$
$$= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u)$$

1

 $|f| = \sum \sum f(u, v) - \sum \sum f(v, u)$ $\overline{v \in V} \ \overline{u \in S} \qquad \qquad \overline{v \in V} \ \overline{u \in S}$

 $|f| = \sum \sum f(u, v) - \sum \sum f(v, u) \qquad [V = S \cup T]$ $\overline{v \in V} \ \overline{u \in S} \qquad \overline{v \in V} \ \overline{u \in S}$

$$\begin{aligned} |f| &= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) \qquad [V = S \cup T] \\ &= \sum_{v \in S} \sum_{u \in S} f(u, v) + \sum_{v \in T} \sum_{u \in S} f(u, v) - \sum_{v \in S} \sum_{u \in S} f(v, u) - \sum_{v \in T} \sum_{u \in S} f(v, u) \end{aligned}$$

$$\begin{aligned} f| &= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) & [V = S \cup T] \\ &= \sum_{v \in S} \sum_{u \in S} f(u, v) + \sum_{v \in T} \sum_{u \in S} f(u, v) - \sum_{v \in S} \sum_{u \in S} f(v, u) - \sum_{v \in T} \sum_{u \in S} f(v, u) \\ &= \sum_{v \in T} \sum_{u \in S} f(u, v) - \sum_{v \in T} \sum_{u \in S} f(v, u) + \left(\sum_{v \in S} \sum_{u \in S} f(u, v) - \sum_{v \in S} \sum_{u \in S} f(v, u) \right) \end{aligned}$$

$$\begin{aligned} |f| &= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) \qquad [V = S \cup T] \\ &= \sum_{v \in S} \sum_{u \in S} f(u, v) + \sum_{v \in T} \sum_{u \in S} f(u, v) - \sum_{v \in S} \sum_{u \in S} f(v, u) - \sum_{v \in T} \sum_{u \in S} f(v, u) \\ &= \sum_{v \in T} \sum_{u \in S} f(u, v) - \sum_{v \in T} \sum_{u \in S} f(v, u) + \left(\sum_{v \in S} \sum_{u \in S} f(u, v) - \sum_{v \in S} \sum_{u \in S} f(v, u) \right) \\ &= \sum_{v \in T} \sum_{u \in S} f(u, v) - \sum_{v \in T} \sum_{u \in S} f(v, u) \end{aligned}$$

$$\begin{aligned} |f| &= \sum_{v \in V} \sum_{u \in S} f(u, v) - \sum_{v \in V} \sum_{u \in S} f(v, u) \qquad [V = S \cup T] \\ &= \sum_{v \in S} \sum_{u \in S} f(u, v) + \sum_{v \in T} \sum_{u \in S} f(u, v) - \sum_{v \in S} \sum_{u \in S} f(v, u) - \sum_{v \in T} \sum_{u \in S} f(v, u) \\ &= \sum_{v \in T} \sum_{u \in S} f(u, v) - \sum_{v \in T} \sum_{u \in S} f(v, u) + \left(\sum_{v \in S} \sum_{u \in S} f(u, v) - \sum_{v \in S} \sum_{u \in S} f(v, u) \right) \\ &= \sum_{v \in T} \sum_{u \in S} f(u, v) - \sum_{v \in T} \sum_{u \in S} f(v, u) \\ &= f(S, T) \end{aligned}$$

• The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G

- The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G
- Proof:
 - |f| = f(S, T)

- The value of any flow *f* in a flow network *G* is bounded from above by the capacity of any cut of *G*
- Proof:
 - |f| = f(S, T)

$$=\sum_{u\in S}\sum_{v\in T}f(u,v)-\sum_{u\in S}\sum_{v\in T}f(v,u)$$

- The value of any flow *f* in a flow network *G* is bounded from above by the capacity of any cut of *G*
- Proof:
 - |f| = f(S, T)

$$= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

$$\leq \sum_{u\in S}\sum_{v\in T}f(u,v)$$

- The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G
- Proof:
 - |f| = f(S, T)

$$= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

 $\leq \sum_{u\in S}\sum_{v\in T}f(u,v)$

$$\leq \sum_{u\in S}\sum_{v\in T}c(u,v)$$

- The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G
- Proof:
 - |f| = f(S, T)

$$= \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)$$

 $\leq \sum_{u \in S} \sum_{v \in T} f(u, v)$

$$\leq \sum_{u\in S}\sum_{v\in T}c(u,v)$$

$$= c(S, T)$$

Max-flow min-cut

- If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:
 - f is a maximum flow in G
 - The residual network G_f contains no augmenting paths
 - |f| = c(S, T) for some cut (S, T) of G

Edmonds-Karp algorithm

- Augmenting path with fewest edges needs to be chosen
- Breadth-first search can be used to find augmenting path in the residual network
- Time complexity becomes $O(VE^2)$

Matching

• Given an undirected graph G = (V, E), a subset of edges $M \subseteq E$ is a matching if each node of the graph appears at most one edge of M.

Matching

• Given an undirected graph G = (V, E), a subset of edges $M \subseteq E$ is a matching if each node of the graph appears at most one edge of M.

Bipartite matching

- A graph is bipartite if the nodes can be partitioned into two subsets X and Y such that every edge connects a node in X to a node in Y
- Given a bipartite graph $G = (X \cup Y, E)$, find a matching (*M*) that has the maximum cardinality ie., |M| is maximum.

Bipartite matching

- A graph is bipartite if the nodes can be partitioned into two subsets X and Y such that every edge connects a node in X to a node in Y
- Given a bipartite graph $G = (X \cup Y, E)$, find a matching (*M*) that has the maximum cardinality ie., |M| is maximum.

Edge-disjoint paths

Two paths are edge-disjoint if they have no common edge. Given a directed graph G = (V, E) and two nodes s and t, find the maximum number of edge-disjoint s → t paths.

Edge-disjoint paths

Two paths are edge-disjoint if they have no common edge. Given a directed graph G = (V, E) and two nodes s and t, find the maximum number of edge-disjoint s → t paths.

Network connectivity

• Given a digraph G = (V, E) and two nodes s and t, find min number of edges whose removal disconnects t from s.

Circulation with demands

- Given a directed graph V = (G, E) with non-negative edge capacities c(e) and node supply and demands d(v), a circulation is a function that satisfies
 - For each $e \in E$: $0 \le f(e) \le c(e)$ (f(.) flow along edge e)
 - For each $v \in V$: $\sum_{e \text{ in to } v} f(e) \sum_{e \text{ out of } v} f(e) = d(v)$

Does a circulation exist?

• $\mathit{d}(\mathit{v}) > 0$ - demand, $\mathit{d}(\mathit{v}) < 0$ - supply, $\mathit{d}(\mathit{v}) = 0$ - transshipment node

Circulation with lower bounds

 The problem is the same as previous one except that each edge has some lower bound on the flow. Hence, capacity along an edge will be specified as [c_{lb}(u, v), c_{ub}(u, v)]. What modifications are to be made in the graph to apply previous strategy?

Survey design

- Design a survey asking n_1 consumers about n_2 products that meets the following requirements, if possible.
 - Consumer *i* can survey about product *j* if they own it
 - Consumer *i* can be asked between c_i and c'_i questions
 - Ask between p_j and p'_j consumers about product j

Thank you!