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e A flow network G = (V,E) is a directed graph in which each edge (u,v) € E has a
nonnegative capacity c(u, v) > 0. We further assume that if E contains an edge (u, v),
then there is no edge (v, u) in the reverse direction
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e A flow network G = (V,E) is a directed graph in which each edge (u,v) € E has a
nonnegative capacity c(u, v) > 0. We further assume that if E contains an edge (u, v),
then there is no edge (v, u) in the reverse direction

e Each flow network contains a source (s) and a target (t) nodes
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added

e A flow fis a real valued function f: Vx V— R
e Capacity constraint: for all u,v € V we have 0 < flu, v) < c(u, v), cis the capacity
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e A flow network G = (V,E) is a directed graph in which each edge (u,v) € E has a

nonnegative capacity c(u, v) > 0. We further assume that if E contains an edge (u, v),
then there is no edge (v, u) in the reverse direction

Each flow network contains a source (s) and a target (t) nodes

In case of multiple source and target nodes, dummy source and target nodes can be
added

A flow fis a real valued function f: Vx V— R
Capacity constraint: for all u,v € V we have 0 < flu, v) < ¢(u, v), cis the capacity
Flow conservation: for all u € V— {s, t} we have Z flu,v) = Z flw, u)

veV weV

Flow in a network |f] = Z f(s, v) — Z flv,s)
veV veVv
Goal is to find maximum f for the given network G
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e Steps: Ford-Fulkerson(G, s, t)
1. Initialize flow fto 0
2. while there exists an augmenting path p in the residual network Gf
3. Augment flow fin path p
4. return f
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e Steps: Ford-Fulkerson(G, s, t)
1. Initialize flow fto 0
2. while there exists an augmenting path p in the residual network Gf
3. Augment flow fin path p
4. return f

e For a flow network G = (V, E) with source s, target t and a flow of f, consider a pair
of vertices u, v, residual capacity will be

R LR O A
o flv, u) if (v,u) € E



Ford Fulkerson Method: pseudocode
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e Steps: Ford-Fulkerson(G, s, t)
1. for each edge (u,v) € Edo (u,v).f=0
2. while there exists an augmenting path p in the residual network Gy

3. cAp) = min{cdu,v): (u,v) €p}
4 for each edge (u,v) € p do

5 if (u,v) € E then

6. (u,v).f= (u,v).f+ cdp)

7 else

8 (v,u).f= (v, u).f— cdp)
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e If fis a flow in G and f" is a flow in the corresponding residual network Gy, we define
f1 f' the augmentation of flow f by f’, to be a function from V x V to R defined by

(F1F) = flu,v) + f'(u,v) — f(v,u) if (u,v) € E
B otherwise
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e If fis a flow in G and f’ is a flow in the corresponding residual network Gy, we define
f1 ' the augmentation of flow by ', to be a function from V x V to R defined by

(ftf) = {f(u, v) + f'(u,v) — f'(vu) if (u,v) € E
otherwise
e Let G = (V,E) be a flow network with source s and sink t and let f be a flow in G.

Let Gf be the residual network of G induced by f, and let f' be a flow in Gz Then,
1 =|f]+ |f| holds
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e We have,
(fT ) (u,v) = fu,v)+ f'(u,v)—f(v,u)
> flu,v) + f'(u,v) — flu, v)
= f'(u,v)
>0
e We have
(ft ) (u,v) = Ffu,v)+ f'(u,v)— f(v,u)
< flu,v) + f'(u,v)
flu,v) + cdu, v)

A
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e We have,
(fT ) (u,v) = fu,v)+ f'(u,v)—f(v,u)
> flu,v) + f'(u,v) — f(u, v)
= f'(u,v)
>0

e We have

(F1 £)(u, v)

I IA A
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e We have,

S () (uv) =D (F ) (v, u)

veV vev

= > (F )= Y (Fr ) (vu)
ve Vi(u) ve Ve(u)

= Z (f(ua V) + f/(U, V) - f/(V, U)) - Z (f(V7 U) + f/(V7 U) - f’(U, V))
ve Vi(u) vE Ve(u)

= Z Z ' (u, v) Z (v, u) Z
ve Vi(u) ve Vi(u) ve Vi(u) ve Ve(

= Z flu,v) — Z v, Z ' (u, v) Z
ve Vi(u) ve Ve(u) ve Vi(u) vEVe(u

Z flu,v) — Z flv,u) + Z ' (u,v) —

ve V(u) ve Ve(u) ve Vi(u)UVe(u)

Z (v, u) +
(u) ve Ve(u)
f'(u, v) Z (v, u)
) veVi(u)
Z (v, u)
ve V) (u)UVe(u)

Z ' (u, v)

ve Ve(u)

Z (v, u)

ve Ve(u)
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e We have,

D (FH ) (wv) =D (F1 F)(v,u)

veV veV

= Y 1w - Y (1))
ve Vi(u) ve Ve(u)

= > (Auv)+Ffluv) = Fflvu) = > (Av,u)+f(v,u) = F(u,v)
ve Vi(u) ve Ve(u)

= Z Z ' (u, v) Z (v, u) Z
ve Vi(u) ve Vi(u) ve Vi(u) ve Ve(

= Z flu,v) — Z v, Z ' (u, v) Z
ve Vi(u) ve Ve(u) veVi(u) veVe(u

= Z flu,v) — Z flv,u) + Z ' (u,v) —
ve V(u) ve Ve(u) ve Vi(u)UVe(u)

e Choose u=s

Z (v, u) +
(u) ve Ve(u)
f'(u, v) Z (v, u)
) veVi(u)
Z (v, u)
ve V) (u)UVe(u)

Z ' (u, v)

ve Ve(u)

Z (v, u)

ve Ve(u)
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e Acut (5 T) of a flow netwrok G = (V| E) is a partition of Vinto Sand T=V—-S§
suchthat se Sand te T

o If fis flow, then the net flow (S, T) across the cut (S, T) is defined to be
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A cut (S5, T) of a flow netwrok G = (V, E) is a partition of Vinto Sand T= V-5
suchthat se Sand te T

If fis flow, then the net flow f(S, T) across the cut (S, T) is defined to be

AST)=> ) Auv)=) > fivu)

ueS veT ueS veT
The capacity of the cut (S, T) is ¢(S5, T) = Z Z c(u, v)
ueS veT
A minimum cut of a netwrok is a cut whose capacity is minimum over all cuts of the
network
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Let 7 be a flow in a tlow network G with source s and sink ¢, and let (5, /') be any cut
of G. Then the net flow across (S, T) is (S, T) = |f]
Proof: For any vertex u € V — {s, t}, using flow conservation condition, we can say

Z:f(u7 V) —Zf(v, u)=0

veV veV
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Let 7 be a flow in a tlow network G with source s and sink ¢, and let (5, /') be any cut
of G. Then the net flow across (S, T) is (S, T) = |f]
Proof: For any vertex u € V — {s, t}, using flow conservation condition, we can say

Z:f(u7 V) —Zf(v, u)=0

veV veV
Flow at node s can be defined as

=Y flsv) =Y Av+ > <Z flu,v) = Ay, u))

veV veV ueS—{s} \veV veV
:Zf(s,v)—Zf(v,s)—i— Z Zf(uv Z vau
veV vev ueS—{s} veV ueS—{s} veV
:Z fs,v) + Z flu, v) —Z flv,s) + Z flv, u)
veV ueS—{s} veV ucS—{s}

—Zquv ZZf(vu

veV ueS veV ues
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=S 3 A3 Au ) =SS v =D v
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® \We have
=D > Auv=> > fivy) [V=SUT
veV ues veV ues
:ZZf(u,v)—l—ZZf(u,v)—ZZf(v,u)—ZZf(v,u)

veS ues veT uesS veS uesS veT uesS

:ZZf(u,v)fZZf(v,u)Jr (ZZ"(U,V)ZZK‘@“)

veT ues veT uesS veS uesS veS uesS
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® \We have
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® We have
=D > Auv=> > fivy) [V=SUT

veVues veV ues

:ZZf(u,v)—l—ZZf(u, v) —ZZf(v,u) —ZZ)‘(V,U)
veS ues veT uesS veS ues veT uesS

:ZZf(u,v) *ZZf(V,U)Jr (ZZ)‘(U,V) ZZf(v,u))
veT uesS veT ues veS ues veS ues

=D > fuv)=> Y fAv,u)
veT ues veT ues

=S, T)
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e The value of any flow fin a flow network G is bounded from above by the capacity of

any cut of G

® Proof:

il =AST)

:ZZf(u,v)fZZf(wu)

ueSveT

< ZZ}‘(U, v)

ueSveT

< ZZC(U, v)

ueSveT

=c(S5,T)

ueSveT



Max-flow min-cut
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e If fis a flow in a flow network G = (V, E) with source s and sink t, then the following
conditions are equivalent:
e fis a maximum flow in G
e The residual network Gf contains no augmenting paths

o |fl=c(S, T) for some cut (S, T) of G



Edmonds-Karp algorithm
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e Augmenting path with fewest edges needs to be chosen
e Breadth-first search can be used to find augmenting path in the residual network

e Time complexity becomes O(VE?)



Matching
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e Given an undirected graph G = (V, E), a subset of edges M C E is a matching if each
node of the graph appears at most one edge of M.
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Bipartite matching
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e A graph is bipartite if the nodes can be partitioned into two subsets X and Y such that
every edge connects a node in X to a node in Y

e Given a bipartite graph G = (XU Y, E), find a matching (M) that has the maximum
cardinality ie., |M| is maximum.

N
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e A graph is bipartite if the nodes can be partitioned into two subsets X and Y such that
every edge connects a node in X to a node in Y

e Given a bipartite graph G = (XU Y, E), find a matching (M) that has the maximum
cardinality ie., |M| is maximum.



Edge-disjoint paths
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e Two paths are edge-disjoint if they have no common edge. Given a directed graph
G = (V, E) and two nodes s and t, find the maximum number of edge-disjoint s ~~ t

=



Edge-disjoint paths
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e Two paths are edge-disjoint if they have no common edge. Given a directed graph
G = (V, E) and two nodes s and t, find the maximum number of edge-disjoint s ~~ t
paths.




Network connectivity
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e Given a digraph G = (V, E) and two nodes s and t, find min number of edges whose
removal disconnects t from s.




Circulation with demands
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Given a directed graph V = (G, E) with non-negative edge capacities c(e) and node
supply and demands d(v), a circulation is a function that satisfies

e Foreachec E: 0 < fle) < c(e) (f{.) — flow along edge €)

e Foreachve V: Z fle) — Z fle) = d(v)

einto v e out of v
Does a circulation exist?

d(v) > 0 - demand, d(v) < 0 - supply, d(v) = 0 - transshipment node




Circulation with lower bounds
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e The problem is the same as previous one except that each edge has some lower bound
on the flow. Hence, capacity along an edge will be specified as [c(u, v), cup(u, v)].
What modifications are to be made in the graph to apply previous strategy?

C [2.7] @



Survey design
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e Design a survey asking n; consumers about ny products that meets the following re-
quirements, if possible.
e Consumer j can survey about product j if they own it
e Consumer i can be asked between ¢; and ¢, questions
e Ask between p; and pJ’- consumers about product j
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