
IIT Patna 1

CS514: Design and Analysis of Algorithms

Network Flow

Arijit Mondal
Dept of CSE

arijit@iitp.ac.in
https://www.iitp.ac.in/~arijit/

https://www.iitp.ac.in/~arijit/

CS
51

4

2 2

Network Flow
• A flow network G = (V,E) is a directed graph in which each edge (u, v) ∈ E has a

nonnegative capacity c(u, v) ≥ 0. We further assume that if E contains an edge (u, v),
then there is no edge (v, u) in the reverse direction

• Each flow network contains a source (s) and a target (t) nodes
• In case of multiple source and target nodes, dummy source and target nodes can be

added
• A flow f is a real valued function f : V × V → R
• Capacity constraint: for all u, v ∈ V we have 0 ≤ f(u, v) ≤ c(u, v), c is the capacity
• Flow conservation: for all u ∈ V − {s, t} we have

∑
v∈V

f(u, v) =
∑
w∈V

f(w, u)

• Flow in a network |f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s)

• Goal is to find maximum f for the given network G

CS
51

4

2 2

Network Flow
• A flow network G = (V,E) is a directed graph in which each edge (u, v) ∈ E has a

nonnegative capacity c(u, v) ≥ 0. We further assume that if E contains an edge (u, v),
then there is no edge (v, u) in the reverse direction

• Each flow network contains a source (s) and a target (t) nodes
• In case of multiple source and target nodes, dummy source and target nodes can be

added

• A flow f is a real valued function f : V × V → R
• Capacity constraint: for all u, v ∈ V we have 0 ≤ f(u, v) ≤ c(u, v), c is the capacity
• Flow conservation: for all u ∈ V − {s, t} we have

∑
v∈V

f(u, v) =
∑
w∈V

f(w, u)

• Flow in a network |f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s)

• Goal is to find maximum f for the given network G

CS
51

4

2 2

Network Flow
• A flow network G = (V,E) is a directed graph in which each edge (u, v) ∈ E has a

nonnegative capacity c(u, v) ≥ 0. We further assume that if E contains an edge (u, v),
then there is no edge (v, u) in the reverse direction

• Each flow network contains a source (s) and a target (t) nodes
• In case of multiple source and target nodes, dummy source and target nodes can be

added
• A flow f is a real valued function f : V × V → R

• Capacity constraint: for all u, v ∈ V we have 0 ≤ f(u, v) ≤ c(u, v), c is the capacity
• Flow conservation: for all u ∈ V − {s, t} we have

∑
v∈V

f(u, v) =
∑
w∈V

f(w, u)

• Flow in a network |f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s)

• Goal is to find maximum f for the given network G

CS
51

4

2 2

Network Flow
• A flow network G = (V,E) is a directed graph in which each edge (u, v) ∈ E has a

nonnegative capacity c(u, v) ≥ 0. We further assume that if E contains an edge (u, v),
then there is no edge (v, u) in the reverse direction

• Each flow network contains a source (s) and a target (t) nodes
• In case of multiple source and target nodes, dummy source and target nodes can be

added
• A flow f is a real valued function f : V × V → R
• Capacity constraint: for all u, v ∈ V we have 0 ≤ f(u, v) ≤ c(u, v), c is the capacity

• Flow conservation: for all u ∈ V − {s, t} we have
∑
v∈V

f(u, v) =
∑
w∈V

f(w, u)

• Flow in a network |f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s)

• Goal is to find maximum f for the given network G

CS
51

4

2 2

Network Flow
• A flow network G = (V,E) is a directed graph in which each edge (u, v) ∈ E has a

nonnegative capacity c(u, v) ≥ 0. We further assume that if E contains an edge (u, v),
then there is no edge (v, u) in the reverse direction

• Each flow network contains a source (s) and a target (t) nodes
• In case of multiple source and target nodes, dummy source and target nodes can be

added
• A flow f is a real valued function f : V × V → R
• Capacity constraint: for all u, v ∈ V we have 0 ≤ f(u, v) ≤ c(u, v), c is the capacity
• Flow conservation: for all u ∈ V − {s, t} we have

∑
v∈V

f(u, v) =
∑
w∈V

f(w, u)

• Flow in a network |f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s)

• Goal is to find maximum f for the given network G

CS
51

4

2 2

Network Flow
• A flow network G = (V,E) is a directed graph in which each edge (u, v) ∈ E has a

nonnegative capacity c(u, v) ≥ 0. We further assume that if E contains an edge (u, v),
then there is no edge (v, u) in the reverse direction

• Each flow network contains a source (s) and a target (t) nodes
• In case of multiple source and target nodes, dummy source and target nodes can be

added
• A flow f is a real valued function f : V × V → R
• Capacity constraint: for all u, v ∈ V we have 0 ≤ f(u, v) ≤ c(u, v), c is the capacity
• Flow conservation: for all u ∈ V − {s, t} we have

∑
v∈V

f(u, v) =
∑
w∈V

f(w, u)

• Flow in a network |f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s)

• Goal is to find maximum f for the given network G

CS
51

4

2 2

Network Flow
• A flow network G = (V,E) is a directed graph in which each edge (u, v) ∈ E has a

nonnegative capacity c(u, v) ≥ 0. We further assume that if E contains an edge (u, v),
then there is no edge (v, u) in the reverse direction

• Each flow network contains a source (s) and a target (t) nodes
• In case of multiple source and target nodes, dummy source and target nodes can be

added
• A flow f is a real valued function f : V × V → R
• Capacity constraint: for all u, v ∈ V we have 0 ≤ f(u, v) ≤ c(u, v), c is the capacity
• Flow conservation: for all u ∈ V − {s, t} we have

∑
v∈V

f(u, v) =
∑
w∈V

f(w, u)

• Flow in a network |f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s)

• Goal is to find maximum f for the given network G

CS
51

4

3 3

Ford Fulkerson Method
• Steps: Ford-Fulkerson(G, s, t)

1. Initialize flow f to 0
2. while there exists an augmenting path p in the residual network Gf
3. Augment flow f in path p
4. return f

• For a flow network G = (V,E) with source s, target t and a flow of f, consider a pair
of vertices u, v, residual capacity will be

cf(u, v) =
{

c(u, v)− f(u, v) if (u, v) ∈ E
f(v, u) if (v, u) ∈ E

CS
51

4

3 3

Ford Fulkerson Method
• Steps: Ford-Fulkerson(G, s, t)

1. Initialize flow f to 0
2. while there exists an augmenting path p in the residual network Gf
3. Augment flow f in path p
4. return f

• For a flow network G = (V,E) with source s, target t and a flow of f, consider a pair
of vertices u, v, residual capacity will be

cf(u, v) =
{

c(u, v)− f(u, v) if (u, v) ∈ E
f(v, u) if (v, u) ∈ E

CS
51

4

4 4

Ford Fulkerson Method: pseudocode
• Steps: Ford-Fulkerson(G, s, t)

1. for each edge (u, v) ∈ E do (u, v).f = 0

2. while there exists an augmenting path p in the residual network Gf
3. cf(p) = min{cf(u, v) : (u, v) ∈ p }
4. for each edge (u, v) ∈ p do
5. if (u, v) ∈ E then
6. (u, v).f = (u, v).f + cf(p)
7. else
8. (v, u).f = (v, u).f − cf(p)

S

A

B

C

D

E

T

3

3

4

2

10 1

5

1 1

2

5

S

A

B

C

D

E

T

S

A

B

C

D

E

T

2

3

4

1

10 1

4

1

2

4

1

1

1

1

1

CS
51

4

5 5

Netwrok flow - 1

S

A

B

C

D

E

T

3

3

4

2

10 1

5

1 1

2

5
S

A

B

C

D

E

T

S

A

B

C

D

E

T

2

3

4

1

10 1

4

1

2

4

1

1

1

1

1

CS
51

4

5 5

Netwrok flow - 1

S

A

B

C

D

E

T

3

3

4

2

10 1

5

1 1

2

5
S

A

B

C

D

E

T

S

A

B

C

D

E

T

2

3

4

1

10 1

4

1

2

4

1

1

1

1

1

CS
51

4

5 5

Netwrok flow - 1

S

A

B

C

D

E

T

2

3

4

1

10 1

4

1

2

4

1

1

1

1

1

S

A

B

C

D

E

T

S

A

B

C

D

E

T

1

3

4

10 1

4

2

3

2

1

1

2

2

1

CS
51

4

6 6

Netwrok flow - 2

S

A

B

C

D

E

T

2

3

4

1

10 1

4

1

2

4

1

1

1

1

1

S

A

B

C

D

E

T

S

A

B

C

D

E

T

1

3

4

10 1

4

2

3

2

1

1

2

2

1

CS
51

4

6 6

Netwrok flow - 2

S

A

B

C

D

E

T

2

3

4

1

10 1

4

1

2

4

1

1

1

1

1

S

A

B

C

D

E

T

S

A

B

C

D

E

T

1

3

4

10 1

4

2

3

2

1

1

2

2

1

CS
51

4

6 6

Netwrok flow - 2

S

A

B

C

D

E

T

1

3

4

10 1

4

2

3

2

1

1

2

2

1

S

A

B

C

D

E

T

S

A

B

C

D

E

T

1

3

3

10 1

3

1

1

3

2

2

1

2

2 1

1

CS
51

4

7 7

Netwrok flow - 3

S

A

B

C

D

E

T

1

3

4

10 1

4

2

3

2

1

1

2

2

1 S

A

B

C

D

E

T

S

A

B

C

D

E

T

1

3

3

10 1

3

1

1

3

2

2

1

2

2 1

1

CS
51

4

7 7

Netwrok flow - 3

S

A

B

C

D

E

T

1

3

4

10 1

4

2

3

2

1

1

2

2

1 S

A

B

C

D

E

T

S

A

B

C

D

E

T

1

3

3

10 1

3

1

1

3

2

2

1

2

2 1

1

CS
51

4

7 7

Netwrok flow - 3

S

A

B

C

D

E

T

1

3

3

10 1

3

1

1

3

2

2

1

2

2 1

1

S

A

B

C

D

E

T

S

A

B

C

D

E

T

1

2

3

10

3

1
3

2

2

1

2

2 2

1

1

1

CS
51

4

8 8

Netwrok flow - 4

S

A

B

C

D

E

T

1

3

3

10 1

3

1

1

3

2

2

1

2

2 1

1

S

A

B

C

D

E

T

S

A

B

C

D

E

T

1

2

3

10

3

1
3

2

2

1

2

2 2

1

1

1

CS
51

4

8 8

Netwrok flow - 4

S

A

B

C

D

E

T

1

3

3

10 1

3

1

1

3

2

2

1

2

2 1

1

S

A

B

C

D

E

T

S

A

B

C

D

E

T

1

2

3

10

3

1
3

2

2

1

2

2 2

1

1

1

CS
51

4

8 8

Netwrok flow - 4

S

A

B

C

D

E

T

1

2

3

10

3

1
3

2

2

1

2

2 2

1

1

1

S

A

B

C

D

E

T

S

A

B

C

D

E

T

1

2
10

1

5

5

1

2

2 2

4

1

1

CS
51

4

9 9

Netwrok flow - 5

S

A

B

C

D

E

T

1

2

3

10

3

1
3

2

2

1

2

2 2

1

1

1
S

A

B

C

D

E

T

S

A

B

C

D

E

T

1

2
10

1

5

5

1

2

2 2

4

1

1

CS
51

4

9 9

Netwrok flow - 5

S

A

B

C

D

E

T

1

2

3

10

3

1
3

2

2

1

2

2 2

1

1

1
S

A

B

C

D

E

T

S

A

B

C

D

E

T

1

2
10

1

5

5

1

2

2 2

4

1

1

CS
51

4

9 9

Netwrok flow - 5

CS
51

4

10 10

Augmentation
• If f is a flow in G and f ′ is a flow in the corresponding residual network Gf, we define

f ↑ f ′ the augmentation of flow f by f ′, to be a function from V × V to R defined by

(f ↑ f ′) =
{

f(u, v) + f ′(u, v)− f ′(v, u) if (u, v) ∈ E
0 otherwise

• Let G = (V,E) be a flow network with source s and sink t and let f be a flow in G.
Let Gf be the residual network of G induced by f, and let f ′ be a flow in Gf. Then,
f ↑ f ′ = |f|+ |f ′| holds

CS
51

4

10 10

Augmentation
• If f is a flow in G and f ′ is a flow in the corresponding residual network Gf, we define

f ↑ f ′ the augmentation of flow f by f ′, to be a function from V × V to R defined by

(f ↑ f ′) =
{

f(u, v) + f ′(u, v)− f ′(v, u) if (u, v) ∈ E
0 otherwise

• Let G = (V,E) be a flow network with source s and sink t and let f be a flow in G.
Let Gf be the residual network of G induced by f, and let f ′ be a flow in Gf. Then,
f ↑ f ′ = |f|+ |f ′| holds

CS
51

4

11 11

Proof - 1
• We have,

(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)

≥ f(u, v) + f ′(u, v)− f(u, v)
= f ′(u, v)
≥ 0

• We have
(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)

≤ f(u, v) + f ′(u, v)
≤ f(u, v) + cf(u, v)
= f(u, v) + c(u, v)− f(u, v)
= c(u, v)

CS
51

4

11 11

Proof - 1
• We have,

(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)
≥ f(u, v) + f ′(u, v)− f(u, v)

= f ′(u, v)
≥ 0

• We have
(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)

≤ f(u, v) + f ′(u, v)
≤ f(u, v) + cf(u, v)
= f(u, v) + c(u, v)− f(u, v)
= c(u, v)

CS
51

4

11 11

Proof - 1
• We have,

(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)
≥ f(u, v) + f ′(u, v)− f(u, v)
= f ′(u, v)

≥ 0

• We have
(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)

≤ f(u, v) + f ′(u, v)
≤ f(u, v) + cf(u, v)
= f(u, v) + c(u, v)− f(u, v)
= c(u, v)

CS
51

4

11 11

Proof - 1
• We have,

(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)
≥ f(u, v) + f ′(u, v)− f(u, v)
= f ′(u, v)
≥ 0

• We have
(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)

≤ f(u, v) + f ′(u, v)
≤ f(u, v) + cf(u, v)
= f(u, v) + c(u, v)− f(u, v)
= c(u, v)

CS
51

4

11 11

Proof - 1
• We have,

(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)
≥ f(u, v) + f ′(u, v)− f(u, v)
= f ′(u, v)
≥ 0

• We have
(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)

≤ f(u, v) + f ′(u, v)
≤ f(u, v) + cf(u, v)
= f(u, v) + c(u, v)− f(u, v)
= c(u, v)

CS
51

4

11 11

Proof - 1
• We have,

(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)
≥ f(u, v) + f ′(u, v)− f(u, v)
= f ′(u, v)
≥ 0

• We have
(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)

≤ f(u, v) + f ′(u, v)

≤ f(u, v) + cf(u, v)
= f(u, v) + c(u, v)− f(u, v)
= c(u, v)

CS
51

4

11 11

Proof - 1
• We have,

(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)
≥ f(u, v) + f ′(u, v)− f(u, v)
= f ′(u, v)
≥ 0

• We have
(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)

≤ f(u, v) + f ′(u, v)
≤ f(u, v) + cf(u, v)

= f(u, v) + c(u, v)− f(u, v)
= c(u, v)

CS
51

4

11 11

Proof - 1
• We have,

(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)
≥ f(u, v) + f ′(u, v)− f(u, v)
= f ′(u, v)
≥ 0

• We have
(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)

≤ f(u, v) + f ′(u, v)
≤ f(u, v) + cf(u, v)
= f(u, v) + c(u, v)− f(u, v)
= c(u, v)

CS
51

4

12 12

Proof - 2
• We have,∑

v∈V
(f ↑ f ′)(u, v)−

∑
v∈V

(f ↑ f ′)(v, u)

=
∑

v∈Vl(u)
(f ↑ f ′)(u, v)−

∑
v∈Ve(u)

(f ↑ f ′)(v, u)

=
∑

v∈Vl(u)
(f(u, v) + f ′(u, v)− f ′(v, u))−

∑
v∈Ve(u)

(f(v, u) + f ′(v, u)− f ′(u, v))

=
∑

v∈Vl(u)
f(u, v) +

∑
v∈Vl(u)

f ′(u, v)−
∑

v∈Vl(u)
f ′(v, u)−

∑
v∈Ve(u)

f(v, u)−
∑

v∈Ve(u)
f ′(v, u) +

∑
v∈Ve(u)

f ′(u, v)

=
∑

v∈Vl(u)
f(u, v)−

∑
v∈Ve(u)

f(v, u) +
∑

v∈Vl(u)
f ′(u, v) +

∑
v∈Ve(u)

f ′(u, v)−
∑

v∈Vl(u)
f ′(v, u)−

∑
v∈Ve(u)

f ′(v, u)

=
∑

v∈Vl(u)
f(u, v)−

∑
v∈Ve(u)

f(v, u) +
∑

v∈Vl(u)∪Ve(u)
f ′(u, v)−

∑
v∈Vl(u)∪Ve(u)

f ′(v, u)

• Choose u = s

CS
51

4

12 12

Proof - 2
• We have,∑

v∈V
(f ↑ f ′)(u, v)−

∑
v∈V

(f ↑ f ′)(v, u)

=
∑

v∈Vl(u)
(f ↑ f ′)(u, v)−

∑
v∈Ve(u)

(f ↑ f ′)(v, u)

=
∑

v∈Vl(u)
(f(u, v) + f ′(u, v)− f ′(v, u))−

∑
v∈Ve(u)

(f(v, u) + f ′(v, u)− f ′(u, v))

=
∑

v∈Vl(u)
f(u, v) +

∑
v∈Vl(u)

f ′(u, v)−
∑

v∈Vl(u)
f ′(v, u)−

∑
v∈Ve(u)

f(v, u)−
∑

v∈Ve(u)
f ′(v, u) +

∑
v∈Ve(u)

f ′(u, v)

=
∑

v∈Vl(u)
f(u, v)−

∑
v∈Ve(u)

f(v, u) +
∑

v∈Vl(u)
f ′(u, v) +

∑
v∈Ve(u)

f ′(u, v)−
∑

v∈Vl(u)
f ′(v, u)−

∑
v∈Ve(u)

f ′(v, u)

=
∑

v∈Vl(u)
f(u, v)−

∑
v∈Ve(u)

f(v, u) +
∑

v∈Vl(u)∪Ve(u)
f ′(u, v)−

∑
v∈Vl(u)∪Ve(u)

f ′(v, u)

• Choose u = s

CS
51

4

12 12

Proof - 2
• We have,∑

v∈V
(f ↑ f ′)(u, v)−

∑
v∈V

(f ↑ f ′)(v, u)

=
∑

v∈Vl(u)
(f ↑ f ′)(u, v)−

∑
v∈Ve(u)

(f ↑ f ′)(v, u)

=
∑

v∈Vl(u)
(f(u, v) + f ′(u, v)− f ′(v, u))−

∑
v∈Ve(u)

(f(v, u) + f ′(v, u)− f ′(u, v))

=
∑

v∈Vl(u)
f(u, v) +

∑
v∈Vl(u)

f ′(u, v)−
∑

v∈Vl(u)
f ′(v, u)−

∑
v∈Ve(u)

f(v, u)−
∑

v∈Ve(u)
f ′(v, u) +

∑
v∈Ve(u)

f ′(u, v)

=
∑

v∈Vl(u)
f(u, v)−

∑
v∈Ve(u)

f(v, u) +
∑

v∈Vl(u)
f ′(u, v) +

∑
v∈Ve(u)

f ′(u, v)−
∑

v∈Vl(u)
f ′(v, u)−

∑
v∈Ve(u)

f ′(v, u)

=
∑

v∈Vl(u)
f(u, v)−

∑
v∈Ve(u)

f(v, u) +
∑

v∈Vl(u)∪Ve(u)
f ′(u, v)−

∑
v∈Vl(u)∪Ve(u)

f ′(v, u)

• Choose u = s

CS
51

4

12 12

Proof - 2
• We have,∑

v∈V
(f ↑ f ′)(u, v)−

∑
v∈V

(f ↑ f ′)(v, u)

=
∑

v∈Vl(u)
(f ↑ f ′)(u, v)−

∑
v∈Ve(u)

(f ↑ f ′)(v, u)

=
∑

v∈Vl(u)
(f(u, v) + f ′(u, v)− f ′(v, u))−

∑
v∈Ve(u)

(f(v, u) + f ′(v, u)− f ′(u, v))

=
∑

v∈Vl(u)
f(u, v) +

∑
v∈Vl(u)

f ′(u, v)−
∑

v∈Vl(u)
f ′(v, u)−

∑
v∈Ve(u)

f(v, u)−
∑

v∈Ve(u)
f ′(v, u) +

∑
v∈Ve(u)

f ′(u, v)

=
∑

v∈Vl(u)
f(u, v)−

∑
v∈Ve(u)

f(v, u) +
∑

v∈Vl(u)
f ′(u, v) +

∑
v∈Ve(u)

f ′(u, v)−
∑

v∈Vl(u)
f ′(v, u)−

∑
v∈Ve(u)

f ′(v, u)

=
∑

v∈Vl(u)
f(u, v)−

∑
v∈Ve(u)

f(v, u) +
∑

v∈Vl(u)∪Ve(u)
f ′(u, v)−

∑
v∈Vl(u)∪Ve(u)

f ′(v, u)

• Choose u = s

CS
51

4

12 12

Proof - 2
• We have,∑

v∈V
(f ↑ f ′)(u, v)−

∑
v∈V

(f ↑ f ′)(v, u)

=
∑

v∈Vl(u)
(f ↑ f ′)(u, v)−

∑
v∈Ve(u)

(f ↑ f ′)(v, u)

=
∑

v∈Vl(u)
(f(u, v) + f ′(u, v)− f ′(v, u))−

∑
v∈Ve(u)

(f(v, u) + f ′(v, u)− f ′(u, v))

=
∑

v∈Vl(u)
f(u, v) +

∑
v∈Vl(u)

f ′(u, v)−
∑

v∈Vl(u)
f ′(v, u)−

∑
v∈Ve(u)

f(v, u)−
∑

v∈Ve(u)
f ′(v, u) +

∑
v∈Ve(u)

f ′(u, v)

=
∑

v∈Vl(u)
f(u, v)−

∑
v∈Ve(u)

f(v, u) +
∑

v∈Vl(u)
f ′(u, v) +

∑
v∈Ve(u)

f ′(u, v)−
∑

v∈Vl(u)
f ′(v, u)−

∑
v∈Ve(u)

f ′(v, u)

=
∑

v∈Vl(u)
f(u, v)−

∑
v∈Ve(u)

f(v, u) +
∑

v∈Vl(u)∪Ve(u)
f ′(u, v)−

∑
v∈Vl(u)∪Ve(u)

f ′(v, u)

• Choose u = s

CS
51

4

12 12

Proof - 2
• We have,∑

v∈V
(f ↑ f ′)(u, v)−

∑
v∈V

(f ↑ f ′)(v, u)

=
∑

v∈Vl(u)
(f ↑ f ′)(u, v)−

∑
v∈Ve(u)

(f ↑ f ′)(v, u)

=
∑

v∈Vl(u)
(f(u, v) + f ′(u, v)− f ′(v, u))−

∑
v∈Ve(u)

(f(v, u) + f ′(v, u)− f ′(u, v))

=
∑

v∈Vl(u)
f(u, v) +

∑
v∈Vl(u)

f ′(u, v)−
∑

v∈Vl(u)
f ′(v, u)−

∑
v∈Ve(u)

f(v, u)−
∑

v∈Ve(u)
f ′(v, u) +

∑
v∈Ve(u)

f ′(u, v)

=
∑

v∈Vl(u)
f(u, v)−

∑
v∈Ve(u)

f(v, u) +
∑

v∈Vl(u)
f ′(u, v) +

∑
v∈Ve(u)

f ′(u, v)−
∑

v∈Vl(u)
f ′(v, u)−

∑
v∈Ve(u)

f ′(v, u)

=
∑

v∈Vl(u)
f(u, v)−

∑
v∈Ve(u)

f(v, u) +
∑

v∈Vl(u)∪Ve(u)
f ′(u, v)−

∑
v∈Vl(u)∪Ve(u)

f ′(v, u)

• Choose u = s

CS
51

4

12 12

Proof - 2
• We have,∑

v∈V
(f ↑ f ′)(u, v)−

∑
v∈V

(f ↑ f ′)(v, u)

=
∑

v∈Vl(u)
(f ↑ f ′)(u, v)−

∑
v∈Ve(u)

(f ↑ f ′)(v, u)

=
∑

v∈Vl(u)
(f(u, v) + f ′(u, v)− f ′(v, u))−

∑
v∈Ve(u)

(f(v, u) + f ′(v, u)− f ′(u, v))

=
∑

v∈Vl(u)
f(u, v) +

∑
v∈Vl(u)

f ′(u, v)−
∑

v∈Vl(u)
f ′(v, u)−

∑
v∈Ve(u)

f(v, u)−
∑

v∈Ve(u)
f ′(v, u) +

∑
v∈Ve(u)

f ′(u, v)

=
∑

v∈Vl(u)
f(u, v)−

∑
v∈Ve(u)

f(v, u) +
∑

v∈Vl(u)
f ′(u, v) +

∑
v∈Ve(u)

f ′(u, v)−
∑

v∈Vl(u)
f ′(v, u)−

∑
v∈Ve(u)

f ′(v, u)

=
∑

v∈Vl(u)
f(u, v)−

∑
v∈Ve(u)

f(v, u) +
∑

v∈Vl(u)∪Ve(u)
f ′(u, v)−

∑
v∈Vl(u)∪Ve(u)

f ′(v, u)

• Choose u = s

CS
51

4

13 13

Cut & Flow-1
• A cut (S,T) of a flow netwrok G = (V,E) is a partition of V into S and T = V − S

such that s ∈ S and t ∈ T

• If f is flow, then the net flow f(S,T) across the cut (S,T) is defined to be
f(S,T) =

∑
u∈S

∑
v∈T

f(u, v)−
∑
u∈S

∑
v∈T

f(v, u)

• The capacity of the cut (S,T) is c(S,T) =
∑
u∈S

∑
v∈T

c(u, v)

• A minimum cut of a netwrok is a cut whose capacity is minimum over all cuts of the
network

CS
51

4

13 13

Cut & Flow-1
• A cut (S,T) of a flow netwrok G = (V,E) is a partition of V into S and T = V − S

such that s ∈ S and t ∈ T
• If f is flow, then the net flow f(S,T) across the cut (S,T) is defined to be

f(S,T) =
∑
u∈S

∑
v∈T

f(u, v)−
∑
u∈S

∑
v∈T

f(v, u)

• The capacity of the cut (S,T) is c(S,T) =
∑
u∈S

∑
v∈T

c(u, v)

• A minimum cut of a netwrok is a cut whose capacity is minimum over all cuts of the
network

CS
51

4

13 13

Cut & Flow-1
• A cut (S,T) of a flow netwrok G = (V,E) is a partition of V into S and T = V − S

such that s ∈ S and t ∈ T
• If f is flow, then the net flow f(S,T) across the cut (S,T) is defined to be

f(S,T) =
∑
u∈S

∑
v∈T

f(u, v)−
∑
u∈S

∑
v∈T

f(v, u)

• The capacity of the cut (S,T) is c(S,T) =
∑
u∈S

∑
v∈T

c(u, v)

• A minimum cut of a netwrok is a cut whose capacity is minimum over all cuts of the
network

CS
51

4

13 13

Cut & Flow-1
• A cut (S,T) of a flow netwrok G = (V,E) is a partition of V into S and T = V − S

such that s ∈ S and t ∈ T
• If f is flow, then the net flow f(S,T) across the cut (S,T) is defined to be

f(S,T) =
∑
u∈S

∑
v∈T

f(u, v)−
∑
u∈S

∑
v∈T

f(v, u)

• The capacity of the cut (S,T) is c(S,T) =
∑
u∈S

∑
v∈T

c(u, v)

• A minimum cut of a netwrok is a cut whose capacity is minimum over all cuts of the
network

CS
51

4

14 14

Cut & Flow-2
• Let f be a flow in a flow network G with source s and sink t, and let (S,T) be any cut

of G. Then the net flow across (S,T) is f(S,T) = |f|

• Proof: For any vertex u ∈ V − {s, t}, using flow conservation condition, we can say∑
v∈V

f(u, v)−
∑
v∈V

f(v, u) = 0

• Flow at node s can be defined as

|f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑

u∈S−{s}

(∑
v∈V

f(u, v)−
∑
v∈V

f(v, u)
)

=
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑

u∈S−{s}

∑
v∈V

f(u, v)−
∑

u∈S−{s}

∑
v∈V

f(v, u))

=
∑
v∈V

f(s, v) +
∑

u∈S−{s}
f(u, v)

−
∑
v∈V

f(v, s) +
∑

u∈S−{s}
f(v, u)


=
∑
v∈V

∑
u∈S

f(u, v)−
∑
v∈V

∑
u∈S

f(v, u)

CS
51

4

14 14

Cut & Flow-2
• Let f be a flow in a flow network G with source s and sink t, and let (S,T) be any cut

of G. Then the net flow across (S,T) is f(S,T) = |f|
• Proof: For any vertex u ∈ V − {s, t}, using flow conservation condition, we can say∑

v∈V
f(u, v)−

∑
v∈V

f(v, u) = 0

• Flow at node s can be defined as

|f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑

u∈S−{s}

(∑
v∈V

f(u, v)−
∑
v∈V

f(v, u)
)

=
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑

u∈S−{s}

∑
v∈V

f(u, v)−
∑

u∈S−{s}

∑
v∈V

f(v, u))

=
∑
v∈V

f(s, v) +
∑

u∈S−{s}
f(u, v)

−
∑
v∈V

f(v, s) +
∑

u∈S−{s}
f(v, u)


=
∑
v∈V

∑
u∈S

f(u, v)−
∑
v∈V

∑
u∈S

f(v, u)

CS
51

4

14 14

Cut & Flow-2
• Let f be a flow in a flow network G with source s and sink t, and let (S,T) be any cut

of G. Then the net flow across (S,T) is f(S,T) = |f|
• Proof: For any vertex u ∈ V − {s, t}, using flow conservation condition, we can say∑

v∈V
f(u, v)−

∑
v∈V

f(v, u) = 0

• Flow at node s can be defined as

|f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s)

+
∑

u∈S−{s}

(∑
v∈V

f(u, v)−
∑
v∈V

f(v, u)
)

=
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑

u∈S−{s}

∑
v∈V

f(u, v)−
∑

u∈S−{s}

∑
v∈V

f(v, u))

=
∑
v∈V

f(s, v) +
∑

u∈S−{s}
f(u, v)

−
∑
v∈V

f(v, s) +
∑

u∈S−{s}
f(v, u)


=
∑
v∈V

∑
u∈S

f(u, v)−
∑
v∈V

∑
u∈S

f(v, u)

CS
51

4

14 14

Cut & Flow-2
• Let f be a flow in a flow network G with source s and sink t, and let (S,T) be any cut

of G. Then the net flow across (S,T) is f(S,T) = |f|
• Proof: For any vertex u ∈ V − {s, t}, using flow conservation condition, we can say∑

v∈V
f(u, v)−

∑
v∈V

f(v, u) = 0

• Flow at node s can be defined as

|f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑

u∈S−{s}

(∑
v∈V

f(u, v)−
∑
v∈V

f(v, u)
)

=
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑

u∈S−{s}

∑
v∈V

f(u, v)−
∑

u∈S−{s}

∑
v∈V

f(v, u))

=
∑
v∈V

f(s, v) +
∑

u∈S−{s}
f(u, v)

−
∑
v∈V

f(v, s) +
∑

u∈S−{s}
f(v, u)


=
∑
v∈V

∑
u∈S

f(u, v)−
∑
v∈V

∑
u∈S

f(v, u)

CS
51

4

14 14

Cut & Flow-2
• Let f be a flow in a flow network G with source s and sink t, and let (S,T) be any cut

of G. Then the net flow across (S,T) is f(S,T) = |f|
• Proof: For any vertex u ∈ V − {s, t}, using flow conservation condition, we can say∑

v∈V
f(u, v)−

∑
v∈V

f(v, u) = 0

• Flow at node s can be defined as

|f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑

u∈S−{s}

(∑
v∈V

f(u, v)−
∑
v∈V

f(v, u)
)

=
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑

u∈S−{s}

∑
v∈V

f(u, v)−
∑

u∈S−{s}

∑
v∈V

f(v, u))

=
∑
v∈V

f(s, v) +
∑

u∈S−{s}
f(u, v)

−
∑
v∈V

f(v, s) +
∑

u∈S−{s}
f(v, u)


=
∑
v∈V

∑
u∈S

f(u, v)−
∑
v∈V

∑
u∈S

f(v, u)

CS
51

4

14 14

Cut & Flow-2
• Let f be a flow in a flow network G with source s and sink t, and let (S,T) be any cut

of G. Then the net flow across (S,T) is f(S,T) = |f|
• Proof: For any vertex u ∈ V − {s, t}, using flow conservation condition, we can say∑

v∈V
f(u, v)−

∑
v∈V

f(v, u) = 0

• Flow at node s can be defined as

|f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑

u∈S−{s}

(∑
v∈V

f(u, v)−
∑
v∈V

f(v, u)
)

=
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑

u∈S−{s}

∑
v∈V

f(u, v)−
∑

u∈S−{s}

∑
v∈V

f(v, u))

=
∑
v∈V

f(s, v) +
∑

u∈S−{s}
f(u, v)

−
∑
v∈V

f(v, s) +
∑

u∈S−{s}
f(v, u)



=
∑
v∈V

∑
u∈S

f(u, v)−
∑
v∈V

∑
u∈S

f(v, u)

CS
51

4

14 14

Cut & Flow-2
• Let f be a flow in a flow network G with source s and sink t, and let (S,T) be any cut

of G. Then the net flow across (S,T) is f(S,T) = |f|
• Proof: For any vertex u ∈ V − {s, t}, using flow conservation condition, we can say∑

v∈V
f(u, v)−

∑
v∈V

f(v, u) = 0

• Flow at node s can be defined as

|f| =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑

u∈S−{s}

(∑
v∈V

f(u, v)−
∑
v∈V

f(v, u)
)

=
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑

u∈S−{s}

∑
v∈V

f(u, v)−
∑

u∈S−{s}

∑
v∈V

f(v, u))

=
∑
v∈V

f(s, v) +
∑

u∈S−{s}
f(u, v)

−
∑
v∈V

f(v, s) +
∑

u∈S−{s}
f(v, u)


=
∑
v∈V

∑
u∈S

f(u, v)−
∑
v∈V

∑
u∈S

f(v, u)

CS
51

4

15 15

Cut & Flow-3
• We have

|f| =
∑
v∈V

∑
u∈S

f(u, v)−
∑
v∈V

∑
u∈S

f(v, u)

[V = S ∪ T]

=
∑
v∈S

∑
u∈S

f(u, v) +
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈S

∑
u∈S

f(v, u)−
∑
v∈T

∑
u∈S

f(v, u)

=
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈T

∑
u∈S

f(v, u) +
(∑

v∈S

∑
u∈S

f(u, v)−
∑
v∈S

∑
u∈S

f(v, u)
)

=
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈T

∑
u∈S

f(v, u)

= f(S,T)

CS
51

4

15 15

Cut & Flow-3
• We have

|f| =
∑
v∈V

∑
u∈S

f(u, v)−
∑
v∈V

∑
u∈S

f(v, u) [V = S ∪ T]

=
∑
v∈S

∑
u∈S

f(u, v) +
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈S

∑
u∈S

f(v, u)−
∑
v∈T

∑
u∈S

f(v, u)

=
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈T

∑
u∈S

f(v, u) +
(∑

v∈S

∑
u∈S

f(u, v)−
∑
v∈S

∑
u∈S

f(v, u)
)

=
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈T

∑
u∈S

f(v, u)

= f(S,T)

CS
51

4

15 15

Cut & Flow-3
• We have

|f| =
∑
v∈V

∑
u∈S

f(u, v)−
∑
v∈V

∑
u∈S

f(v, u) [V = S ∪ T]

=
∑
v∈S

∑
u∈S

f(u, v) +
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈S

∑
u∈S

f(v, u)−
∑
v∈T

∑
u∈S

f(v, u)

=
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈T

∑
u∈S

f(v, u) +
(∑

v∈S

∑
u∈S

f(u, v)−
∑
v∈S

∑
u∈S

f(v, u)
)

=
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈T

∑
u∈S

f(v, u)

= f(S,T)

CS
51

4

15 15

Cut & Flow-3
• We have

|f| =
∑
v∈V

∑
u∈S

f(u, v)−
∑
v∈V

∑
u∈S

f(v, u) [V = S ∪ T]

=
∑
v∈S

∑
u∈S

f(u, v) +
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈S

∑
u∈S

f(v, u)−
∑
v∈T

∑
u∈S

f(v, u)

=
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈T

∑
u∈S

f(v, u) +
(∑

v∈S

∑
u∈S

f(u, v)−
∑
v∈S

∑
u∈S

f(v, u)
)

=
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈T

∑
u∈S

f(v, u)

= f(S,T)

CS
51

4

15 15

Cut & Flow-3
• We have

|f| =
∑
v∈V

∑
u∈S

f(u, v)−
∑
v∈V

∑
u∈S

f(v, u) [V = S ∪ T]

=
∑
v∈S

∑
u∈S

f(u, v) +
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈S

∑
u∈S

f(v, u)−
∑
v∈T

∑
u∈S

f(v, u)

=
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈T

∑
u∈S

f(v, u) +
(∑

v∈S

∑
u∈S

f(u, v)−
∑
v∈S

∑
u∈S

f(v, u)
)

=
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈T

∑
u∈S

f(v, u)

= f(S,T)

CS
51

4

15 15

Cut & Flow-3
• We have

|f| =
∑
v∈V

∑
u∈S

f(u, v)−
∑
v∈V

∑
u∈S

f(v, u) [V = S ∪ T]

=
∑
v∈S

∑
u∈S

f(u, v) +
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈S

∑
u∈S

f(v, u)−
∑
v∈T

∑
u∈S

f(v, u)

=
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈T

∑
u∈S

f(v, u) +
(∑

v∈S

∑
u∈S

f(u, v)−
∑
v∈S

∑
u∈S

f(v, u)
)

=
∑
v∈T

∑
u∈S

f(u, v)−
∑
v∈T

∑
u∈S

f(v, u)

= f(S,T)

CS
51

4

16 16

Cut & Capacity
• The value of any flow f in a flow network G is bounded from above by the capacity of

any cut of G

• Proof:
|f| = f(S,T)

=
∑
u∈S

∑
v∈T

f(u, v)−
∑
u∈S

∑
v∈T

f(v, u)

≤
∑
u∈S

∑
v∈T

f(u, v)

≤
∑
u∈S

∑
v∈T

c(u, v)

= c(S,T)

CS
51

4

16 16

Cut & Capacity
• The value of any flow f in a flow network G is bounded from above by the capacity of

any cut of G
• Proof:

|f| = f(S,T)

=
∑
u∈S

∑
v∈T

f(u, v)−
∑
u∈S

∑
v∈T

f(v, u)

≤
∑
u∈S

∑
v∈T

f(u, v)

≤
∑
u∈S

∑
v∈T

c(u, v)

= c(S,T)

CS
51

4

16 16

Cut & Capacity
• The value of any flow f in a flow network G is bounded from above by the capacity of

any cut of G
• Proof:

|f| = f(S,T)

=
∑
u∈S

∑
v∈T

f(u, v)−
∑
u∈S

∑
v∈T

f(v, u)

≤
∑
u∈S

∑
v∈T

f(u, v)

≤
∑
u∈S

∑
v∈T

c(u, v)

= c(S,T)

CS
51

4

16 16

Cut & Capacity
• The value of any flow f in a flow network G is bounded from above by the capacity of

any cut of G
• Proof:

|f| = f(S,T)

=
∑
u∈S

∑
v∈T

f(u, v)−
∑
u∈S

∑
v∈T

f(v, u)

≤
∑
u∈S

∑
v∈T

f(u, v)

≤
∑
u∈S

∑
v∈T

c(u, v)

= c(S,T)

CS
51

4

16 16

Cut & Capacity
• The value of any flow f in a flow network G is bounded from above by the capacity of

any cut of G
• Proof:

|f| = f(S,T)

=
∑
u∈S

∑
v∈T

f(u, v)−
∑
u∈S

∑
v∈T

f(v, u)

≤
∑
u∈S

∑
v∈T

f(u, v)

≤
∑
u∈S

∑
v∈T

c(u, v)

= c(S,T)

CS
51

4

16 16

Cut & Capacity
• The value of any flow f in a flow network G is bounded from above by the capacity of

any cut of G
• Proof:

|f| = f(S,T)

=
∑
u∈S

∑
v∈T

f(u, v)−
∑
u∈S

∑
v∈T

f(v, u)

≤
∑
u∈S

∑
v∈T

f(u, v)

≤
∑
u∈S

∑
v∈T

c(u, v)

= c(S,T)

CS
51

4

17 17

Max-flow min-cut
• If f is a flow in a flow network G = (V,E) with source s and sink t, then the following

conditions are equivalent:
• f is a maximum flow in G
• The residual network Gf contains no augmenting paths
• |f| = c(S,T) for some cut (S,T) of G

CS
51

4

18 18

Edmonds-Karp algorithm
• Augmenting path with fewest edges needs to be chosen
• Breadth-first search can be used to find augmenting path in the residual network
• Time complexity becomes O(VE2)

CS
51

4

19 19

Matching
• Given an undirected graph G = (V,E), a subset of edges M ⊆ E is a matching if each

node of the graph appears at most one edge of M.

CS
51

4

19 19

Matching
• Given an undirected graph G = (V,E), a subset of edges M ⊆ E is a matching if each

node of the graph appears at most one edge of M.

CS
51

4

20 20

Bipartite matching
• A graph is bipartite if the nodes can be partitioned into two subsets X and Y such that

every edge connects a node in X to a node in Y
• Given a bipartite graph G = (X ∪ Y,E), find a matching (M) that has the maximum

cardinality ie., |M| is maximum.

CS
51

4

20 20

Bipartite matching
• A graph is bipartite if the nodes can be partitioned into two subsets X and Y such that

every edge connects a node in X to a node in Y
• Given a bipartite graph G = (X ∪ Y,E), find a matching (M) that has the maximum

cardinality ie., |M| is maximum.

s

1

2

3

4

5

6

t

CS
51

4

21 21

Edge-disjoint paths
• Two paths are edge-disjoint if they have no common edge. Given a directed graph

G = (V,E) and two nodes s and t, find the maximum number of edge-disjoint s ⇝ t
paths.

s

1

2

3

4

5

6

t

CS
51

4

21 21

Edge-disjoint paths
• Two paths are edge-disjoint if they have no common edge. Given a directed graph

G = (V,E) and two nodes s and t, find the maximum number of edge-disjoint s ⇝ t
paths.

s

1

2

3

4

5

6

t

CS
51

4

22 22

Network connectivity
• Given a digraph G = (V,E) and two nodes s and t, find min number of edges whose

removal disconnects t from s.

-7

-8

10

-6

0
11

4/10

3/3

6/6 7/92/4

4/4

6/7 1/7

CS
51

4

23 23

Circulation with demands
• Given a directed graph V = (G,E) with non-negative edge capacities c(e) and node

supply and demands d(v), a circulation is a function that satisfies
• For each e ∈ E: 0 ≤ f(e) ≤ c(e) (f(.) – flow along edge e)
• For each v ∈ V:

∑
e in to v

f(e)−
∑

e out of v
f(e) = d(v)

Does a circulation exist?
• d(v) > 0 - demand, d(v) < 0 - supply, d(v) = 0 - transshipment node

u v
[2,7]

CS
51

4

24 24

Circulation with lower bounds
• The problem is the same as previous one except that each edge has some lower bound

on the flow. Hence, capacity along an edge will be specified as [clb(u, v), cub(u, v)].
What modifications are to be made in the graph to apply previous strategy?

CS
51

4

25 25

Survey design
• Design a survey asking n1 consumers about n2 products that meets the following re-

quirements, if possible.
• Consumer i can survey about product j if they own it
• Consumer i can be asked between ci and c′i questions
• Ask between pj and p′

j consumers about product j

CS
51

4

26 26

Thank you!

