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Shortest path vs Longest path in a graph
Euler tour vs Hamiltonian cycle

e An Euler tour of a strongly connected, directed graph G = (V, E) is a cycle that
traverses each edge of G exactly once, although it is allowed to visit each vertex
more than once

e A Hamiltonian cycle of a directed graph G = (V, E) is a simple cycle that contains
each vertex in V

2-SAT vs 3-SAT
o 2-SAT: (x1 V —xa) A (—x1 V x3) A (X2 V —x3)
e 3-SAT: (x1 V=% Vxg) A (=x1 Vxo V x3) A (X2 V —ix3 V Xy)

Fractional vs 0-1 knapsack
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Size n
Time
complexity 10 20 30 40 50 60
function
00001 00002 .00003 .00004 00005 00006
" second | second second second second second
2 .0001 0004 L0009 .0016 .0025 0036
n second | second second second second second
3 001 008 027 .064 125 216
n second | second second second second second
5 1 32 24.3 1.7 52 13.0
n second | seconds | seconds | minutes minutes minutes
o 001 1.0 17.9 12,7 357 366
second | second | minutes days years cenfuries
3 059 58 6.5 3855 2x10% 1.3x1013
second | minutes years centuries | centuries | centuries

Image source: Computers and Intractability
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P — consists of those problems that are solvable in polynomial time
NP — consists of those problems that are ‘verifiable' in polynomial time
NPC — problem belongs to NP and is as hard as any problem in NP

It is obvious that P C NP. However, the famous open question is whether P is a proper
subset of NP

If any NP-complete problem can be solved in polynomial time, then every problem in
NP has a polynomial-time algorithm
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For optimization problems, each feasible solution is associated with a value, and goal is
to find a feasible solution with the best value

e Shortest path

e Travelling salesman problem

In decision problems, the final answer is either ‘yes’ or ‘no’

o 2-SAT
e Hamiltonian cycle

Which problem is harder?

Can an optimization problem be converted as decision problem?
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e X<, Y
e Problem X polynomial-time reduces to problem Y if arbitrary instances of problem X
can be solved using:

e Polynomial number of standard computational steps (f, h), plus
e Polynomial number of calls to oracle that solves problem Y

Solution
Instance S of A(l) Solution
—_———— h >
I, Instance __»- f1) Algorithm h(S) of |
of X for Y No solution to f{/) No solution
] to /

Algorithm for X
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Poly-time Reduction
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e If X <, Yand Y can be solved in polynomial time, then X can be solved in polynomial
time

e If X <, Y and X cannot be solved in polynomial time, then Y cannot be solved in
polynomial time

e If X<, Yand Y can be solved in exponential time, then X — 77
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Instance:

nodes s, t

G=(V,E), 15 and edges

e Hamiltonian cycle: given a graph, is there a cycle that passes through each vertex

exactly once?
e Hamiltonian path(s, t): given a graph, is there a path between s and t that passes

through each vertex exactly once?

cycle | Delete edges "
> — pa
Add node x| G — (v/, ) | Hamiltonian (5.%). (x.1)
(5, %), (x, t) cycle No solution _ No
solution

Hamiltonian path
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An abstract problem Q@ is defined to be binary relation on a set / of problem instances
and a set S of problem solution

e For shortest-path — problem instance consists of a graph and two vertices, | = (G, u, v)
e A solution is sequence of vertices or null if it does not exist

For NP-Completeness, we are primarily interested in decision problems

For shortest-path, decision problem can be represented as [ = (G, u, v, k)

e Given a graph and two vertices, does there exist a path with at most k edges?

An optimization problem can be converted to decision problem
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In order for a computer program to solve an abstract problem, its problem instances
must appear in a way that the program understands

An encoding of a set S of abstract objects is a mapping e from S to the set of binary
strings
Example: Graph G = (V, E) where V= [vi, vo, v3, vy}, and E = {{v1, v}, {vo, v3}}

Encoding scheme ‘ string ‘ length ‘
Vertex and edge list vivavsvy (v va)(vavs) 36
Neighbor list (va)(vivs)(va)() 24
Adjacency matrix rows | 0100/1010/0100/0000 | 19

The size of an instance [ is just the length of its string, n = |||
We call a problem, whose instance set is the set of binary strings, a concrete problem

A concrete problem is polynomial-time solvable if there exist an algorithm to solve it
in O(n*) time for some constant k
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e We say a function f: {0,1}* — {0, 1}* is polynomial-time computable if there exists a
polynomial-time algorithm A that given any input x € {0, 1}*, produces as output f(x)

e We say that two encodings e; and e; are polynomially related if there exist two
polynomial-time computable function fi5 and f;; such that for any i € I, we have

fiz(e1 (i) = ex(i) and fo1(ex(i)) = e (i)
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e We say a function f: {0,1}* — {0, 1}* is polynomial-time computable if there exists a
polynomial-time algorithm A that given any input x € {0, 1}*, produces as output f(x)

e We say that two encodings e; and e; are polynomially related if there exist two
polynomial-time computable function fi5 and f;; such that for any i € I, we have
fio(e1 (i) = ex(i) and fy(ex(i)) = e (i)

e Let Q be an abstract decision problem on an instance set /, and let e; and e, be
polynomially related encodings on /. Then, ¢ (Q) € P if and only if e2(Q) € P.
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An alphabet Y is a finite set of symbols

A language L over Y is any set of strings made up of symbols from X

Example: if ¥ = {0, 1}, the set L = {10, 11,101,111, 11001, ...}

Empty string is denoted by ¢, the empty language by (), the language of all strings over
3 by ¥*

Every language L over X is a subset of »*

Any decision problem Q is simply the set ¥* where ¥ = {0, 1}

As Q is entirely characterized by those problem instances that produce 1 (yes) answer,
we can view @ as a language L over 3 = {0, 1}, where

L={xe ¥ : Q) =1}
A language L is decided in polynomial-time by an algorithm A if there exists a constant

k such that for any length-n string x € {0, 1}*, the algorithm correctly decides whether
x € L in O(n*) time
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P={L C {0, 1}* : there exists an algorithm A that decides L in polynomial time }

A verification algorithm is a two-argument algorithm A, where one argument is an ordi-
nary input string x and the other is a binary string y called a certificate

A two-argument algorithm A verifies an input string x if there exists a certificate y such
that A(x,y) =1

NP is the class of languages that can be verified by a polynomial-time algorithm

L ={xe{0,1}" : there exists a certificate y with |y| = O(|x|) such that A(x, y) = 1}

If L € P, then L € NP, thus, P C NP
It leaves the question of whether P = NP



NP-completeness

CS514

e A language L C {0, 1}* is NP-complete (NPC) if
e [ € NP, and
o [' <pL forevery L' € NP

e If an language L satisfies the 2nd property but not necessarily the 1st, we say L is
NP-hard



NP-completeness

CS514

e A language L C {0, 1}* is NP-complete (NPC) if
e [ € NP, and
o [' <pL forevery L'’ € NP

e If an language L satisfies the 2nd property but not necessarily the 1st, we say L is
NP-hard

e If any NP-complete problem is polynomial-time solvable, then P = NP. Equivalently, if
any problem in NP is not polynomial-time solvable, then no NP-complete problem is
polynomial-time solvable.
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e Circuit-SAT: Given a boolean combinational circuit composed of AND, OR, and NOT
gates, is it satisfiable?

e Circuit-SAT € NP
e Circuit-SAT is also NP-Hard (see detailed proof in the book)
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NP-completeness proofs

CS514

e [t is difficult to prove that every language in NP can be reduced to the given language

e If L is language such that L’ <p L for some L' € NPC, the L is NP-hard.
If, in addition we have L € NP, then L € NPC

Proof: Since L’ is NP-complete, for all L” € NP, we have L” <p I’

As we have, L' <p L, thus by transitivity, we can say L” <p L

So, L is NP-hard

If we have, L € NP, then we also have L € NPC
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e Prove L € NP
e Prove that L is NP-hard:
e Select a known NP-complete language L’
e Describe an algorithm that computes a function f mapping every instance x € {0, 1}*
of L’ to an instance of f(x) of L
e Prove that the function fsatisfies x € L’ if and only if f{x) € L for all x € {0,1}*
e Prove that the algorithm computing f runs in polynomial time
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SAT: inputs — n Boolean variables, m connectives (A, V,—, —, <), and parentheses

The boolean formula ¢ can be encoded in length that is polynomial in n+ m

Example: (x1 — x2) A ((x3 V =x4) A (x5 <> x4))

Given a SAT instance and an assignment of the variables (certificate) - it can be verified

in polynomial time

To prove NP-hard, we need to show Circuit-SAT <p SAT

We can express any boolean combinational circuit (C) as a boolean formula (¢)
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e We can express any boolean combinational circuit (C) as a boolean formula (¢)
o= yANy<+ (eVhH)A(esr (xANd)A(F+ (dAD))A(d<+ —c)A
(b (zNa) AN(c (zAy)) A(a<> (xAy))
e Now we need to show C is satisfiable exactly when ¢ is satisfiable
e If C has a satisfying assignment, then each wire of the circuit has well defined value
and output is 1

e We can assign the wire values to variables in ¢, each clause will evaluate to 1, hence,
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¢= yA(ye (eVi)) (e

We can express any boolean combinational circuit (C) as a boolean formula (¢)
< (xAd) A (f< (dA D)) A (d< —c)A

(b (zNa)A(c+e (zAy)) A(as (xAy))

e Now we need to show C is satisfiable exactly when ¢ is satisfiable

and output is 1

If C has a satisfying assignment, then each wire of the circuit has well defined value

e We can assign the wire values to variables in ¢, each clause will evaluate to 1, hence,

¢=1

e |f some assignment causes ¢ to evaluate to 1, we can assign values to different wires

and it will evaluate to 1 for C
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Literal - variable in boolean formula, x; or —x;
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Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND
and OR gates can have either 2 or 3 inputs
For NOT gate:
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Literal - variable in boolean formula, x; or —x;

Clause - OR of any number of literals, x; V —x3 V x3 V x4
CNF (conjunctive normal form) - AND of clauses

CNF-SAT: (x1 V=x0 V x3 V =x3) A (X2 V =ix3 V xq4) A (X2 V —1xq)

Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND
and OR gates can have either 2 or 3 inputs

For NOT gate:
yrox=(yV-x)A(xVy)
For 2-input AND gate:



Circuit-SAT <p CNF-SAT

CS514

Literal - variable in boolean formula, x; or —x;
Clause - OR of any number of literals, x; V —x3 V x3 V x4
CNF (conjunctive normal form) - AND of clauses
CNF-SAT: (x1 V=x0 V x3 V =x3) A (X2 V =ix3 V xq4) A (X2 V —1xq)
Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND
and OR gates can have either 2 or 3 inputs
For NOT gate:
yrox=(yV-x)A(xVy)
For 2-input AND gate:
yo (anb)=(y— (@Ab) A((anb) = y)
= (ﬂy\/ (a/\ b)) A (ﬁa\/ —|b\/y) = (—\y\/ a) A (—|y\/ b) A (ﬂa\/ ﬂb\/y)
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e For 3-input AND gate:
y< (@AnbAc)=(-yVa)A(-yVb)A(-yVc)A(—aV bV -cVy)
e For 2-input OR gate:
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e For 3-input AND gate:

y< (@AnbAc)=(-yVa)A(-yVb)A(-yVc)A(—aV bV -cVy)
e For 2-input OR gate:

y<(avb)=(y—(avb)A((avb) —y)

=(myVvaVvb A((maN—-b)Vy) =(-yVaVb)A(-aVy A(=bVy)
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e For 3-input AND gate:

y< (@AnbAc)=(-yVa)A(-yVb)A(-yVc)A(—aV bV -cVy)
e For 2-input OR gate:

y<(avb)=(y—(avb)A((aVb) =y

=(myVvaVvb A((maN—-b)Vy) =(-yVaVb)A(-aVy A(=bVy)
e For 3-input OR gate:
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e For 3-input AND gate:

y< (@AnbAc)=(-yVa)A(-yVb)A(-yVc)A(—aV bV -cVy)
e For 2-input OR gate:

y e (aVb) = (y— (aVB) A((aV b) =)

=(-yVaVvb A((maAN-b)Vy) =(-yVaVb A(-aVy A(=bVy)
e For 3-input OR gate:

y<>(avbVve)=(nyvavbVecA(maVy A(=bVy) A(-cVy)
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e For 3-input AND gate:
y< (@AnbAc)=(-yVa)A(-yVb)A(-yVc)A(—aV bV -cVy)
e For 2-input OR gate:
v (@Vb) = (v (aV b)) A ((2V B) )
=(myVvaVvb A((maN—-b)Vy) =(-yVaVb)A(-aVy A(=bVy)
e For 3-input OR gate:
y<>(avbVve)=(nyvavbVecA(maVy A(=bVy) A(-cVy)
e Circuit-SAT can be converted to CNF-SAT in polynomial time using above transfor-
mations
e |t can be shown Circuit-SAT has a solution if and only if CNF-SAT has a solution
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Given an assignment of the variables, truth value can be verified in linear time. Hence
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We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to
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Clause with 1 literal:
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Given an assignment of the variables, truth value can be verified in linear time. Hence

3-CNF-SAT € NP
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3-CNF-SAT: each clause has exactly 3 literals

Given an assignment of the variables, truth value can be verified in linear time. Hence
3-CNF-SAT € NP

We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to
3-CNF-SAT

Clause with 1 literal:
X1 = (Xl VziV ZQ) VAN (X1 V =z V ZQ) VAN (X1 VziV ﬁZQ) VAN (X1 V =z V “22)

Clause with 2 literals:
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3-CNF-SAT: each clause has exactly 3 literals

Given an assignment of the variables, truth value can be verified in linear time. Hence
3-CNF-SAT € NP

We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to
3-CNF-SAT

Clause with 1 literal:

=V Vz)AXVoziVz) A VzV-az)A(xgV -z V-oz)
Clause with 2 literals:

x1Vxe=(x1VxaVz)A(xVxeV—z)
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3-CNF-SAT: each clause has exactly 3 literals

Given an assignment of the variables, truth value can be verified in linear time. Hence
3-CNF-SAT € NP

We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to
3-CNF-SAT

Clause with 1 literal:

=V Vz)AXVoziVz) A VzV-az)A(xgV -z V-oz)
Clause with 2 literals:

x1Vxe=(x1VxaVz)A(xVxeV—z)

Clause with 3 literals:



3-CNF-SAT € NPC

CS514

3-CNF-SAT: each clause has exactly 3 literals

Given an assignment of the variables, truth value can be verified in linear time. Hence
3-CNF-SAT € NP

We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to
3-CNF-SAT

Clause with 1 literal:

=V Vz)AXVoziVz) A VzV-az)A(xgV -z V-oz)
Clause with 2 literals:

x1Vxe=(x1VxaVz)A(xVxeV—z)

Clause with 3 literals:  No need to change
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We need to show: { Xis satisfied } <> { there is a setting of z/'s s.t. Y'is satisfied }
Assume Y is satisfied: we can claim at least one literals xq, ..., xx must be true.
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Clause with >3 literals: X = (x; V xo V... xk)
Y=x1VxoVz)(~z1Vx3V2)(2VxVz). .. (523 VX1V Xk

The above conversion can be done in polynomial time

We need to show: { Xis satisfied } <> { there is a setting of z/'s s.t. Y'is satisfied }
Assume Y is satisfied: we can claim at least one literals xq, ..., xx must be true.
How? What is the implication on X?

Conversely, if X is satisfied: some x; must be true.

Set Z, ..

., Zi_o to true and rest to false
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e Each clause is represented as triangle with vertices as the literals
e Connect an edge between two nodes of different clauses if they represent opposite
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Independent Set (IS) € NPC

CS514

IS: given a graph G and an integer k, does there exist k vertices that are independent,
that is, no two of which have an edge between them

IS € NP as a certificate can be verified in polynomial time

We reduce 3-SAT to IS

Take an instance of 3-SAT: X = (xVyVz)(xVyVz)(xVyVz)(xVYy)
Construction of G:

e Each clause is represented as triangle with vertices as the literals
e Connect an edge between two nodes of different clauses if they represent opposite
literals
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e Given an independent set S of k vertices in G, it is possible to find satisfying truth
assignment to /

e If [ has a truth assignment then G has independent set of size k
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cover of G with V — k nodes
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e A vertex cover of an undirected graph G = (V,E) is a subset V' C V such that if
(u,v) € Ethen ue V' or ve V' or both. Does graph G has a vertex cover of size k?

e Let a set of nodes S be the vertex cover of G, that is S touches every edge in E
e The remaining nodes V — S must form an independent set!

e Thus to solve, an instance of (G, k) of independent-set, we simply look for a vertex
cover of G with V — k nodes

e If a vertex cover exists, then all nodes not in VC set form IS



Vertex Cover (VC) € NPC

CS514

e A vertex cover of an undirected graph G = (V,E) is a subset V' C V such that if
(u,v) € Ethen ue V' or ve V' or both. Does graph G has a vertex cover of size k?

Let a set of nodes S be the vertex cover of G, that is S touches every edge in E

The remaining nodes V' — S must form an independent set!

Thus to solve, an instance of (G, k) of independent-set, we simply look for a vertex
cover of G with V — k nodes

If a vertex cover exists, then all nodes not in VC set form IS

If no such vertex cover exists, G cannot have an independent set of size k
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which is connected by an edge in E. Given a graph G, does it have a clique of size k?
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A clique in an undirected graph G = (V| E) is a subset V' C V of vertices, each pair of
which is connected by an edge in E. Given a graph G, does it have a clique of size k?

A certificate for clique can be verified in polynomial time
We reduce 3-CNF-SAT to clique

We choose X, CNF-SAT instance, that has k number of clauses (G, ..., Cy), where
each clause has exactly 3 literals
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A clique in an undirected graph G = (V| E) is a subset V' C V of vertices, each pair of
which is connected by an edge in E. Given a graph G, does it have a clique of size k?

A certificate for clique can be verified in polynomial time

We reduce 3-CNF-SAT to clique

We choose X, CNF-SAT instance, that has k number of clauses (G, ..., Cy), where
each clause has exactly 3 literals

Graph construction: G = (V, E)

e For each clause C, = (f{ vV IV [5) in X create three vertices v{, v}, v into V
e Add edge (v}, v;) into E if both of the following hold

e v/ and v; are in different triples, that is r # s, and

e their corresponding literals are consistent, that is /; is not the negation of IJS
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(xVyVz)(xVyVz)(xVyV2z)

NG A G

:Cl

e Consider a 3SAT instance as X

mmmmm
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e Consider a 3SAT instance as X=CG A GA G = (xVyVz)(xVyV2Z)(xVyV 2

e Suppose X has a satisfying assignment: what can we claim?
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e Consider a 3SAT instance as X=CG A GA G = (xVyVz)(xVyV2Z)(xVyV 2
e Suppose X has a satisfying assignment: what can we claim?

e Suppose G contains a clique of size k: what can be claimed?
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