
IIT Patna 1

CS514: Design and Analysis of Algorithms

Intractability

Arijit Mondal
Dept of CSE

arijit@iitp.ac.in
https://www.iitp.ac.in/~arijit/

https://www.iitp.ac.in/~arijit/

CS
51

4

2 2

Simple vs Hard problems
• Shortest path vs Longest path in a graph

• Euler tour vs Hamiltonian cycle
• An Euler tour of a strongly connected, directed graph G = (V,E) is a cycle that

traverses each edge of G exactly once, although it is allowed to visit each vertex
more than once

• A Hamiltonian cycle of a directed graph G = (V,E) is a simple cycle that contains
each vertex in V

• 2-SAT vs 3-SAT
• 2-SAT: (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)
• 3-SAT: (x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4)

• Fractional vs 0-1 knapsack

CS
51

4

2 2

Simple vs Hard problems
• Shortest path vs Longest path in a graph
• Euler tour vs Hamiltonian cycle
• An Euler tour of a strongly connected, directed graph G = (V,E) is a cycle that

traverses each edge of G exactly once, although it is allowed to visit each vertex
more than once

• A Hamiltonian cycle of a directed graph G = (V,E) is a simple cycle that contains
each vertex in V

• 2-SAT vs 3-SAT
• 2-SAT: (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)
• 3-SAT: (x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4)

• Fractional vs 0-1 knapsack

CS
51

4

2 2

Simple vs Hard problems
• Shortest path vs Longest path in a graph
• Euler tour vs Hamiltonian cycle
• An Euler tour of a strongly connected, directed graph G = (V,E) is a cycle that

traverses each edge of G exactly once, although it is allowed to visit each vertex
more than once

• A Hamiltonian cycle of a directed graph G = (V,E) is a simple cycle that contains
each vertex in V

• 2-SAT vs 3-SAT
• 2-SAT: (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)
• 3-SAT: (x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4)

• Fractional vs 0-1 knapsack

CS
51

4

2 2

Simple vs Hard problems
• Shortest path vs Longest path in a graph
• Euler tour vs Hamiltonian cycle
• An Euler tour of a strongly connected, directed graph G = (V,E) is a cycle that

traverses each edge of G exactly once, although it is allowed to visit each vertex
more than once

• A Hamiltonian cycle of a directed graph G = (V,E) is a simple cycle that contains
each vertex in V

• 2-SAT vs 3-SAT
• 2-SAT: (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (x2 ∨ ¬x3)
• 3-SAT: (x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4)

• Fractional vs 0-1 knapsack

Image source: Computers and Intractability

CS
51

4

3 3

Time complexity

CS
51

4

4 4

Problem class
• P – consists of those problems that are solvable in polynomial time

• NP – consists of those problems that are ‘verifiable’ in polynomial time
• NPC – problem belongs to NP and is as hard as any problem in NP
• It is obvious that P ⊆ NP. However, the famous open question is whether P is a proper

subset of NP
• If any NP-complete problem can be solved in polynomial time, then every problem in

NP has a polynomial-time algorithm

CS
51

4

4 4

Problem class
• P – consists of those problems that are solvable in polynomial time
• NP – consists of those problems that are ‘verifiable’ in polynomial time

• NPC – problem belongs to NP and is as hard as any problem in NP
• It is obvious that P ⊆ NP. However, the famous open question is whether P is a proper

subset of NP
• If any NP-complete problem can be solved in polynomial time, then every problem in

NP has a polynomial-time algorithm

CS
51

4

4 4

Problem class
• P – consists of those problems that are solvable in polynomial time
• NP – consists of those problems that are ‘verifiable’ in polynomial time
• NPC – problem belongs to NP and is as hard as any problem in NP

• It is obvious that P ⊆ NP. However, the famous open question is whether P is a proper
subset of NP

• If any NP-complete problem can be solved in polynomial time, then every problem in
NP has a polynomial-time algorithm

CS
51

4

4 4

Problem class
• P – consists of those problems that are solvable in polynomial time
• NP – consists of those problems that are ‘verifiable’ in polynomial time
• NPC – problem belongs to NP and is as hard as any problem in NP
• It is obvious that P ⊆ NP. However, the famous open question is whether P is a proper

subset of NP

• If any NP-complete problem can be solved in polynomial time, then every problem in
NP has a polynomial-time algorithm

CS
51

4

4 4

Problem class
• P – consists of those problems that are solvable in polynomial time
• NP – consists of those problems that are ‘verifiable’ in polynomial time
• NPC – problem belongs to NP and is as hard as any problem in NP
• It is obvious that P ⊆ NP. However, the famous open question is whether P is a proper

subset of NP
• If any NP-complete problem can be solved in polynomial time, then every problem in

NP has a polynomial-time algorithm

CS
51

4

5 5

Optimization vs Decision problems
• For optimization problems, each feasible solution is associated with a value, and goal is

to find a feasible solution with the best value

• Shortest path
• Travelling salesman problem

• In decision problems, the final answer is either ‘yes’ or ‘no’
• 2-SAT
• Hamiltonian cycle

• Which problem is harder?
• Can an optimization problem be converted as decision problem?

CS
51

4

5 5

Optimization vs Decision problems
• For optimization problems, each feasible solution is associated with a value, and goal is

to find a feasible solution with the best value
• Shortest path
• Travelling salesman problem

• In decision problems, the final answer is either ‘yes’ or ‘no’
• 2-SAT
• Hamiltonian cycle

• Which problem is harder?
• Can an optimization problem be converted as decision problem?

CS
51

4

5 5

Optimization vs Decision problems
• For optimization problems, each feasible solution is associated with a value, and goal is

to find a feasible solution with the best value
• Shortest path
• Travelling salesman problem

• In decision problems, the final answer is either ‘yes’ or ‘no’

• 2-SAT
• Hamiltonian cycle

• Which problem is harder?
• Can an optimization problem be converted as decision problem?

CS
51

4

5 5

Optimization vs Decision problems
• For optimization problems, each feasible solution is associated with a value, and goal is

to find a feasible solution with the best value
• Shortest path
• Travelling salesman problem

• In decision problems, the final answer is either ‘yes’ or ‘no’
• 2-SAT
• Hamiltonian cycle

• Which problem is harder?
• Can an optimization problem be converted as decision problem?

CS
51

4

5 5

Optimization vs Decision problems
• For optimization problems, each feasible solution is associated with a value, and goal is

to find a feasible solution with the best value
• Shortest path
• Travelling salesman problem

• In decision problems, the final answer is either ‘yes’ or ‘no’
• 2-SAT
• Hamiltonian cycle

• Which problem is harder?

• Can an optimization problem be converted as decision problem?

CS
51

4

5 5

Optimization vs Decision problems
• For optimization problems, each feasible solution is associated with a value, and goal is

to find a feasible solution with the best value
• Shortest path
• Travelling salesman problem

• In decision problems, the final answer is either ‘yes’ or ‘no’
• 2-SAT
• Hamiltonian cycle

• Which problem is harder?
• Can an optimization problem be converted as decision problem?

Algorithm
for Yf

h
I, Instance

of X

Instance
f(I)

Solution
S of f(I) Solution

h(S) of I
No solution to f(I) No solution

to I

Algorithm for X

CS
51

4

6 6

Reduction
• X ≤p Y
• Problem X polynomial-time reduces to problem Y if arbitrary instances of problem X

can be solved using:
• Polynomial number of standard computational steps (f, h), plus
• Polynomial number of calls to oracle that solves problem Y

CS
51

4

7 7

Poly-time Reduction
• If X ≤p Y and Y can be solved in polynomial time, then X can be solved in polynomial

time
• If X ≤p Y and X cannot be solved in polynomial time, then Y cannot be solved in

polynomial time

• If X ≤p Y and Y can be solved in exponential time, then X – ??

CS
51

4

7 7

Poly-time Reduction
• If X ≤p Y and Y can be solved in polynomial time, then X can be solved in polynomial

time
• If X ≤p Y and X cannot be solved in polynomial time, then Y cannot be solved in

polynomial time
• If X ≤p Y and Y can be solved in exponential time, then X – ??

Hamiltonian
cycle

Add node x
and edges
(s, x), (x, t)

Delete edges
(s, x), (x, t)Instance:

G = (V,E),
nodes s, t

G′ = (V ′,E′)

cycle
path

No solution No
solution

Hamiltonian path

CS
51

4

8 8

Hamiltonian path→ Hamiltonian cycle
• Hamiltonian cycle: given a graph, is there a cycle that passes through each vertex

exactly once?
• Hamiltonian path(s, t): given a graph, is there a path between s and t that passes

through each vertex exactly once?

CS
51

4

9 9

Abstract problem
• An abstract problem Q is defined to be binary relation on a set I of problem instances

and a set S of problem solution
• For shortest-path – problem instance consists of a graph and two vertices, I = ⟨G, u, v⟩
• A solution is sequence of vertices or null if it does not exist

• For NP-Completeness, we are primarily interested in decision problems
• For shortest-path, decision problem can be represented as I = ⟨G, u, v, k⟩
• Given a graph and two vertices, does there exist a path with at most k edges?

• An optimization problem can be converted to decision problem

CS
51

4

10 10

Encoding
• In order for a computer program to solve an abstract problem, its problem instances

must appear in a way that the program understands

• An encoding of a set S of abstract objects is a mapping e from S to the set of binary
strings

• Example: Graph G = (V,E) where V = [v1, v2, v3, v4], and E = {{v1, v2}, {v2, v3}}
Encoding scheme string length
Vertex and edge list v1v2v3v4(v1v2)(v2v3) 36
Neighbor list (v2)(v1v3)(v2)() 24
Adjacency matrix rows 0100/1010/0100/0000 19

• The size of an instance I is just the length of its string, n = |I|
• We call a problem, whose instance set is the set of binary strings, a concrete problem
• A concrete problem is polynomial-time solvable if there exist an algorithm to solve it

in O(nk) time for some constant k

CS
51

4

10 10

Encoding
• In order for a computer program to solve an abstract problem, its problem instances

must appear in a way that the program understands
• An encoding of a set S of abstract objects is a mapping e from S to the set of binary

strings

• Example: Graph G = (V,E) where V = [v1, v2, v3, v4], and E = {{v1, v2}, {v2, v3}}
Encoding scheme string length
Vertex and edge list v1v2v3v4(v1v2)(v2v3) 36
Neighbor list (v2)(v1v3)(v2)() 24
Adjacency matrix rows 0100/1010/0100/0000 19

• The size of an instance I is just the length of its string, n = |I|
• We call a problem, whose instance set is the set of binary strings, a concrete problem
• A concrete problem is polynomial-time solvable if there exist an algorithm to solve it

in O(nk) time for some constant k

CS
51

4

10 10

Encoding
• In order for a computer program to solve an abstract problem, its problem instances

must appear in a way that the program understands
• An encoding of a set S of abstract objects is a mapping e from S to the set of binary

strings
• Example: Graph G = (V,E) where V = [v1, v2, v3, v4], and E = {{v1, v2}, {v2, v3}}

Encoding scheme string length
Vertex and edge list v1v2v3v4(v1v2)(v2v3) 36
Neighbor list (v2)(v1v3)(v2)() 24
Adjacency matrix rows 0100/1010/0100/0000 19

• The size of an instance I is just the length of its string, n = |I|
• We call a problem, whose instance set is the set of binary strings, a concrete problem
• A concrete problem is polynomial-time solvable if there exist an algorithm to solve it

in O(nk) time for some constant k

CS
51

4

10 10

Encoding
• In order for a computer program to solve an abstract problem, its problem instances

must appear in a way that the program understands
• An encoding of a set S of abstract objects is a mapping e from S to the set of binary

strings
• Example: Graph G = (V,E) where V = [v1, v2, v3, v4], and E = {{v1, v2}, {v2, v3}}

Encoding scheme string length
Vertex and edge list v1v2v3v4(v1v2)(v2v3) 36
Neighbor list (v2)(v1v3)(v2)() 24
Adjacency matrix rows 0100/1010/0100/0000 19

• The size of an instance I is just the length of its string, n = |I|
• We call a problem, whose instance set is the set of binary strings, a concrete problem
• A concrete problem is polynomial-time solvable if there exist an algorithm to solve it

in O(nk) time for some constant k

CS
51

4

10 10

Encoding
• In order for a computer program to solve an abstract problem, its problem instances

must appear in a way that the program understands
• An encoding of a set S of abstract objects is a mapping e from S to the set of binary

strings
• Example: Graph G = (V,E) where V = [v1, v2, v3, v4], and E = {{v1, v2}, {v2, v3}}

Encoding scheme string length
Vertex and edge list v1v2v3v4(v1v2)(v2v3) 36
Neighbor list (v2)(v1v3)(v2)() 24
Adjacency matrix rows 0100/1010/0100/0000 19

• The size of an instance I is just the length of its string, n = |I|

• We call a problem, whose instance set is the set of binary strings, a concrete problem
• A concrete problem is polynomial-time solvable if there exist an algorithm to solve it

in O(nk) time for some constant k

CS
51

4

10 10

Encoding
• In order for a computer program to solve an abstract problem, its problem instances

must appear in a way that the program understands
• An encoding of a set S of abstract objects is a mapping e from S to the set of binary

strings
• Example: Graph G = (V,E) where V = [v1, v2, v3, v4], and E = {{v1, v2}, {v2, v3}}

Encoding scheme string length
Vertex and edge list v1v2v3v4(v1v2)(v2v3) 36
Neighbor list (v2)(v1v3)(v2)() 24
Adjacency matrix rows 0100/1010/0100/0000 19

• The size of an instance I is just the length of its string, n = |I|
• We call a problem, whose instance set is the set of binary strings, a concrete problem

• A concrete problem is polynomial-time solvable if there exist an algorithm to solve it
in O(nk) time for some constant k

CS
51

4

10 10

Encoding
• In order for a computer program to solve an abstract problem, its problem instances

must appear in a way that the program understands
• An encoding of a set S of abstract objects is a mapping e from S to the set of binary

strings
• Example: Graph G = (V,E) where V = [v1, v2, v3, v4], and E = {{v1, v2}, {v2, v3}}

Encoding scheme string length
Vertex and edge list v1v2v3v4(v1v2)(v2v3) 36
Neighbor list (v2)(v1v3)(v2)() 24
Adjacency matrix rows 0100/1010/0100/0000 19

• The size of an instance I is just the length of its string, n = |I|
• We call a problem, whose instance set is the set of binary strings, a concrete problem
• A concrete problem is polynomial-time solvable if there exist an algorithm to solve it

in O(nk) time for some constant k

CS
51

4

11 11

Encoding
• We say a function f : {0, 1}∗ → {0, 1}∗ is polynomial-time computable if there exists a

polynomial-time algorithm A that given any input x ∈ {0, 1}∗, produces as output f(x)
• We say that two encodings e1 and e2 are polynomially related if there exist two

polynomial-time computable function f12 and f21 such that for any i ∈ I, we have
f12(e1(i)) = e2(i) and f21(e2(i)) = e1(i)

• Let Q be an abstract decision problem on an instance set I, and let e1 and e2 be
polynomially related encodings on I. Then, e1(Q) ∈ P if and only if e2(Q) ∈ P.

CS
51

4

11 11

Encoding
• We say a function f : {0, 1}∗ → {0, 1}∗ is polynomial-time computable if there exists a

polynomial-time algorithm A that given any input x ∈ {0, 1}∗, produces as output f(x)
• We say that two encodings e1 and e2 are polynomially related if there exist two

polynomial-time computable function f12 and f21 such that for any i ∈ I, we have
f12(e1(i)) = e2(i) and f21(e2(i)) = e1(i)

• Let Q be an abstract decision problem on an instance set I, and let e1 and e2 be
polynomially related encodings on I. Then, e1(Q) ∈ P if and only if e2(Q) ∈ P.

CS
51

4

12 12

Formal language framework
• An alphabet Σ is a finite set of symbols

• A language L over Σ is any set of strings made up of symbols from Σ

• Example: if Σ = {0, 1}, the set L = {10, 11, 101, 111, 11001, . . .}
• Empty string is denoted by ε, the empty language by ∅, the language of all strings over
Σ by Σ∗

• Every language L over Σ is a subset of Σ∗

• Any decision problem Q is simply the set Σ∗ where Σ = {0, 1}
• As Q is entirely characterized by those problem instances that produce 1 (yes) answer,

we can view Q as a language L over Σ = {0, 1}, where
L = {x ∈ Σ∗ : Q(x) = 1}

• A language L is decided in polynomial-time by an algorithm A if there exists a constant
k such that for any length-n string x ∈ {0, 1}∗, the algorithm correctly decides whether
x ∈ L in O(nk) time

CS
51

4

12 12

Formal language framework
• An alphabet Σ is a finite set of symbols
• A language L over Σ is any set of strings made up of symbols from Σ

• Example: if Σ = {0, 1}, the set L = {10, 11, 101, 111, 11001, . . .}
• Empty string is denoted by ε, the empty language by ∅, the language of all strings over
Σ by Σ∗

• Every language L over Σ is a subset of Σ∗

• Any decision problem Q is simply the set Σ∗ where Σ = {0, 1}
• As Q is entirely characterized by those problem instances that produce 1 (yes) answer,

we can view Q as a language L over Σ = {0, 1}, where
L = {x ∈ Σ∗ : Q(x) = 1}

• A language L is decided in polynomial-time by an algorithm A if there exists a constant
k such that for any length-n string x ∈ {0, 1}∗, the algorithm correctly decides whether
x ∈ L in O(nk) time

CS
51

4

12 12

Formal language framework
• An alphabet Σ is a finite set of symbols
• A language L over Σ is any set of strings made up of symbols from Σ

• Example: if Σ = {0, 1}, the set L = {10, 11, 101, 111, 11001, . . .}

• Empty string is denoted by ε, the empty language by ∅, the language of all strings over
Σ by Σ∗

• Every language L over Σ is a subset of Σ∗

• Any decision problem Q is simply the set Σ∗ where Σ = {0, 1}
• As Q is entirely characterized by those problem instances that produce 1 (yes) answer,

we can view Q as a language L over Σ = {0, 1}, where
L = {x ∈ Σ∗ : Q(x) = 1}

• A language L is decided in polynomial-time by an algorithm A if there exists a constant
k such that for any length-n string x ∈ {0, 1}∗, the algorithm correctly decides whether
x ∈ L in O(nk) time

CS
51

4

12 12

Formal language framework
• An alphabet Σ is a finite set of symbols
• A language L over Σ is any set of strings made up of symbols from Σ

• Example: if Σ = {0, 1}, the set L = {10, 11, 101, 111, 11001, . . .}
• Empty string is denoted by ε, the empty language by ∅, the language of all strings over
Σ by Σ∗

• Every language L over Σ is a subset of Σ∗

• Any decision problem Q is simply the set Σ∗ where Σ = {0, 1}
• As Q is entirely characterized by those problem instances that produce 1 (yes) answer,

we can view Q as a language L over Σ = {0, 1}, where
L = {x ∈ Σ∗ : Q(x) = 1}

• A language L is decided in polynomial-time by an algorithm A if there exists a constant
k such that for any length-n string x ∈ {0, 1}∗, the algorithm correctly decides whether
x ∈ L in O(nk) time

CS
51

4

12 12

Formal language framework
• An alphabet Σ is a finite set of symbols
• A language L over Σ is any set of strings made up of symbols from Σ

• Example: if Σ = {0, 1}, the set L = {10, 11, 101, 111, 11001, . . .}
• Empty string is denoted by ε, the empty language by ∅, the language of all strings over
Σ by Σ∗

• Every language L over Σ is a subset of Σ∗

• Any decision problem Q is simply the set Σ∗ where Σ = {0, 1}
• As Q is entirely characterized by those problem instances that produce 1 (yes) answer,

we can view Q as a language L over Σ = {0, 1}, where
L = {x ∈ Σ∗ : Q(x) = 1}

• A language L is decided in polynomial-time by an algorithm A if there exists a constant
k such that for any length-n string x ∈ {0, 1}∗, the algorithm correctly decides whether
x ∈ L in O(nk) time

CS
51

4

12 12

Formal language framework
• An alphabet Σ is a finite set of symbols
• A language L over Σ is any set of strings made up of symbols from Σ

• Example: if Σ = {0, 1}, the set L = {10, 11, 101, 111, 11001, . . .}
• Empty string is denoted by ε, the empty language by ∅, the language of all strings over
Σ by Σ∗

• Every language L over Σ is a subset of Σ∗

• Any decision problem Q is simply the set Σ∗ where Σ = {0, 1}

• As Q is entirely characterized by those problem instances that produce 1 (yes) answer,
we can view Q as a language L over Σ = {0, 1}, where
L = {x ∈ Σ∗ : Q(x) = 1}

• A language L is decided in polynomial-time by an algorithm A if there exists a constant
k such that for any length-n string x ∈ {0, 1}∗, the algorithm correctly decides whether
x ∈ L in O(nk) time

CS
51

4

12 12

Formal language framework
• An alphabet Σ is a finite set of symbols
• A language L over Σ is any set of strings made up of symbols from Σ

• Example: if Σ = {0, 1}, the set L = {10, 11, 101, 111, 11001, . . .}
• Empty string is denoted by ε, the empty language by ∅, the language of all strings over
Σ by Σ∗

• Every language L over Σ is a subset of Σ∗

• Any decision problem Q is simply the set Σ∗ where Σ = {0, 1}
• As Q is entirely characterized by those problem instances that produce 1 (yes) answer,

we can view Q as a language L over Σ = {0, 1}, where
L = {x ∈ Σ∗ : Q(x) = 1}

• A language L is decided in polynomial-time by an algorithm A if there exists a constant
k such that for any length-n string x ∈ {0, 1}∗, the algorithm correctly decides whether
x ∈ L in O(nk) time

CS
51

4

12 12

Formal language framework
• An alphabet Σ is a finite set of symbols
• A language L over Σ is any set of strings made up of symbols from Σ

• Example: if Σ = {0, 1}, the set L = {10, 11, 101, 111, 11001, . . .}
• Empty string is denoted by ε, the empty language by ∅, the language of all strings over
Σ by Σ∗

• Every language L over Σ is a subset of Σ∗

• Any decision problem Q is simply the set Σ∗ where Σ = {0, 1}
• As Q is entirely characterized by those problem instances that produce 1 (yes) answer,

we can view Q as a language L over Σ = {0, 1}, where
L = {x ∈ Σ∗ : Q(x) = 1}

• A language L is decided in polynomial-time by an algorithm A if there exists a constant
k such that for any length-n string x ∈ {0, 1}∗, the algorithm correctly decides whether
x ∈ L in O(nk) time

CS
51

4

13 13

Complexity class
• P={L ⊆ {0, 1}∗ : there exists an algorithm A that decides L in polynomial time }

• A verification algorithm is a two-argument algorithm A, where one argument is an ordi-
nary input string x and the other is a binary string y called a certificate

• A two-argument algorithm A verifies an input string x if there exists a certificate y such
that A(x, y) = 1

• NP is the class of languages that can be verified by a polynomial-time algorithm
L = {x ∈ {0, 1}∗ : there exists a certificate y with |y| = O(|x|c) such that A(x, y) = 1}

• If L ∈ P, then L ∈ NP, thus, P ⊆ NP
• It leaves the question of whether P = NP

CS
51

4

13 13

Complexity class
• P={L ⊆ {0, 1}∗ : there exists an algorithm A that decides L in polynomial time }

• A verification algorithm is a two-argument algorithm A, where one argument is an ordi-
nary input string x and the other is a binary string y called a certificate

• A two-argument algorithm A verifies an input string x if there exists a certificate y such
that A(x, y) = 1

• NP is the class of languages that can be verified by a polynomial-time algorithm
L = {x ∈ {0, 1}∗ : there exists a certificate y with |y| = O(|x|c) such that A(x, y) = 1}

• If L ∈ P, then L ∈ NP, thus, P ⊆ NP
• It leaves the question of whether P = NP

CS
51

4

13 13

Complexity class
• P={L ⊆ {0, 1}∗ : there exists an algorithm A that decides L in polynomial time }

• A verification algorithm is a two-argument algorithm A, where one argument is an ordi-
nary input string x and the other is a binary string y called a certificate

• A two-argument algorithm A verifies an input string x if there exists a certificate y such
that A(x, y) = 1

• NP is the class of languages that can be verified by a polynomial-time algorithm
L = {x ∈ {0, 1}∗ : there exists a certificate y with |y| = O(|x|c) such that A(x, y) = 1}

• If L ∈ P, then L ∈ NP, thus, P ⊆ NP
• It leaves the question of whether P = NP

CS
51

4

13 13

Complexity class
• P={L ⊆ {0, 1}∗ : there exists an algorithm A that decides L in polynomial time }

• A verification algorithm is a two-argument algorithm A, where one argument is an ordi-
nary input string x and the other is a binary string y called a certificate

• A two-argument algorithm A verifies an input string x if there exists a certificate y such
that A(x, y) = 1

• NP is the class of languages that can be verified by a polynomial-time algorithm
L = {x ∈ {0, 1}∗ : there exists a certificate y with |y| = O(|x|c) such that A(x, y) = 1}

• If L ∈ P, then L ∈ NP, thus, P ⊆ NP

• It leaves the question of whether P = NP

CS
51

4

13 13

Complexity class
• P={L ⊆ {0, 1}∗ : there exists an algorithm A that decides L in polynomial time }

• A verification algorithm is a two-argument algorithm A, where one argument is an ordi-
nary input string x and the other is a binary string y called a certificate

• A two-argument algorithm A verifies an input string x if there exists a certificate y such
that A(x, y) = 1

• NP is the class of languages that can be verified by a polynomial-time algorithm
L = {x ∈ {0, 1}∗ : there exists a certificate y with |y| = O(|x|c) such that A(x, y) = 1}

• If L ∈ P, then L ∈ NP, thus, P ⊆ NP
• It leaves the question of whether P = NP

CS
51

4

14 14

NP-completeness
• A language L ⊆ {0, 1}∗ is NP-complete (NPC) if
• L ∈ NP, and
• L′ ≤P L for every L′ ∈ NP

• If an language L satisfies the 2nd property but not necessarily the 1st, we say L is
NP-hard

• If any NP-complete problem is polynomial-time solvable, then P = NP. Equivalently, if
any problem in NP is not polynomial-time solvable, then no NP-complete problem is
polynomial-time solvable.

CS
51

4

14 14

NP-completeness
• A language L ⊆ {0, 1}∗ is NP-complete (NPC) if
• L ∈ NP, and
• L′ ≤P L for every L′ ∈ NP

• If an language L satisfies the 2nd property but not necessarily the 1st, we say L is
NP-hard

• If any NP-complete problem is polynomial-time solvable, then P = NP. Equivalently, if
any problem in NP is not polynomial-time solvable, then no NP-complete problem is
polynomial-time solvable.

CS
51

4

15 15

Circuit-SAT
• Circuit-SAT: Given a boolean combinational circuit composed of AND, OR, and NOT

gates, is it satisfiable?

• Circuit-SAT ∈ NP
• Circuit-SAT is also NP-Hard (see detailed proof in the book)

x y z

y

a
b

c
d

e

f

CS
51

4

15 15

Circuit-SAT
• Circuit-SAT: Given a boolean combinational circuit composed of AND, OR, and NOT

gates, is it satisfiable?

• Circuit-SAT ∈ NP

• Circuit-SAT is also NP-Hard (see detailed proof in the book)

x y z

y

a
b

c
d

e

f

CS
51

4

15 15

Circuit-SAT
• Circuit-SAT: Given a boolean combinational circuit composed of AND, OR, and NOT

gates, is it satisfiable?

• Circuit-SAT ∈ NP
• Circuit-SAT is also NP-Hard (see detailed proof in the book)

x y z

y

a
b

c
d

e

f

CS
51

4

16 16

NP-completeness proofs
• It is difficult to prove that every language in NP can be reduced to the given language

• If L is language such that L′ ≤P L for some L′ ∈ NPC, the L is NP-hard.
If, in addition we have L ∈ NP, then L ∈ NPC
• Proof: Since L′ is NP-complete, for all L′′ ∈ NP, we have L′′ ≤P L′

• As we have, L′ ≤P L, thus by transitivity, we can say L′′ ≤P L
• So, L is NP-hard
• If we have, L ∈ NP, then we also have L ∈ NPC

CS
51

4

16 16

NP-completeness proofs
• It is difficult to prove that every language in NP can be reduced to the given language

• If L is language such that L′ ≤P L for some L′ ∈ NPC, the L is NP-hard.
If, in addition we have L ∈ NP, then L ∈ NPC

• Proof: Since L′ is NP-complete, for all L′′ ∈ NP, we have L′′ ≤P L′

• As we have, L′ ≤P L, thus by transitivity, we can say L′′ ≤P L
• So, L is NP-hard
• If we have, L ∈ NP, then we also have L ∈ NPC

CS
51

4

16 16

NP-completeness proofs
• It is difficult to prove that every language in NP can be reduced to the given language

• If L is language such that L′ ≤P L for some L′ ∈ NPC, the L is NP-hard.
If, in addition we have L ∈ NP, then L ∈ NPC
• Proof: Since L′ is NP-complete, for all L′′ ∈ NP, we have L′′ ≤P L′

• As we have, L′ ≤P L, thus by transitivity, we can say L′′ ≤P L
• So, L is NP-hard
• If we have, L ∈ NP, then we also have L ∈ NPC

CS
51

4

16 16

NP-completeness proofs
• It is difficult to prove that every language in NP can be reduced to the given language

• If L is language such that L′ ≤P L for some L′ ∈ NPC, the L is NP-hard.
If, in addition we have L ∈ NP, then L ∈ NPC
• Proof: Since L′ is NP-complete, for all L′′ ∈ NP, we have L′′ ≤P L′

• As we have, L′ ≤P L, thus by transitivity, we can say L′′ ≤P L

• So, L is NP-hard
• If we have, L ∈ NP, then we also have L ∈ NPC

CS
51

4

16 16

NP-completeness proofs
• It is difficult to prove that every language in NP can be reduced to the given language

• If L is language such that L′ ≤P L for some L′ ∈ NPC, the L is NP-hard.
If, in addition we have L ∈ NP, then L ∈ NPC
• Proof: Since L′ is NP-complete, for all L′′ ∈ NP, we have L′′ ≤P L′

• As we have, L′ ≤P L, thus by transitivity, we can say L′′ ≤P L
• So, L is NP-hard

• If we have, L ∈ NP, then we also have L ∈ NPC

CS
51

4

16 16

NP-completeness proofs
• It is difficult to prove that every language in NP can be reduced to the given language

• If L is language such that L′ ≤P L for some L′ ∈ NPC, the L is NP-hard.
If, in addition we have L ∈ NP, then L ∈ NPC
• Proof: Since L′ is NP-complete, for all L′′ ∈ NP, we have L′′ ≤P L′

• As we have, L′ ≤P L, thus by transitivity, we can say L′′ ≤P L
• So, L is NP-hard
• If we have, L ∈ NP, then we also have L ∈ NPC

CS
51

4

17 17

Steps to prove NP-completeness
• Prove L ∈ NP

• Prove that L is NP-hard:
• Select a known NP-complete language L′

• Describe an algorithm that computes a function f mapping every instance x ∈ {0, 1}∗
of L′ to an instance of f(x) of L

• Prove that the function f satisfies x ∈ L′ if and only if f(x) ∈ L for all x ∈ {0, 1}∗
• Prove that the algorithm computing f runs in polynomial time

CS
51

4

17 17

Steps to prove NP-completeness
• Prove L ∈ NP
• Prove that L is NP-hard:

• Select a known NP-complete language L′

• Describe an algorithm that computes a function f mapping every instance x ∈ {0, 1}∗
of L′ to an instance of f(x) of L

• Prove that the function f satisfies x ∈ L′ if and only if f(x) ∈ L for all x ∈ {0, 1}∗
• Prove that the algorithm computing f runs in polynomial time

CS
51

4

17 17

Steps to prove NP-completeness
• Prove L ∈ NP
• Prove that L is NP-hard:
• Select a known NP-complete language L′

• Describe an algorithm that computes a function f mapping every instance x ∈ {0, 1}∗
of L′ to an instance of f(x) of L

• Prove that the function f satisfies x ∈ L′ if and only if f(x) ∈ L for all x ∈ {0, 1}∗
• Prove that the algorithm computing f runs in polynomial time

x y z

y

a
b

c
d

e

f

CS
51

4

18 18

SAT ∈ NPC
• SAT: inputs – n Boolean variables, m connectives (∧,∨,¬,→,↔), and parentheses

• The boolean formula ϕ can be encoded in length that is polynomial in n + m
• Example: (x1 → x2) ∧ ((x3 ∨ ¬x4) ∧ (x3 ↔ x4))
• Given a SAT instance and an assignment of the variables (certificate) - it can be verified

in polynomial time
• To prove NP-hard, we need to show Circuit-SAT ≤P SAT
• We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

ϕ = y ∧ (y ↔ (e ∨ f)) ∧ (e ↔ (x ∧ d))∧
(f ↔ (d ∧ b)) ∧ (d ↔ ¬c)∧
(b ↔ (z ∧ a)) ∧ (c ↔ (z ∧ y))∧
(a ↔ (x ∧ y))

x y z

y

a
b

c
d

e

f

CS
51

4

18 18

SAT ∈ NPC
• SAT: inputs – n Boolean variables, m connectives (∧,∨,¬,→,↔), and parentheses
• The boolean formula ϕ can be encoded in length that is polynomial in n + m
• Example: (x1 → x2) ∧ ((x3 ∨ ¬x4) ∧ (x3 ↔ x4))

• Given a SAT instance and an assignment of the variables (certificate) - it can be verified
in polynomial time

• To prove NP-hard, we need to show Circuit-SAT ≤P SAT
• We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

ϕ = y ∧ (y ↔ (e ∨ f)) ∧ (e ↔ (x ∧ d))∧
(f ↔ (d ∧ b)) ∧ (d ↔ ¬c)∧
(b ↔ (z ∧ a)) ∧ (c ↔ (z ∧ y))∧
(a ↔ (x ∧ y))

x y z

y

a
b

c
d

e

f

CS
51

4

18 18

SAT ∈ NPC
• SAT: inputs – n Boolean variables, m connectives (∧,∨,¬,→,↔), and parentheses
• The boolean formula ϕ can be encoded in length that is polynomial in n + m
• Example: (x1 → x2) ∧ ((x3 ∨ ¬x4) ∧ (x3 ↔ x4))
• Given a SAT instance and an assignment of the variables (certificate) - it can be verified

in polynomial time

• To prove NP-hard, we need to show Circuit-SAT ≤P SAT
• We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

ϕ = y ∧ (y ↔ (e ∨ f)) ∧ (e ↔ (x ∧ d))∧
(f ↔ (d ∧ b)) ∧ (d ↔ ¬c)∧
(b ↔ (z ∧ a)) ∧ (c ↔ (z ∧ y))∧
(a ↔ (x ∧ y))

x y z

y

a
b

c
d

e

f

CS
51

4

18 18

SAT ∈ NPC
• SAT: inputs – n Boolean variables, m connectives (∧,∨,¬,→,↔), and parentheses
• The boolean formula ϕ can be encoded in length that is polynomial in n + m
• Example: (x1 → x2) ∧ ((x3 ∨ ¬x4) ∧ (x3 ↔ x4))
• Given a SAT instance and an assignment of the variables (certificate) - it can be verified

in polynomial time
• To prove NP-hard, we need to show Circuit-SAT ≤P SAT

• We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

ϕ = y ∧ (y ↔ (e ∨ f)) ∧ (e ↔ (x ∧ d))∧
(f ↔ (d ∧ b)) ∧ (d ↔ ¬c)∧
(b ↔ (z ∧ a)) ∧ (c ↔ (z ∧ y))∧
(a ↔ (x ∧ y))

x y z

y

a
b

c
d

e

f

CS
51

4

18 18

SAT ∈ NPC
• SAT: inputs – n Boolean variables, m connectives (∧,∨,¬,→,↔), and parentheses
• The boolean formula ϕ can be encoded in length that is polynomial in n + m
• Example: (x1 → x2) ∧ ((x3 ∨ ¬x4) ∧ (x3 ↔ x4))
• Given a SAT instance and an assignment of the variables (certificate) - it can be verified

in polynomial time
• To prove NP-hard, we need to show Circuit-SAT ≤P SAT
• We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

ϕ = y ∧ (y ↔ (e ∨ f)) ∧ (e ↔ (x ∧ d))∧
(f ↔ (d ∧ b)) ∧ (d ↔ ¬c)∧
(b ↔ (z ∧ a)) ∧ (c ↔ (z ∧ y))∧
(a ↔ (x ∧ y))

x y z

y

a
b

c
d

e

f

CS
51

4

18 18

SAT ∈ NPC
• SAT: inputs – n Boolean variables, m connectives (∧,∨,¬,→,↔), and parentheses
• The boolean formula ϕ can be encoded in length that is polynomial in n + m
• Example: (x1 → x2) ∧ ((x3 ∨ ¬x4) ∧ (x3 ↔ x4))
• Given a SAT instance and an assignment of the variables (certificate) - it can be verified

in polynomial time
• To prove NP-hard, we need to show Circuit-SAT ≤P SAT
• We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

ϕ = y ∧ (y ↔ (e ∨ f)) ∧ (e ↔ (x ∧ d))∧
(f ↔ (d ∧ b)) ∧ (d ↔ ¬c)∧
(b ↔ (z ∧ a)) ∧ (c ↔ (z ∧ y))∧
(a ↔ (x ∧ y))

x y z

y

a
b

c
d

e

f

CS
51

4

19 19

SAT ∈ NPC
• We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

ϕ = y ∧ (y ↔ (e ∨ f)) ∧ (e ↔ (x ∧ d)) ∧ (f ↔ (d ∧ b)) ∧ (d ↔ ¬c)∧
(b ↔ (z ∧ a)) ∧ (c ↔ (z ∧ y)) ∧ (a ↔ (x ∧ y))

• Now we need to show C is satisfiable exactly when ϕ is satisfiable
• If C has a satisfying assignment, then each wire of the circuit has well defined value

and output is 1
• We can assign the wire values to variables in ϕ, each clause will evaluate to 1, hence,
ϕ = 1

• If some assignment causes ϕ to evaluate to 1, we can assign values to different wires
and it will evaluate to 1 for C

x y z

y

a
b

c
d

e

f

CS
51

4

19 19

SAT ∈ NPC
• We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

ϕ = y ∧ (y ↔ (e ∨ f)) ∧ (e ↔ (x ∧ d)) ∧ (f ↔ (d ∧ b)) ∧ (d ↔ ¬c)∧
(b ↔ (z ∧ a)) ∧ (c ↔ (z ∧ y)) ∧ (a ↔ (x ∧ y))

• Now we need to show C is satisfiable exactly when ϕ is satisfiable

• If C has a satisfying assignment, then each wire of the circuit has well defined value
and output is 1

• We can assign the wire values to variables in ϕ, each clause will evaluate to 1, hence,
ϕ = 1

• If some assignment causes ϕ to evaluate to 1, we can assign values to different wires
and it will evaluate to 1 for C

x y z

y

a
b

c
d

e

f

CS
51

4

19 19

SAT ∈ NPC
• We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

ϕ = y ∧ (y ↔ (e ∨ f)) ∧ (e ↔ (x ∧ d)) ∧ (f ↔ (d ∧ b)) ∧ (d ↔ ¬c)∧
(b ↔ (z ∧ a)) ∧ (c ↔ (z ∧ y)) ∧ (a ↔ (x ∧ y))

• Now we need to show C is satisfiable exactly when ϕ is satisfiable
• If C has a satisfying assignment, then each wire of the circuit has well defined value

and output is 1

• We can assign the wire values to variables in ϕ, each clause will evaluate to 1, hence,
ϕ = 1

• If some assignment causes ϕ to evaluate to 1, we can assign values to different wires
and it will evaluate to 1 for C

x y z

y

a
b

c
d

e

f

CS
51

4

19 19

SAT ∈ NPC
• We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

ϕ = y ∧ (y ↔ (e ∨ f)) ∧ (e ↔ (x ∧ d)) ∧ (f ↔ (d ∧ b)) ∧ (d ↔ ¬c)∧
(b ↔ (z ∧ a)) ∧ (c ↔ (z ∧ y)) ∧ (a ↔ (x ∧ y))

• Now we need to show C is satisfiable exactly when ϕ is satisfiable
• If C has a satisfying assignment, then each wire of the circuit has well defined value

and output is 1
• We can assign the wire values to variables in ϕ, each clause will evaluate to 1, hence,
ϕ = 1

• If some assignment causes ϕ to evaluate to 1, we can assign values to different wires
and it will evaluate to 1 for C

x y z

y

a
b

c
d

e

f

CS
51

4

19 19

SAT ∈ NPC
• We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

ϕ = y ∧ (y ↔ (e ∨ f)) ∧ (e ↔ (x ∧ d)) ∧ (f ↔ (d ∧ b)) ∧ (d ↔ ¬c)∧
(b ↔ (z ∧ a)) ∧ (c ↔ (z ∧ y)) ∧ (a ↔ (x ∧ y))

• Now we need to show C is satisfiable exactly when ϕ is satisfiable
• If C has a satisfying assignment, then each wire of the circuit has well defined value

and output is 1
• We can assign the wire values to variables in ϕ, each clause will evaluate to 1, hence,
ϕ = 1

• If some assignment causes ϕ to evaluate to 1, we can assign values to different wires
and it will evaluate to 1 for C

CS
51

4

20 20

Circuit-SAT≤P CNF-SAT
• Literal - variable in boolean formula, x1 or ¬x1
• Clause - OR of any number of literals, x1 ∨ ¬x2 ∨ x3 ∨ ¬x4
• CNF (conjunctive normal form) - AND of clauses

• CNF-SAT: (x1 ∨ ¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ ¬x1)
• Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND

and OR gates can have either 2 or 3 inputs
• For NOT gate:

y ↔ ¬x = (¬y ∨ ¬x) ∧ (x ∨ y)
• For 2-input AND gate:

y ↔ (a ∧ b) = (y → (a ∧ b)) ∧ ((a ∧ b) → y)
= (¬y ∨ (a ∧ b)) ∧ (¬a ∨ ¬b ∨ y) = (¬y ∨ a) ∧ (¬y ∨ b) ∧ (¬a ∨ ¬b ∨ y)

CS
51

4

20 20

Circuit-SAT≤P CNF-SAT
• Literal - variable in boolean formula, x1 or ¬x1
• Clause - OR of any number of literals, x1 ∨ ¬x2 ∨ x3 ∨ ¬x4
• CNF (conjunctive normal form) - AND of clauses
• CNF-SAT: (x1 ∨ ¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ ¬x1)

• Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND
and OR gates can have either 2 or 3 inputs

• For NOT gate:
y ↔ ¬x = (¬y ∨ ¬x) ∧ (x ∨ y)

• For 2-input AND gate:
y ↔ (a ∧ b) = (y → (a ∧ b)) ∧ ((a ∧ b) → y)
= (¬y ∨ (a ∧ b)) ∧ (¬a ∨ ¬b ∨ y) = (¬y ∨ a) ∧ (¬y ∨ b) ∧ (¬a ∨ ¬b ∨ y)

CS
51

4

20 20

Circuit-SAT≤P CNF-SAT
• Literal - variable in boolean formula, x1 or ¬x1
• Clause - OR of any number of literals, x1 ∨ ¬x2 ∨ x3 ∨ ¬x4
• CNF (conjunctive normal form) - AND of clauses
• CNF-SAT: (x1 ∨ ¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ ¬x1)
• Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND

and OR gates can have either 2 or 3 inputs

• For NOT gate:
y ↔ ¬x = (¬y ∨ ¬x) ∧ (x ∨ y)

• For 2-input AND gate:
y ↔ (a ∧ b) = (y → (a ∧ b)) ∧ ((a ∧ b) → y)
= (¬y ∨ (a ∧ b)) ∧ (¬a ∨ ¬b ∨ y) = (¬y ∨ a) ∧ (¬y ∨ b) ∧ (¬a ∨ ¬b ∨ y)

CS
51

4

20 20

Circuit-SAT≤P CNF-SAT
• Literal - variable in boolean formula, x1 or ¬x1
• Clause - OR of any number of literals, x1 ∨ ¬x2 ∨ x3 ∨ ¬x4
• CNF (conjunctive normal form) - AND of clauses
• CNF-SAT: (x1 ∨ ¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ ¬x1)
• Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND

and OR gates can have either 2 or 3 inputs
• For NOT gate:

y ↔ ¬x = (¬y ∨ ¬x) ∧ (x ∨ y)
• For 2-input AND gate:

y ↔ (a ∧ b) = (y → (a ∧ b)) ∧ ((a ∧ b) → y)
= (¬y ∨ (a ∧ b)) ∧ (¬a ∨ ¬b ∨ y) = (¬y ∨ a) ∧ (¬y ∨ b) ∧ (¬a ∨ ¬b ∨ y)

CS
51

4

20 20

Circuit-SAT≤P CNF-SAT
• Literal - variable in boolean formula, x1 or ¬x1
• Clause - OR of any number of literals, x1 ∨ ¬x2 ∨ x3 ∨ ¬x4
• CNF (conjunctive normal form) - AND of clauses
• CNF-SAT: (x1 ∨ ¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ ¬x1)
• Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND

and OR gates can have either 2 or 3 inputs
• For NOT gate:

y ↔ ¬x = (¬y ∨ ¬x) ∧ (x ∨ y)

• For 2-input AND gate:
y ↔ (a ∧ b) = (y → (a ∧ b)) ∧ ((a ∧ b) → y)
= (¬y ∨ (a ∧ b)) ∧ (¬a ∨ ¬b ∨ y) = (¬y ∨ a) ∧ (¬y ∨ b) ∧ (¬a ∨ ¬b ∨ y)

CS
51

4

20 20

Circuit-SAT≤P CNF-SAT
• Literal - variable in boolean formula, x1 or ¬x1
• Clause - OR of any number of literals, x1 ∨ ¬x2 ∨ x3 ∨ ¬x4
• CNF (conjunctive normal form) - AND of clauses
• CNF-SAT: (x1 ∨ ¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ ¬x1)
• Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND

and OR gates can have either 2 or 3 inputs
• For NOT gate:

y ↔ ¬x = (¬y ∨ ¬x) ∧ (x ∨ y)
• For 2-input AND gate:

y ↔ (a ∧ b) = (y → (a ∧ b)) ∧ ((a ∧ b) → y)
= (¬y ∨ (a ∧ b)) ∧ (¬a ∨ ¬b ∨ y) = (¬y ∨ a) ∧ (¬y ∨ b) ∧ (¬a ∨ ¬b ∨ y)

CS
51

4

20 20

Circuit-SAT≤P CNF-SAT
• Literal - variable in boolean formula, x1 or ¬x1
• Clause - OR of any number of literals, x1 ∨ ¬x2 ∨ x3 ∨ ¬x4
• CNF (conjunctive normal form) - AND of clauses
• CNF-SAT: (x1 ∨ ¬x2 ∨ x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ ¬x1)
• Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND

and OR gates can have either 2 or 3 inputs
• For NOT gate:

y ↔ ¬x = (¬y ∨ ¬x) ∧ (x ∨ y)
• For 2-input AND gate:

y ↔ (a ∧ b) = (y → (a ∧ b)) ∧ ((a ∧ b) → y)
= (¬y ∨ (a ∧ b)) ∧ (¬a ∨ ¬b ∨ y) = (¬y ∨ a) ∧ (¬y ∨ b) ∧ (¬a ∨ ¬b ∨ y)

CS
51

4

21 21

Circuit-SAT≤P CNF-SAT
• For 3-input AND gate:

y ↔ (a ∧ b ∧ c) = (¬y ∨ a) ∧ (¬y ∨ b) ∧ (¬y ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c ∨ y)
• For 2-input OR gate:

y ↔ (a ∨ b) = (y → (a ∨ b)) ∧ ((a ∨ b) → y)
= (¬y ∨ a ∨ b) ∧ ((¬a ∧ ¬b) ∨ y) = (¬y ∨ a ∨ b) ∧ (¬a ∨ y) ∧ (¬b ∨ y)

• For 3-input OR gate:
y ↔ (a ∨ b ∨ c) = (¬y ∨ a ∨ b ∨ c) ∧ (¬a ∨ y) ∧ (¬b ∨ y) ∧ (¬c ∨ y)

• Circuit-SAT can be converted to CNF-SAT in polynomial time using above transfor-
mations

• It can be shown Circuit-SAT has a solution if and only if CNF-SAT has a solution

CS
51

4

21 21

Circuit-SAT≤P CNF-SAT
• For 3-input AND gate:

y ↔ (a ∧ b ∧ c) = (¬y ∨ a) ∧ (¬y ∨ b) ∧ (¬y ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c ∨ y)

• For 2-input OR gate:
y ↔ (a ∨ b) = (y → (a ∨ b)) ∧ ((a ∨ b) → y)
= (¬y ∨ a ∨ b) ∧ ((¬a ∧ ¬b) ∨ y) = (¬y ∨ a ∨ b) ∧ (¬a ∨ y) ∧ (¬b ∨ y)

• For 3-input OR gate:
y ↔ (a ∨ b ∨ c) = (¬y ∨ a ∨ b ∨ c) ∧ (¬a ∨ y) ∧ (¬b ∨ y) ∧ (¬c ∨ y)

• Circuit-SAT can be converted to CNF-SAT in polynomial time using above transfor-
mations

• It can be shown Circuit-SAT has a solution if and only if CNF-SAT has a solution

CS
51

4

21 21

Circuit-SAT≤P CNF-SAT
• For 3-input AND gate:

y ↔ (a ∧ b ∧ c) = (¬y ∨ a) ∧ (¬y ∨ b) ∧ (¬y ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c ∨ y)
• For 2-input OR gate:

y ↔ (a ∨ b) = (y → (a ∨ b)) ∧ ((a ∨ b) → y)
= (¬y ∨ a ∨ b) ∧ ((¬a ∧ ¬b) ∨ y) = (¬y ∨ a ∨ b) ∧ (¬a ∨ y) ∧ (¬b ∨ y)

• For 3-input OR gate:
y ↔ (a ∨ b ∨ c) = (¬y ∨ a ∨ b ∨ c) ∧ (¬a ∨ y) ∧ (¬b ∨ y) ∧ (¬c ∨ y)

• Circuit-SAT can be converted to CNF-SAT in polynomial time using above transfor-
mations

• It can be shown Circuit-SAT has a solution if and only if CNF-SAT has a solution

CS
51

4

21 21

Circuit-SAT≤P CNF-SAT
• For 3-input AND gate:

y ↔ (a ∧ b ∧ c) = (¬y ∨ a) ∧ (¬y ∨ b) ∧ (¬y ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c ∨ y)
• For 2-input OR gate:

y ↔ (a ∨ b) = (y → (a ∨ b)) ∧ ((a ∨ b) → y)
= (¬y ∨ a ∨ b) ∧ ((¬a ∧ ¬b) ∨ y) = (¬y ∨ a ∨ b) ∧ (¬a ∨ y) ∧ (¬b ∨ y)

• For 3-input OR gate:
y ↔ (a ∨ b ∨ c) = (¬y ∨ a ∨ b ∨ c) ∧ (¬a ∨ y) ∧ (¬b ∨ y) ∧ (¬c ∨ y)

• Circuit-SAT can be converted to CNF-SAT in polynomial time using above transfor-
mations

• It can be shown Circuit-SAT has a solution if and only if CNF-SAT has a solution

CS
51

4

21 21

Circuit-SAT≤P CNF-SAT
• For 3-input AND gate:

y ↔ (a ∧ b ∧ c) = (¬y ∨ a) ∧ (¬y ∨ b) ∧ (¬y ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c ∨ y)
• For 2-input OR gate:

y ↔ (a ∨ b) = (y → (a ∨ b)) ∧ ((a ∨ b) → y)
= (¬y ∨ a ∨ b) ∧ ((¬a ∧ ¬b) ∨ y) = (¬y ∨ a ∨ b) ∧ (¬a ∨ y) ∧ (¬b ∨ y)

• For 3-input OR gate:

y ↔ (a ∨ b ∨ c) = (¬y ∨ a ∨ b ∨ c) ∧ (¬a ∨ y) ∧ (¬b ∨ y) ∧ (¬c ∨ y)
• Circuit-SAT can be converted to CNF-SAT in polynomial time using above transfor-

mations
• It can be shown Circuit-SAT has a solution if and only if CNF-SAT has a solution

CS
51

4

21 21

Circuit-SAT≤P CNF-SAT
• For 3-input AND gate:

y ↔ (a ∧ b ∧ c) = (¬y ∨ a) ∧ (¬y ∨ b) ∧ (¬y ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c ∨ y)
• For 2-input OR gate:

y ↔ (a ∨ b) = (y → (a ∨ b)) ∧ ((a ∨ b) → y)
= (¬y ∨ a ∨ b) ∧ ((¬a ∧ ¬b) ∨ y) = (¬y ∨ a ∨ b) ∧ (¬a ∨ y) ∧ (¬b ∨ y)

• For 3-input OR gate:
y ↔ (a ∨ b ∨ c) = (¬y ∨ a ∨ b ∨ c) ∧ (¬a ∨ y) ∧ (¬b ∨ y) ∧ (¬c ∨ y)

• Circuit-SAT can be converted to CNF-SAT in polynomial time using above transfor-
mations

• It can be shown Circuit-SAT has a solution if and only if CNF-SAT has a solution

CS
51

4

21 21

Circuit-SAT≤P CNF-SAT
• For 3-input AND gate:

y ↔ (a ∧ b ∧ c) = (¬y ∨ a) ∧ (¬y ∨ b) ∧ (¬y ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c ∨ y)
• For 2-input OR gate:

y ↔ (a ∨ b) = (y → (a ∨ b)) ∧ ((a ∨ b) → y)
= (¬y ∨ a ∨ b) ∧ ((¬a ∧ ¬b) ∨ y) = (¬y ∨ a ∨ b) ∧ (¬a ∨ y) ∧ (¬b ∨ y)

• For 3-input OR gate:
y ↔ (a ∨ b ∨ c) = (¬y ∨ a ∨ b ∨ c) ∧ (¬a ∨ y) ∧ (¬b ∨ y) ∧ (¬c ∨ y)

• Circuit-SAT can be converted to CNF-SAT in polynomial time using above transfor-
mations

• It can be shown Circuit-SAT has a solution if and only if CNF-SAT has a solution

CS
51

4

22 22

3-CNF-SAT ∈ NPC
• 3-CNF-SAT: each clause has exactly 3 literals

• Given an assignment of the variables, truth value can be verified in linear time. Hence
3-CNF-SAT ∈ NP

• We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to
3-CNF-SAT

• Clause with 1 literal:
x1 ≡ (x1 ∨ z1 ∨ z2) ∧ (x1 ∨ ¬z1 ∨ z2) ∧ (x1 ∨ z1 ∨ ¬z2) ∧ (x1 ∨ ¬z1 ∨ ¬z2)

• Clause with 2 literals:
x1 ∨ x2 ≡ (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ ¬z1)

• Clause with 3 literals: No need to change

CS
51

4

22 22

3-CNF-SAT ∈ NPC
• 3-CNF-SAT: each clause has exactly 3 literals
• Given an assignment of the variables, truth value can be verified in linear time. Hence

3-CNF-SAT ∈ NP

• We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to
3-CNF-SAT

• Clause with 1 literal:
x1 ≡ (x1 ∨ z1 ∨ z2) ∧ (x1 ∨ ¬z1 ∨ z2) ∧ (x1 ∨ z1 ∨ ¬z2) ∧ (x1 ∨ ¬z1 ∨ ¬z2)

• Clause with 2 literals:
x1 ∨ x2 ≡ (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ ¬z1)

• Clause with 3 literals: No need to change

CS
51

4

22 22

3-CNF-SAT ∈ NPC
• 3-CNF-SAT: each clause has exactly 3 literals
• Given an assignment of the variables, truth value can be verified in linear time. Hence

3-CNF-SAT ∈ NP
• We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to

3-CNF-SAT

• Clause with 1 literal:
x1 ≡ (x1 ∨ z1 ∨ z2) ∧ (x1 ∨ ¬z1 ∨ z2) ∧ (x1 ∨ z1 ∨ ¬z2) ∧ (x1 ∨ ¬z1 ∨ ¬z2)

• Clause with 2 literals:
x1 ∨ x2 ≡ (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ ¬z1)

• Clause with 3 literals: No need to change

CS
51

4

22 22

3-CNF-SAT ∈ NPC
• 3-CNF-SAT: each clause has exactly 3 literals
• Given an assignment of the variables, truth value can be verified in linear time. Hence

3-CNF-SAT ∈ NP
• We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to

3-CNF-SAT
• Clause with 1 literal:

x1 ≡ (x1 ∨ z1 ∨ z2) ∧ (x1 ∨ ¬z1 ∨ z2) ∧ (x1 ∨ z1 ∨ ¬z2) ∧ (x1 ∨ ¬z1 ∨ ¬z2)
• Clause with 2 literals:

x1 ∨ x2 ≡ (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ ¬z1)
• Clause with 3 literals: No need to change

CS
51

4

22 22

3-CNF-SAT ∈ NPC
• 3-CNF-SAT: each clause has exactly 3 literals
• Given an assignment of the variables, truth value can be verified in linear time. Hence

3-CNF-SAT ∈ NP
• We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to

3-CNF-SAT
• Clause with 1 literal:

x1 ≡ (x1 ∨ z1 ∨ z2) ∧ (x1 ∨ ¬z1 ∨ z2) ∧ (x1 ∨ z1 ∨ ¬z2) ∧ (x1 ∨ ¬z1 ∨ ¬z2)

• Clause with 2 literals:
x1 ∨ x2 ≡ (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ ¬z1)

• Clause with 3 literals: No need to change

CS
51

4

22 22

3-CNF-SAT ∈ NPC
• 3-CNF-SAT: each clause has exactly 3 literals
• Given an assignment of the variables, truth value can be verified in linear time. Hence

3-CNF-SAT ∈ NP
• We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to

3-CNF-SAT
• Clause with 1 literal:

x1 ≡ (x1 ∨ z1 ∨ z2) ∧ (x1 ∨ ¬z1 ∨ z2) ∧ (x1 ∨ z1 ∨ ¬z2) ∧ (x1 ∨ ¬z1 ∨ ¬z2)
• Clause with 2 literals:

x1 ∨ x2 ≡ (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ ¬z1)
• Clause with 3 literals: No need to change

CS
51

4

22 22

3-CNF-SAT ∈ NPC
• 3-CNF-SAT: each clause has exactly 3 literals
• Given an assignment of the variables, truth value can be verified in linear time. Hence

3-CNF-SAT ∈ NP
• We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to

3-CNF-SAT
• Clause with 1 literal:

x1 ≡ (x1 ∨ z1 ∨ z2) ∧ (x1 ∨ ¬z1 ∨ z2) ∧ (x1 ∨ z1 ∨ ¬z2) ∧ (x1 ∨ ¬z1 ∨ ¬z2)
• Clause with 2 literals:

x1 ∨ x2 ≡ (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ ¬z1)

• Clause with 3 literals: No need to change

CS
51

4

22 22

3-CNF-SAT ∈ NPC
• 3-CNF-SAT: each clause has exactly 3 literals
• Given an assignment of the variables, truth value can be verified in linear time. Hence

3-CNF-SAT ∈ NP
• We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to

3-CNF-SAT
• Clause with 1 literal:

x1 ≡ (x1 ∨ z1 ∨ z2) ∧ (x1 ∨ ¬z1 ∨ z2) ∧ (x1 ∨ z1 ∨ ¬z2) ∧ (x1 ∨ ¬z1 ∨ ¬z2)
• Clause with 2 literals:

x1 ∨ x2 ≡ (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ ¬z1)
• Clause with 3 literals:

No need to change

CS
51

4

22 22

3-CNF-SAT ∈ NPC
• 3-CNF-SAT: each clause has exactly 3 literals
• Given an assignment of the variables, truth value can be verified in linear time. Hence

3-CNF-SAT ∈ NP
• We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to

3-CNF-SAT
• Clause with 1 literal:

x1 ≡ (x1 ∨ z1 ∨ z2) ∧ (x1 ∨ ¬z1 ∨ z2) ∧ (x1 ∨ z1 ∨ ¬z2) ∧ (x1 ∨ ¬z1 ∨ ¬z2)
• Clause with 2 literals:

x1 ∨ x2 ≡ (x1 ∨ x2 ∨ z1) ∧ (x1 ∨ x2 ∨ ¬z1)
• Clause with 3 literals: No need to change

CS
51

4

23 23

3-CNF-SAT ∈ NPC
• Clause with >3 literals: X = (x1 ∨ x2 ∨ . . . xk)

Y = (x1 ∨ x2 ∨ z1)(¬z1 ∨ x3 ∨ z2)(¬z2 ∨ x4 ∨ z3) . . . (¬zk−3 ∨ xk−1 ∨ xk)

• The above conversion can be done in polynomial time
• We need to show: { X is satisfied } ↔ { there is a setting of zi’s s.t. Y is satisfied }
• Assume Y is satisfied: we can claim at least one literals x1, . . . , xk must be true.

How? What is the implication on X?
• Conversely, if X is satisfied: some xi must be true.

Set z1, . . . , zi−2 to true and rest to false

CS
51

4

23 23

3-CNF-SAT ∈ NPC
• Clause with >3 literals: X = (x1 ∨ x2 ∨ . . . xk)

Y = (x1 ∨ x2 ∨ z1)(¬z1 ∨ x3 ∨ z2)(¬z2 ∨ x4 ∨ z3) . . . (¬zk−3 ∨ xk−1 ∨ xk)

• The above conversion can be done in polynomial time
• We need to show: { X is satisfied } ↔ { there is a setting of zi’s s.t. Y is satisfied }
• Assume Y is satisfied: we can claim at least one literals x1, . . . , xk must be true.

How? What is the implication on X?
• Conversely, if X is satisfied: some xi must be true.

Set z1, . . . , zi−2 to true and rest to false

CS
51

4

23 23

3-CNF-SAT ∈ NPC
• Clause with >3 literals: X = (x1 ∨ x2 ∨ . . . xk)

Y = (x1 ∨ x2 ∨ z1)(¬z1 ∨ x3 ∨ z2)(¬z2 ∨ x4 ∨ z3) . . . (¬zk−3 ∨ xk−1 ∨ xk)

• The above conversion can be done in polynomial time

• We need to show: { X is satisfied } ↔ { there is a setting of zi’s s.t. Y is satisfied }
• Assume Y is satisfied: we can claim at least one literals x1, . . . , xk must be true.

How? What is the implication on X?
• Conversely, if X is satisfied: some xi must be true.

Set z1, . . . , zi−2 to true and rest to false

CS
51

4

23 23

3-CNF-SAT ∈ NPC
• Clause with >3 literals: X = (x1 ∨ x2 ∨ . . . xk)

Y = (x1 ∨ x2 ∨ z1)(¬z1 ∨ x3 ∨ z2)(¬z2 ∨ x4 ∨ z3) . . . (¬zk−3 ∨ xk−1 ∨ xk)

• The above conversion can be done in polynomial time
• We need to show: { X is satisfied } ↔ { there is a setting of zi’s s.t. Y is satisfied }

• Assume Y is satisfied: we can claim at least one literals x1, . . . , xk must be true.
How? What is the implication on X?

• Conversely, if X is satisfied: some xi must be true.
Set z1, . . . , zi−2 to true and rest to false

CS
51

4

23 23

3-CNF-SAT ∈ NPC
• Clause with >3 literals: X = (x1 ∨ x2 ∨ . . . xk)

Y = (x1 ∨ x2 ∨ z1)(¬z1 ∨ x3 ∨ z2)(¬z2 ∨ x4 ∨ z3) . . . (¬zk−3 ∨ xk−1 ∨ xk)

• The above conversion can be done in polynomial time
• We need to show: { X is satisfied } ↔ { there is a setting of zi’s s.t. Y is satisfied }
• Assume Y is satisfied: we can claim at least one literals x1, . . . , xk must be true.

How? What is the implication on X?

• Conversely, if X is satisfied: some xi must be true.
Set z1, . . . , zi−2 to true and rest to false

CS
51

4

23 23

3-CNF-SAT ∈ NPC
• Clause with >3 literals: X = (x1 ∨ x2 ∨ . . . xk)

Y = (x1 ∨ x2 ∨ z1)(¬z1 ∨ x3 ∨ z2)(¬z2 ∨ x4 ∨ z3) . . . (¬zk−3 ∨ xk−1 ∨ xk)

• The above conversion can be done in polynomial time
• We need to show: { X is satisfied } ↔ { there is a setting of zi’s s.t. Y is satisfied }
• Assume Y is satisfied: we can claim at least one literals x1, . . . , xk must be true.

How? What is the implication on X?
• Conversely, if X is satisfied: some xi must be true.

Set z1, . . . , zi−2 to true and rest to false

CS
51

4

23 23

3-CNF-SAT ∈ NPC
• Clause with >3 literals: X = (x1 ∨ x2 ∨ . . . xk)

Y = (x1 ∨ x2 ∨ z1)(¬z1 ∨ x3 ∨ z2)(¬z2 ∨ x4 ∨ z3) . . . (¬zk−3 ∨ xk−1 ∨ xk)

• The above conversion can be done in polynomial time
• We need to show: { X is satisfied } ↔ { there is a setting of zi’s s.t. Y is satisfied }
• Assume Y is satisfied: we can claim at least one literals x1, . . . , xk must be true.

How? What is the implication on X?
• Conversely, if X is satisfied: some xi must be true.

Set z1, . . . , zi−2 to true and rest to false

y

x̄ z̄

ȳ

x z

y

x z

ȳ

x̄

CS
51

4

24 24

Independent Set (IS) ∈ NPC
• IS: given a graph G and an integer k, does there exist k vertices that are independent,

that is, no two of which have an edge between them

• IS ∈ NP as a certificate can be verified in polynomial time
• We reduce 3-SAT to IS
• Take an instance of 3-SAT: X = (x̄ ∨ y ∨ z̄)(x ∨ ȳ ∨ z)(x ∨ y ∨ z)(x̄ ∨ ȳ)
• Construction of G:
• Each clause is represented as triangle with vertices as the literals
• Connect an edge between two nodes of different clauses if they represent opposite

literals

y

x̄ z̄

ȳ

x z

y

x z

ȳ

x̄

CS
51

4

24 24

Independent Set (IS) ∈ NPC
• IS: given a graph G and an integer k, does there exist k vertices that are independent,

that is, no two of which have an edge between them
• IS ∈ NP as a certificate can be verified in polynomial time

• We reduce 3-SAT to IS
• Take an instance of 3-SAT: X = (x̄ ∨ y ∨ z̄)(x ∨ ȳ ∨ z)(x ∨ y ∨ z)(x̄ ∨ ȳ)
• Construction of G:
• Each clause is represented as triangle with vertices as the literals
• Connect an edge between two nodes of different clauses if they represent opposite

literals

y

x̄ z̄

ȳ

x z

y

x z

ȳ

x̄

CS
51

4

24 24

Independent Set (IS) ∈ NPC
• IS: given a graph G and an integer k, does there exist k vertices that are independent,

that is, no two of which have an edge between them
• IS ∈ NP as a certificate can be verified in polynomial time
• We reduce 3-SAT to IS

• Take an instance of 3-SAT: X = (x̄ ∨ y ∨ z̄)(x ∨ ȳ ∨ z)(x ∨ y ∨ z)(x̄ ∨ ȳ)
• Construction of G:
• Each clause is represented as triangle with vertices as the literals
• Connect an edge between two nodes of different clauses if they represent opposite

literals

y

x̄ z̄

ȳ

x z

y

x z

ȳ

x̄

CS
51

4

24 24

Independent Set (IS) ∈ NPC
• IS: given a graph G and an integer k, does there exist k vertices that are independent,

that is, no two of which have an edge between them
• IS ∈ NP as a certificate can be verified in polynomial time
• We reduce 3-SAT to IS
• Take an instance of 3-SAT: X = (x̄ ∨ y ∨ z̄)(x ∨ ȳ ∨ z)(x ∨ y ∨ z)(x̄ ∨ ȳ)

• Construction of G:
• Each clause is represented as triangle with vertices as the literals
• Connect an edge between two nodes of different clauses if they represent opposite

literals

y

x̄ z̄

ȳ

x z

y

x z

ȳ

x̄

CS
51

4

24 24

Independent Set (IS) ∈ NPC
• IS: given a graph G and an integer k, does there exist k vertices that are independent,

that is, no two of which have an edge between them
• IS ∈ NP as a certificate can be verified in polynomial time
• We reduce 3-SAT to IS
• Take an instance of 3-SAT: X = (x̄ ∨ y ∨ z̄)(x ∨ ȳ ∨ z)(x ∨ y ∨ z)(x̄ ∨ ȳ)
• Construction of G:
• Each clause is represented as triangle with vertices as the literals
• Connect an edge between two nodes of different clauses if they represent opposite

literals

y

x̄ z̄

ȳ

x z

y

x z

ȳ

x̄

CS
51

4

24 24

Independent Set (IS) ∈ NPC
• IS: given a graph G and an integer k, does there exist k vertices that are independent,

that is, no two of which have an edge between them
• IS ∈ NP as a certificate can be verified in polynomial time
• We reduce 3-SAT to IS
• Take an instance of 3-SAT: X = (x̄ ∨ y ∨ z̄)(x ∨ ȳ ∨ z)(x ∨ y ∨ z)(x̄ ∨ ȳ)
• Construction of G:
• Each clause is represented as triangle with vertices as the literals
• Connect an edge between two nodes of different clauses if they represent opposite

literals

y

x̄ z̄

ȳ

x z

y

x z

ȳ

x̄

CS
51

4

25 25

Independent Set (IS) ∈ NPC
• Given an independent set S of k vertices in G, it is possible to find satisfying truth

assignment to I

• If I has a truth assignment then G has independent set of size k

y

x̄ z̄

ȳ

x z

y

x z

ȳ

x̄

CS
51

4

25 25

Independent Set (IS) ∈ NPC
• Given an independent set S of k vertices in G, it is possible to find satisfying truth

assignment to I
• If I has a truth assignment then G has independent set of size k

CS
51

4

26 26

Vertex Cover (VC) ∈ NPC
• A vertex cover of an undirected graph G = (V,E) is a subset V ′ ⊆ V such that if
(u, v) ∈ E then u ∈ V ′ or v ∈ V ′ or both. Does graph G has a vertex cover of size k?

• Let a set of nodes S be the vertex cover of G, that is S touches every edge in E
• The remaining nodes V − S must form an independent set!
• Thus to solve, an instance of (G, k) of independent-set, we simply look for a vertex

cover of G with V − k nodes
• If a vertex cover exists, then all nodes not in VC set form IS
• If no such vertex cover exists, G cannot have an independent set of size k

CS
51

4

26 26

Vertex Cover (VC) ∈ NPC
• A vertex cover of an undirected graph G = (V,E) is a subset V ′ ⊆ V such that if
(u, v) ∈ E then u ∈ V ′ or v ∈ V ′ or both. Does graph G has a vertex cover of size k?

• Let a set of nodes S be the vertex cover of G, that is S touches every edge in E

• The remaining nodes V − S must form an independent set!
• Thus to solve, an instance of (G, k) of independent-set, we simply look for a vertex

cover of G with V − k nodes
• If a vertex cover exists, then all nodes not in VC set form IS
• If no such vertex cover exists, G cannot have an independent set of size k

CS
51

4

26 26

Vertex Cover (VC) ∈ NPC
• A vertex cover of an undirected graph G = (V,E) is a subset V ′ ⊆ V such that if
(u, v) ∈ E then u ∈ V ′ or v ∈ V ′ or both. Does graph G has a vertex cover of size k?

• Let a set of nodes S be the vertex cover of G, that is S touches every edge in E
• The remaining nodes V − S must form an independent set!

• Thus to solve, an instance of (G, k) of independent-set, we simply look for a vertex
cover of G with V − k nodes

• If a vertex cover exists, then all nodes not in VC set form IS
• If no such vertex cover exists, G cannot have an independent set of size k

CS
51

4

26 26

Vertex Cover (VC) ∈ NPC
• A vertex cover of an undirected graph G = (V,E) is a subset V ′ ⊆ V such that if
(u, v) ∈ E then u ∈ V ′ or v ∈ V ′ or both. Does graph G has a vertex cover of size k?

• Let a set of nodes S be the vertex cover of G, that is S touches every edge in E
• The remaining nodes V − S must form an independent set!
• Thus to solve, an instance of (G, k) of independent-set, we simply look for a vertex

cover of G with V − k nodes

• If a vertex cover exists, then all nodes not in VC set form IS
• If no such vertex cover exists, G cannot have an independent set of size k

CS
51

4

26 26

Vertex Cover (VC) ∈ NPC
• A vertex cover of an undirected graph G = (V,E) is a subset V ′ ⊆ V such that if
(u, v) ∈ E then u ∈ V ′ or v ∈ V ′ or both. Does graph G has a vertex cover of size k?

• Let a set of nodes S be the vertex cover of G, that is S touches every edge in E
• The remaining nodes V − S must form an independent set!
• Thus to solve, an instance of (G, k) of independent-set, we simply look for a vertex

cover of G with V − k nodes
• If a vertex cover exists, then all nodes not in VC set form IS

• If no such vertex cover exists, G cannot have an independent set of size k

CS
51

4

26 26

Vertex Cover (VC) ∈ NPC
• A vertex cover of an undirected graph G = (V,E) is a subset V ′ ⊆ V such that if
(u, v) ∈ E then u ∈ V ′ or v ∈ V ′ or both. Does graph G has a vertex cover of size k?

• Let a set of nodes S be the vertex cover of G, that is S touches every edge in E
• The remaining nodes V − S must form an independent set!
• Thus to solve, an instance of (G, k) of independent-set, we simply look for a vertex

cover of G with V − k nodes
• If a vertex cover exists, then all nodes not in VC set form IS
• If no such vertex cover exists, G cannot have an independent set of size k

CS
51

4

27 27

Clique ∈ NPC
• A clique in an undirected graph G = (V,E) is a subset V ′ ⊆ V of vertices, each pair of

which is connected by an edge in E. Given a graph G, does it have a clique of size k?

• A certificate for clique can be verified in polynomial time
• We reduce 3-CNF-SAT to clique
• We choose X, CNF-SAT instance, that has k number of clauses (C1, . . . ,Ck), where

each clause has exactly 3 literals
• Graph construction: G = (V,E)
• For each clause Cr = (lr1 ∨ lr2 ∨ lr3) in X create three vertices vr

1, vr
2, vr

3 into V
• Add edge (vr

i , vs
j) into E if both of the following hold

• vr
i and vs

j are in different triples, that is r ̸= s, and
• their corresponding literals are consistent, that is lri is not the negation of lsj

CS
51

4

27 27

Clique ∈ NPC
• A clique in an undirected graph G = (V,E) is a subset V ′ ⊆ V of vertices, each pair of

which is connected by an edge in E. Given a graph G, does it have a clique of size k?
• A certificate for clique can be verified in polynomial time

• We reduce 3-CNF-SAT to clique
• We choose X, CNF-SAT instance, that has k number of clauses (C1, . . . ,Ck), where

each clause has exactly 3 literals
• Graph construction: G = (V,E)
• For each clause Cr = (lr1 ∨ lr2 ∨ lr3) in X create three vertices vr

1, vr
2, vr

3 into V
• Add edge (vr

i , vs
j) into E if both of the following hold

• vr
i and vs

j are in different triples, that is r ̸= s, and
• their corresponding literals are consistent, that is lri is not the negation of lsj

CS
51

4

27 27

Clique ∈ NPC
• A clique in an undirected graph G = (V,E) is a subset V ′ ⊆ V of vertices, each pair of

which is connected by an edge in E. Given a graph G, does it have a clique of size k?
• A certificate for clique can be verified in polynomial time
• We reduce 3-CNF-SAT to clique

• We choose X, CNF-SAT instance, that has k number of clauses (C1, . . . ,Ck), where
each clause has exactly 3 literals

• Graph construction: G = (V,E)
• For each clause Cr = (lr1 ∨ lr2 ∨ lr3) in X create three vertices vr

1, vr
2, vr

3 into V
• Add edge (vr

i , vs
j) into E if both of the following hold

• vr
i and vs

j are in different triples, that is r ̸= s, and
• their corresponding literals are consistent, that is lri is not the negation of lsj

CS
51

4

27 27

Clique ∈ NPC
• A clique in an undirected graph G = (V,E) is a subset V ′ ⊆ V of vertices, each pair of

which is connected by an edge in E. Given a graph G, does it have a clique of size k?
• A certificate for clique can be verified in polynomial time
• We reduce 3-CNF-SAT to clique
• We choose X, CNF-SAT instance, that has k number of clauses (C1, . . . ,Ck), where

each clause has exactly 3 literals

• Graph construction: G = (V,E)
• For each clause Cr = (lr1 ∨ lr2 ∨ lr3) in X create three vertices vr

1, vr
2, vr

3 into V
• Add edge (vr

i , vs
j) into E if both of the following hold

• vr
i and vs

j are in different triples, that is r ̸= s, and
• their corresponding literals are consistent, that is lri is not the negation of lsj

CS
51

4

27 27

Clique ∈ NPC
• A clique in an undirected graph G = (V,E) is a subset V ′ ⊆ V of vertices, each pair of

which is connected by an edge in E. Given a graph G, does it have a clique of size k?
• A certificate for clique can be verified in polynomial time
• We reduce 3-CNF-SAT to clique
• We choose X, CNF-SAT instance, that has k number of clauses (C1, . . . ,Ck), where

each clause has exactly 3 literals
• Graph construction: G = (V,E)
• For each clause Cr = (lr1 ∨ lr2 ∨ lr3) in X create three vertices vr

1, vr
2, vr

3 into V
• Add edge (vr

i , vs
j) into E if both of the following hold

• vr
i and vs

j are in different triples, that is r ̸= s, and
• their corresponding literals are consistent, that is lri is not the negation of lsj

x̄

y

z

x ȳ z̄

x

y

z

CS
51

4

28 28

Clique ∈ NPC
• Consider a 3SAT instance as X = C1 ∧ C2 ∧ C3 = (x̄ ∨ y ∨ z)(x ∨ ȳ ∨ z̄)(x ∨ y ∨ z)

• Suppose X has a satisfying assignment: what can we claim?
• Suppose G contains a clique of size k: what can be claimed?

x̄

y

z

x ȳ z̄

x

y

z

CS
51

4

28 28

Clique ∈ NPC
• Consider a 3SAT instance as X = C1 ∧ C2 ∧ C3 = (x̄ ∨ y ∨ z)(x ∨ ȳ ∨ z̄)(x ∨ y ∨ z)
• Suppose X has a satisfying assignment: what can we claim?

• Suppose G contains a clique of size k: what can be claimed?

x̄

y

z

x ȳ z̄

x

y

z

CS
51

4

28 28

Clique ∈ NPC
• Consider a 3SAT instance as X = C1 ∧ C2 ∧ C3 = (x̄ ∨ y ∨ z)(x ∨ ȳ ∨ z̄)(x ∨ y ∨ z)
• Suppose X has a satisfying assignment: what can we claim?
• Suppose G contains a clique of size k: what can be claimed?

CS
51

4

29 29

Thank you!

