CS514: Design and Analysis of Algorithms

Intractability

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in
https://www.iitp.ac.in/~arijit/

Simple vs Hard problems

- Shortest path vs Longest path in a graph

Simple vs Hard problems

- Shortest path vs Longest path in a graph
- Euler tour vs Hamiltonian cycle
- An Euler tour of a strongly connected, directed graph $G=(V, E)$ is a cycle that traverses each edge of G exactly once, although it is allowed to visit each vertex more than once
- A Hamiltonian cycle of a directed graph $G=(V, E)$ is a simple cycle that contains each vertex in V

Simple vs Hard problems

- Shortest path vs Longest path in a graph
- Euler tour vs Hamiltonian cycle
- An Euler tour of a strongly connected, directed graph $G=(V, E)$ is a cycle that traverses each edge of G exactly once, although it is allowed to visit each vertex more than once
- A Hamiltonian cycle of a directed graph $G=(V, E)$ is a simple cycle that contains each vertex in V
- 2-SAT vs 3-SAT
- 2-SAT: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)$
- 3-SAT: $\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{4}\right)$

Simple vs Hard problems

- Shortest path vs Longest path in a graph
- Euler tour vs Hamiltonian cycle
- An Euler tour of a strongly connected, directed graph $G=(V, E)$ is a cycle that traverses each edge of G exactly once, although it is allowed to visit each vertex more than once
- A Hamiltonian cycle of a directed graph $G=(V, E)$ is a simple cycle that contains each vertex in V
- 2-SAT vs 3-SAT
- 2-SAT: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)$
- 3-SAT: $\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{4}\right)$
- Fractional vs 0-1 knapsack

Time complexity

Time complexity function	10	20	30	40	50	60
	.00001 second	.00002 second	.00003 second	.00004 second	.00005 second	.00006 second
n^{2}	.0001 second	.0004 second	.0009 second	.0016 second	.0025 second	.0036 second
n^{3}	.001 second	.008 second	.027 second	.064 second	.125 second	.216 second
n^{5}	.1 second	3.2 seconds	24.3 seconds	1.7 minutes	5.2 minutes	13.0 minutes
2^{n}	.001 second	1.0 second	17.9 minutes	12.7 days	35.7 years	366 centuries
3^{n}	.059 second	58 minutes	6.5 years	3855 centuries	2×10^{8} centuries	1.3×10^{13} centuries

[^0]
Problem class

Problem class

- P - consists of those problems that are solvable in polynomial time
- NP - consists of those problems that are 'verifiable' in polynomial time

Problem class

- P - consists of those problems that are solvable in polynomial time
- NP - consists of those problems that are 'verifiable' in polynomial time
- NPC - problem belongs to NP and is as hard as any problem in NP

Problem class

- P - consists of those problems that are solvable in polynomial time
- NP - consists of those problems that are 'verifiable' in polynomial time
- NPC - problem belongs to NP and is as hard as any problem in NP
- It is obvious that $P \subseteq N P$. However, the famous open question is whether P is a proper subset of NP

Problem class

- P - consists of those problems that are solvable in polynomial time
- NP - consists of those problems that are 'verifiable' in polynomial time
- NPC - problem belongs to NP and is as hard as any problem in NP
- It is obvious that $P \subseteq N P$. However, the famous open question is whether P is a proper subset of NP
- If any NP-complete problem can be solved in polynomial time, then every problem in NP has a polynomial-time algorithm

Optimization vs Decision problems

- For optimization problems, each feasible solution is associated with a value, and goal is to find a feasible solution with the best value

Optimization vs Decision problems

- For optimization problems, each feasible solution is associated with a value, and goal is to find a feasible solution with the best value
- Shortest path
- Travelling salesman problem

Optimization vs Decision problems

- For optimization problems, each feasible solution is associated with a value, and goal is to find a feasible solution with the best value
- Shortest path
- Travelling salesman problem
- In decision problems, the final answer is either 'yes' or 'no'

Optimization vs Decision problems

- For optimization problems, each feasible solution is associated with a value, and goal is to find a feasible solution with the best value
- Shortest path
- Travelling salesman problem
- In decision problems, the final answer is either 'yes' or 'no'
- 2-SAT
- Hamiltonian cycle

Optimization vs Decision problems

- For optimization problems, each feasible solution is associated with a value, and goal is to find a feasible solution with the best value
- Shortest path
- Travelling salesman problem
- In decision problems, the final answer is either 'yes' or 'no'
- 2-SAT
- Hamiltonian cycle
- Which problem is harder?

Optimization vs Decision problems

- For optimization problems, each feasible solution is associated with a value, and goal is to find a feasible solution with the best value
- Shortest path
- Travelling salesman problem
- In decision problems, the final answer is either 'yes' or 'no'
- 2-SAT
- Hamiltonian cycle
- Which problem is harder?
- Can an optimization problem be converted as decision problem?

Reduction

- $X \leq_{p} Y$
- Problem X polynomial-time reduces to problem Y if arbitrary instances of problem X can be solved using:
- Polynomial number of standard computational steps (f, h), plus
- Polynomial number of calls to oracle that solves problem Y

Poly-time Reduction

- If $X \leq_{p} Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time
- If $X \leq_{p} Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time

Poly-time Reduction

- If $X \leq_{p} Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time
- If $X \leq_{p} Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time
- If $X \leq_{p} Y$ and Y can be solved in exponential time, then X - ??

Hamiltonian path \rightarrow Hamiltonian cycle

- Hamiltonian cycle: given a graph, is there a cycle that passes through each vertex exactly once?
- Hamiltonian path (s, t) : given a graph, is there a path between s and t that passes through each vertex exactly once?

Abstract problem

- An abstract problem Q is defined to be binary relation on a set $/$ of problem instances and a set S of problem solution
- For shortest-path - problem instance consists of a graph and two vertices, $I=\langle G, u, v\rangle$
- A solution is sequence of vertices or null if it does not exist
- For NP-Completeness, we are primarily interested in decision problems
- For shortest-path, decision problem can be represented as $I=\langle G, u, v, k\rangle$
- Given a graph and two vertices, does there exist a path with at most k edges?
- An optimization problem can be converted to decision problem

Encoding

- In order for a computer program to solve an abstract problem, its problem instances must appear in a way that the program understands

Encoding

- In order for a computer program to solve an abstract problem, its problem instances must appear in a way that the program understands
- An encoding of a set S of abstract objects is a mapping e from S to the set of binary strings

Encoding

- In order for a computer program to solve an abstract problem, its problem instances must appear in a way that the program understands
- An encoding of a set S of abstract objects is a mapping e from S to the set of binary strings
- Example: Graph $G=(V, E)$ where $V=\left[v_{1}, v_{2}, v_{3}, v_{4}\right]$, and $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}\right\}$

Encoding

- In order for a computer program to solve an abstract problem, its problem instances must appear in a way that the program understands
- An encoding of a set S of abstract objects is a mapping e from S to the set of binary strings
- Example: Graph $G=(V, E)$ where $V=\left[v_{1}, v_{2}, v_{3}, v_{4}\right]$, and $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}\right\}$

Encoding scheme	string	length
Vertex and edge list	$v_{1} v_{2} v_{3} v_{4}\left(v_{1} v_{2}\right)\left(v_{2} v_{3}\right)$	36
Neighbor list	$\left(v_{2}\right)\left(v_{1} v_{3}\right)\left(v_{2}\right)()$	24
Adjacency matrix rows	$0100 / 1010 / 0100 / 0000$	19

Encoding

- In order for a computer program to solve an abstract problem, its problem instances must appear in a way that the program understands
- An encoding of a set S of abstract objects is a mapping e from S to the set of binary strings
- Example: Graph $G=(V, E)$ where $V=\left[v_{1}, v_{2}, v_{3}, v_{4}\right]$, and $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}\right\}$

Encoding scheme	string	length
Vertex and edge list	$v_{1} v_{2} v_{3} v_{4}\left(v_{1} v_{2}\right)\left(v_{2} v_{3}\right)$	36
Neighbor list	$\left(v_{2}\right)\left(v_{1} v_{3}\right)\left(v_{2}\right)()$	24
Adjacency matrix rows	$0100 / 1010 / 0100 / 0000$	19

- The size of an instance I is just the length of its string, $n=|I|$

Encoding

- In order for a computer program to solve an abstract problem, its problem instances must appear in a way that the program understands
- An encoding of a set S of abstract objects is a mapping e from S to the set of binary strings
- Example: Graph $G=(V, E)$ where $V=\left[v_{1}, v_{2}, v_{3}, v_{4}\right]$, and $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}\right\}$

Encoding scheme	string	length
Vertex and edge list	$v_{1} v_{2} v_{3} v_{4}\left(v_{1} v_{2}\right)\left(v_{2} v_{3}\right)$	36
Neighbor list	$\left(v_{2}\right)\left(v_{1} v_{3}\right)\left(v_{2}\right)()$	24
Adjacency matrix rows	$0100 / 1010 / 0100 / 0000$	19

- The size of an instance l is just the length of its string, $n=\mid \|$
- We call a problem, whose instance set is the set of binary strings, a concrete problem

Encoding

- In order for a computer program to solve an abstract problem, its problem instances must appear in a way that the program understands
- An encoding of a set S of abstract objects is a mapping e from S to the set of binary strings
- Example: Graph $G=(V, E)$ where $V=\left[v_{1}, v_{2}, v_{3}, v_{4}\right]$, and $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}\right\}$

Encoding scheme	string	length
Vertex and edge list	$v_{1} v_{2} v_{3} v_{4}\left(v_{1} v_{2}\right)\left(v_{2} v_{3}\right)$	36
Neighbor list	$\left(v_{2}\right)\left(v_{1} v_{3}\right)\left(v_{2}\right)()$	24
Adjacency matrix rows	$0100 / 1010 / 0100 / 0000$	19

- The size of an instance l is just the length of its string, $n=\mid \|$
- We call a problem, whose instance set is the set of binary strings, a concrete problem
- A concrete problem is polynomial-time solvable if there exist an algorithm to solve it in $O\left(n^{k}\right)$ time for some constant k

Encoding

- We say a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is polynomial-time computable if there exists a polynomial-time algorithm A that given any input $x \in\{0,1\}^{*}$, produces as output $f(x)$
- We say that two encodings e_{1} and e_{2} are polynomially related if there exist two polynomial-time computable function f_{12} and f_{21} such that for any $i \in I$, we have $f_{12}\left(e_{1}(i)\right)=e_{2}(i)$ and $f_{21}\left(e_{2}(i)\right)=e_{1}(i)$

Encoding

- We say a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is polynomial-time computable if there exists a polynomial-time algorithm A that given any input $x \in\{0,1\}^{*}$, produces as output $f(x)$
- We say that two encodings e_{1} and e_{2} are polynomially related if there exist two polynomial-time computable function f_{12} and f_{21} such that for any $i \in I$, we have $f_{12}\left(e_{1}(i)\right)=e_{2}(i)$ and $f_{21}\left(e_{2}(i)\right)=e_{1}(i)$
- Let Q be an abstract decision problem on an instance set l, and let e_{1} and e_{2} be polynomially related encodings on I. Then, $e_{1}(Q) \in P$ if and only if $e_{2}(Q) \in P$.

Formal language framework

Formal language framework

- An alphabet Σ is a finite set of symbols
- A language L over Σ is any set of strings made up of symbols from Σ

Formal language framework

- An alphabet Σ is a finite set of symbols
- A language L over Σ is any set of strings made up of symbols from Σ
- Example: if $\Sigma=\{0,1\}$, the set $L=\{10,11,101,111,11001, \ldots\}$

Formal language framework

- An alphabet Σ is a finite set of symbols
- A language L over Σ is any set of strings made up of symbols from Σ
- Example: if $\Sigma=\{0,1\}$, the set $L=\{10,11,101,111,11001, \ldots\}$
- Empty string is denoted by ε, the empty language by \emptyset, the language of all strings over Σ by Σ^{*}

Formal language framework

- An alphabet Σ is a finite set of symbols
- A language L over Σ is any set of strings made up of symbols from Σ
- Example: if $\Sigma=\{0,1\}$, the set $L=\{10,11,101,111,11001, \ldots\}$
- Empty string is denoted by ε, the empty language by \emptyset, the language of all strings over Σ by Σ^{*}
- Every language L over Σ is a subset of Σ^{*}

Formal language framework

- An alphabet Σ is a finite set of symbols
- A language L over Σ is any set of strings made up of symbols from Σ
- Example: if $\Sigma=\{0,1\}$, the set $L=\{10,11,101,111,11001, \ldots\}$
- Empty string is denoted by ε, the empty language by \emptyset, the language of all strings over Σ by Σ^{*}
- Every language L over Σ is a subset of Σ^{*}
- Any decision problem Q is simply the set Σ^{*} where $\Sigma=\{0,1\}$

Formal language framework

- An alphabet Σ is a finite set of symbols
- A language L over Σ is any set of strings made up of symbols from Σ
- Example: if $\Sigma=\{0,1\}$, the set $L=\{10,11,101,111,11001, \ldots\}$
- Empty string is denoted by ε, the empty language by \emptyset, the language of all strings over Σ by Σ^{*}
- Every language L over Σ is a subset of Σ^{*}
- Any decision problem Q is simply the set Σ^{*} where $\Sigma=\{0,1\}$
- As Q is entirely characterized by those problem instances that produce 1 (yes) answer, we can view Q as a language L over $\Sigma=\{0,1\}$, where $L=\left\{x \in \Sigma^{*}: Q(x)=1\right\}$

Formal language framework

- An alphabet Σ is a finite set of symbols
- A language L over Σ is any set of strings made up of symbols from Σ
- Example: if $\Sigma=\{0,1\}$, the set $L=\{10,11,101,111,11001, \ldots\}$
- Empty string is denoted by ε, the empty language by \emptyset, the language of all strings over Σ by Σ^{*}
- Every language L over Σ is a subset of Σ^{*}
- Any decision problem Q is simply the set Σ^{*} where $\Sigma=\{0,1\}$
- As Q is entirely characterized by those problem instances that produce 1 (yes) answer, we can view Q as a language L over $\Sigma=\{0,1\}$, where

$$
L=\left\{x \in \Sigma^{*}: Q(x)=1\right\}
$$

- A language L is decided in polynomial-time by an algorithm A if there exists a constant k such that for any length- n string $x \in\{0,1\}^{*}$, the algorithm correctly decides whether $x \in L$ in $O\left(n^{k}\right)$ time

Complexity class

- $\mathrm{P}=\left\{L \subseteq\{0,1\}^{*}\right.$: there exists an algorithm A that decides L in polynomial time $\}$

Complexity class

- $\mathrm{P}=\left\{L \subseteq\{0,1\}^{*}\right.$: there exists an algorithm A that decides L in polynomial time $\}$
- A verification algorithm is a two-argument algorithm A, where one argument is an ordinary input string x and the other is a binary string y called a certificate
- A two-argument algorithm A verifies an input string x if there exists a certificate y such that $A(x, y)=1$

Complexity class

- $\mathrm{P}=\left\{L \subseteq\{0,1\}^{*}\right.$: there exists an algorithm A that decides L in polynomial time $\}$
- A verification algorithm is a two-argument algorithm A, where one argument is an ordinary input string x and the other is a binary string y called a certificate
- A two-argument algorithm A verifies an input string x if there exists a certificate y such that $A(x, y)=1$
- NP is the class of languages that can be verified by a polynomial-time algorithm $L=\left\{x \in\{0,1\}^{*}:\right.$ there exists a certificate y with $|y|=O\left(|x|^{c}\right)$ such that $\left.A(x, y)=1\right\}$

Complexity class

- $\mathrm{P}=\left\{L \subseteq\{0,1\}^{*}\right.$: there exists an algorithm A that decides L in polynomial time $\}$
- A verification algorithm is a two-argument algorithm A, where one argument is an ordinary input string x and the other is a binary string y called a certificate
- A two-argument algorithm A verifies an input string x if there exists a certificate y such that $A(x, y)=1$
- NP is the class of languages that can be verified by a polynomial-time algorithm $L=\left\{x \in\{0,1\}^{*}:\right.$ there exists a certificate y with $|y|=O\left(|x|^{c}\right)$ such that $\left.A(x, y)=1\right\}$
- If $L \in P$, then $L \in N P$, thus, $P \subseteq N P$

Complexity class

- $\mathrm{P}=\left\{L \subseteq\{0,1\}^{*}\right.$: there exists an algorithm A that decides L in polynomial time $\}$
- A verification algorithm is a two-argument algorithm A, where one argument is an ordinary input string x and the other is a binary string y called a certificate
- A two-argument algorithm A verifies an input string x if there exists a certificate y such that $A(x, y)=1$
- NP is the class of languages that can be verified by a polynomial-time algorithm $L=\left\{x \in\{0,1\}^{*}\right.$: there exists a certificate y with $|y|=O\left(|x|^{c}\right)$ such that $\left.A(x, y)=1\right\}$
- If $L \in P$, then $L \in N P$, thus, $P \subseteq N P$
- It leaves the question of whether $P=N P$

NP-completeness

- A language $L \subseteq\{0,1\}^{*}$ is NP-complete (NPC) if
- $L \in N P$, and
- $L^{\prime} \leq_{P} L$ for every $L^{\prime} \in N P$
- If an language L satisfies the 2 nd property but not necessarily the 1 st, we say L is NP-hard

NP-completeness

- A language $L \subseteq\{0,1\}^{*}$ is NP-complete (NPC) if
- $L \in N P$, and
- $L^{\prime} \leq_{P} L$ for every $L^{\prime} \in N P$
- If an language L satisfies the 2 nd property but not necessarily the 1 st, we say L is NP-hard
- If any NP-complete problem is polynomial-time solvable, then $P=N P$. Equivalently, if any problem in NP is not polynomial-time solvable, then no NP-complete problem is polynomial-time solvable.

Circuit-SAT

- Circuit-SAT: Given a boolean combinational circuit composed of AND, OR, and NOT gates, is it satisfiable?

Circuit-SAT

- Circuit-SAT: Given a boolean combinational circuit composed of AND, OR, and NOT gates, is it satisfiable?
- Circuit-SAT \in NP

Circuit-SAT

- Circuit-SAT: Given a boolean combinational circuit composed of AND, OR, and NOT gates, is it satisfiable?
- Circuit-SAT \in NP
- Circuit-SAT is also NP-Hard (see detailed proof in the book)

NP-completeness proofs

- It is difficult to prove that every language in NP can be reduced to the given language

NP-completeness proofs

- It is difficult to prove that every language in NP can be reduced to the given language
- If L is language such that $L^{\prime} \leq_{P} L$ for some $L^{\prime} \in N P C$, the L is NP-hard.

If, in addition we have $L \in N P$, then $L \in N P C$

NP-completeness proofs

- It is difficult to prove that every language in NP can be reduced to the given language
- If L is language such that $L^{\prime} \leq_{P} L$ for some $L^{\prime} \in N P C$, the L is NP-hard.

If, in addition we have $L \in N P$, then $L \in N P C$

- Proof: Since L^{\prime} is NP-complete, for all $L^{\prime \prime} \in N P$, we have $L^{\prime \prime} \leq_{P} L^{\prime}$

NP-completeness proofs

- It is difficult to prove that every language in NP can be reduced to the given language
- If L is language such that $L^{\prime} \leq_{p} L$ for some $L^{\prime} \in$ NPC, the L is NP-hard.

If, in addition we have $L \in N P$, then $L \in$ NPC

- Proof: Since L^{\prime} is NP-complete, for all $L^{\prime \prime} \in N P$, we have $L^{\prime \prime} \leq_{p} L^{\prime}$
- As we have, $L^{\prime} \leq_{p} L$, thus by transitivity, we can say $L^{\prime \prime} \leq_{p} L$

NP-completeness proofs

- It is difficult to prove that every language in NP can be reduced to the given language
- If L is language such that $L^{\prime} \leq_{p} L$ for some $L^{\prime} \in$ NPC, the L is NP-hard.

If, in addition we have $L \in N P$, then $L \in$ NPC

- Proof: Since L^{\prime} is NP-complete, for all $L^{\prime \prime} \in N P$, we have $L^{\prime \prime} \leq_{p} L^{\prime}$
- As we have, $L^{\prime} \leq_{p} L$, thus by transitivity, we can say $L^{\prime \prime} \leq_{p} L$
- So, L is NP-hard

NP-completeness proofs

- It is difficult to prove that every language in NP can be reduced to the given language
- If L is language such that $L^{\prime} \leq_{P} L$ for some $L^{\prime} \in$ NPC, the L is NP-hard.

If, in addition we have $L \in N P$, then $L \in N P C$

- Proof: Since L^{\prime} is NP-complete, for all $L^{\prime \prime} \in N P$, we have $L^{\prime \prime} \leq_{P} L^{\prime}$
- As we have, $L^{\prime} \leq_{P} L$, thus by transitivity, we can say $L^{\prime \prime} \leq_{P} L$
- So, L is NP-hard
- If we have, $L \in N P$, then we also have $L \in$ NPC

Steps to prove NP-completeness

- Prove $L \in N P$

Steps to prove NP-completeness

- Prove $L \in N P$
- Prove that L is NP-hard:

Steps to prove NP-completeness

- Prove $L \in N P$
- Prove that L is NP-hard:
- Select a known NP-complete language L^{\prime}
- Describe an algorithm that computes a function f mapping every instance $x \in\{0,1\}^{*}$ of L^{\prime} to an instance of $f(x)$ of L
- Prove that the function f satisfies $x \in L^{\prime}$ if and only if $f(x) \in L$ for all $x \in\{0,1\}^{*}$
- Prove that the algorithm computing f runs in polynomial time

SAT \in NPC

- SAT: inputs - n Boolean variables, m connectives $(\wedge, \vee, \neg, \rightarrow, \leftrightarrow)$, and parentheses

SAT \in NPC

- SAT: inputs - n Boolean variables, m connectives $(\wedge, \vee, \neg, \rightarrow, \leftrightarrow)$, and parentheses
- The boolean formula ϕ can be encoded in length that is polynomial in $n+m$
- Example: $\left(x_{1} \rightarrow x_{2}\right) \wedge\left(\left(x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3} \leftrightarrow x_{4}\right)\right)$

SAT \in NPC

- SAT: inputs - n Boolean variables, m connectives $(\wedge, \vee, \neg, \rightarrow, \leftrightarrow)$, and parentheses
- The boolean formula ϕ can be encoded in length that is polynomial in $n+m$
- Example: $\left(x_{1} \rightarrow x_{2}\right) \wedge\left(\left(x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3} \leftrightarrow x_{4}\right)\right)$
- Given a SAT instance and an assignment of the variables (certificate) - it can be verified in polynomial time

$S A T \in N P C$

- SAT: inputs - n Boolean variables, m connectives $(\wedge, \vee, \neg, \rightarrow, \leftrightarrow)$, and parentheses
- The boolean formula ϕ can be encoded in length that is polynomial in $n+m$
- Example: $\left(x_{1} \rightarrow x_{2}\right) \wedge\left(\left(x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3} \leftrightarrow x_{4}\right)\right)$
- Given a SAT instance and an assignment of the variables (certificate) - it can be verified in polynomial time
- To prove NP-hard, we need to show Circuit-SAT \leq_{P} SAT

$S A T \in N P C$

- SAT: inputs - n Boolean variables, m connectives $(\wedge, \vee, \neg, \rightarrow, \leftrightarrow)$, and parentheses
- The boolean formula ϕ can be encoded in length that is polynomial in $n+m$
- Example: $\left(x_{1} \rightarrow x_{2}\right) \wedge\left(\left(x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3} \leftrightarrow x_{4}\right)\right)$
- Given a SAT instance and an assignment of the variables (certificate) - it can be verified in polynomial time
- To prove NP-hard, we need to show Circuit-SAT \leq_{P} SAT
- We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

$S A T \in N P C$

- SAT: inputs - n Boolean variables, m connectives $(\wedge, \vee, \neg, \rightarrow, \leftrightarrow)$, and parentheses
- The boolean formula ϕ can be encoded in length that is polynomial in $n+m$
- Example: $\left(x_{1} \rightarrow x_{2}\right) \wedge\left(\left(x_{3} \vee \neg x_{4}\right) \wedge\left(x_{3} \leftrightarrow x_{4}\right)\right)$
- Given a SAT instance and an assignment of the variables (certificate) - it can be verified in polynomial time
- To prove NP-hard, we need to show Circuit-SAT \leq_{P} SAT
- We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

$$
\begin{aligned}
\phi= & y \wedge(y \leftrightarrow(e \vee f)) \wedge(e \leftrightarrow(x \wedge d)) \wedge \\
& (f \leftrightarrow(d \wedge b)) \wedge(d \leftrightarrow \neg c) \wedge \\
& (b \leftrightarrow(z \wedge a)) \wedge(c \leftrightarrow(z \wedge y)) \wedge \\
& (a \leftrightarrow(x \wedge y))
\end{aligned}
$$

$S A T \in N P C$

- We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

$$
\begin{aligned}
\phi= & y \wedge(y \leftrightarrow(e \vee f)) \wedge(e \leftrightarrow(x \wedge d)) \wedge(f \leftrightarrow(d \wedge b)) \wedge(d \leftrightarrow \neg c) \wedge \\
& (b \leftrightarrow(z \wedge a)) \wedge(c \leftrightarrow(z \wedge y)) \wedge(a \leftrightarrow(x \wedge y))
\end{aligned}
$$

$S A T \in N P C$

- We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

$$
\begin{aligned}
\phi= & y \wedge(y \leftrightarrow(e \vee f)) \wedge(e \leftrightarrow(x \wedge d)) \wedge(f \leftrightarrow(d \wedge b)) \wedge(d \leftrightarrow \neg c) \wedge \\
& (b \leftrightarrow(z \wedge a)) \wedge(c \leftrightarrow(z \wedge y)) \wedge(a \leftrightarrow(x \wedge y))
\end{aligned}
$$

- Now we need to show C is satisfiable exactly when ϕ is satisfiable

$S A T \in N P C$

- We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

$$
\begin{aligned}
\phi= & y \wedge(y \leftrightarrow(e \vee f)) \wedge(e \leftrightarrow(x \wedge d)) \wedge(f \leftrightarrow(d \wedge b)) \wedge(d \leftrightarrow \neg c) \wedge \\
& (b \leftrightarrow(z \wedge a)) \wedge(c \leftrightarrow(z \wedge y)) \wedge(a \leftrightarrow(x \wedge y))
\end{aligned}
$$

- Now we need to show C is satisfiable exactly when ϕ is satisfiable
- If C has a satisfying assignment, then each wire of the circuit has well defined value and output is 1

$S A T \in N P C$

- We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

$$
\begin{aligned}
\phi= & y \wedge(y \leftrightarrow(e \vee f)) \wedge(e \leftrightarrow(x \wedge d)) \wedge(f \leftrightarrow(d \wedge b)) \wedge(d \leftrightarrow \neg c) \wedge \\
& (b \leftrightarrow(z \wedge a)) \wedge(c \leftrightarrow(z \wedge y)) \wedge(a \leftrightarrow(x \wedge y))
\end{aligned}
$$

- Now we need to show C is satisfiable exactly when ϕ is satisfiable
- If C has a satisfying assignment, then each wire of the circuit has well defined value and output is 1
- We can assign the wire values to variables in ϕ, each clause will evaluate to 1 , hence, $\phi=1$

$S A T \in N P C$

- We can express any boolean combinational circuit (C) as a boolean formula (ϕ)

$$
\begin{aligned}
\phi= & y \wedge(y \leftrightarrow(e \vee f)) \wedge(e \leftrightarrow(x \wedge d)) \wedge(f \leftrightarrow(d \wedge b)) \wedge(d \leftrightarrow \neg c) \wedge \\
& (b \leftrightarrow(z \wedge a)) \wedge(c \leftrightarrow(z \wedge y)) \wedge(a \leftrightarrow(x \wedge y))
\end{aligned}
$$

- Now we need to show C is satisfiable exactly when ϕ is satisfiable
- If C has a satisfying assignment, then each wire of the circuit has well defined value and output is 1
- We can assign the wire values to variables in ϕ, each clause will evaluate to 1 , hence, $\phi=1$
- If some assignment causes ϕ to evaluate to 1 , we can assign values to different wires and it will evaluate to 1 for C

Circuit-SAT \leq_{p} CNF-SAT

- Literal - variable in boolean formula, x_{1} or $\neg x_{1}$
- Clause - OR of any number of literals, $x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}$
- CNF (conjunctive normal form) - AND of clauses

Circuit-SAT \leq_{p} CNF-SAT

- Literal - variable in boolean formula, x_{1} or $\neg x_{1}$
- Clause - OR of any number of literals, $x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}$
- CNF (conjunctive normal form) - AND of clauses
- CNF-SAT: $\left(x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{1}\right)$

Circuit-SAT \leq_{p} CNF-SAT

- Literal - variable in boolean formula, x_{1} or $\neg x_{1}$
- Clause - OR of any number of literals, $x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}$
- CNF (conjunctive normal form) - AND of clauses
- CNF-SAT: $\left(x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{1}\right)$
- Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND and OR gates can have either 2 or 3 inputs

Circuit-SAT \leq_{p} CNF-SAT

- Literal - variable in boolean formula, x_{1} or $\neg x_{1}$
- Clause - OR of any number of literals, $x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}$
- CNF (conjunctive normal form) - AND of clauses
- CNF-SAT: $\left(x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{1}\right)$
- Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND and OR gates can have either 2 or 3 inputs
- For NOT gate:

Circuit-SAT \leq_{p} CNF-SAT

- Literal - variable in boolean formula, x_{1} or $\neg x_{1}$
- Clause - OR of any number of literals, $x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}$
- CNF (conjunctive normal form) - AND of clauses
- CNF-SAT: $\left(x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{1}\right)$
- Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND and OR gates can have either 2 or 3 inputs
- For NOT gate:

$$
y \leftrightarrow \neg x=(\neg y \vee \neg x) \wedge(x \vee y)
$$

Circuit-SAT \leq_{p} CNF-SAT

- Literal - variable in boolean formula, x_{1} or $\neg x_{1}$
- Clause - OR of any number of literals, $x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}$
- CNF (conjunctive normal form) - AND of clauses
- CNF-SAT: $\left(x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{1}\right)$
- Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND and OR gates can have either 2 or 3 inputs
- For NOT gate:

$$
y \leftrightarrow \neg x=(\neg y \vee \neg x) \wedge(x \vee y)
$$

- For 2-input AND gate:

Circuit-SAT \leq_{p} CNF-SAT

- Literal - variable in boolean formula, x_{1} or $\neg x_{1}$
- Clause - OR of any number of literals, $x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}$
- CNF (conjunctive normal form) - AND of clauses
- CNF-SAT: $\left(x_{1} \vee \neg x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{1}\right)$
- Let us assume that the circuit consists of AND, OR and NOT gates. We assume AND and OR gates can have either 2 or 3 inputs
- For NOT gate:

$$
y \leftrightarrow \neg x=(\neg y \vee \neg x) \wedge(x \vee y)
$$

- For 2-input AND gate:

$$
\begin{aligned}
& y \leftrightarrow(a \wedge b)=(y \rightarrow(a \wedge b)) \wedge((a \wedge b) \rightarrow y) \\
& =(\neg y \vee(a \wedge b)) \wedge(\neg a \vee \neg b \vee y)=(\neg y \vee a) \wedge(\neg y \vee b) \wedge(\neg a \vee \neg b \vee y)
\end{aligned}
$$

Circuit-SAT $\leq{ }_{P}$ CNF-SAT

Circuit-SAT $\leq{ }_{P}$ CNF-SAT

- For 3-input AND gate:

$$
y \leftrightarrow(a \wedge b \wedge c)=(\neg y \vee a) \wedge(\neg y \vee b) \wedge(\neg y \vee c) \wedge(\neg a \vee \neg b \vee \neg c \vee y)
$$

Circuit-SAT $\leq{ }_{P}$ CNF-SAT

- For 3-input AND gate:

$$
y \leftrightarrow(a \wedge b \wedge c)=(\neg y \vee a) \wedge(\neg y \vee b) \wedge(\neg y \vee c) \wedge(\neg a \vee \neg b \vee \neg c \vee y)
$$

- For 2-input OR gate:

Circuit-SAT $\leq{ }_{P}$ CNF-SAT

- For 3-input AND gate:

$$
y \leftrightarrow(a \wedge b \wedge c)=(\neg y \vee a) \wedge(\neg y \vee b) \wedge(\neg y \vee c) \wedge(\neg a \vee \neg b \vee \neg c \vee y)
$$

- For 2-input OR gate:

$$
\begin{aligned}
& y \leftrightarrow(a \vee b)=(y \rightarrow(a \vee b)) \wedge((a \vee b) \rightarrow y) \\
& =(\neg y \vee a \vee b) \wedge((\neg a \wedge \neg b) \vee y)=(\neg y \vee a \vee b) \wedge(\neg a \vee y) \wedge(\neg b \vee y)
\end{aligned}
$$

Circuit-SAT $\leq{ }_{P}$ CNF-SAT

- For 3-input AND gate:

$$
y \leftrightarrow(a \wedge b \wedge c)=(\neg y \vee a) \wedge(\neg y \vee b) \wedge(\neg y \vee c) \wedge(\neg a \vee \neg b \vee \neg c \vee y)
$$

- For 2-input OR gate:

$$
\begin{aligned}
& y \leftrightarrow(a \vee b)=(y \rightarrow(a \vee b)) \wedge((a \vee b) \rightarrow y) \\
& =(\neg y \vee a \vee b) \wedge((\neg a \wedge \neg b) \vee y)=(\neg y \vee a \vee b) \wedge(\neg a \vee y) \wedge(\neg b \vee y)
\end{aligned}
$$

臺 For 3-input OR gate:

Circuit-SAT $\leq{ }_{P}$ CNF-SAT

- For 3-input AND gate:

$$
y \leftrightarrow(a \wedge b \wedge c)=(\neg y \vee a) \wedge(\neg y \vee b) \wedge(\neg y \vee c) \wedge(\neg a \vee \neg b \vee \neg c \vee y)
$$

- For 2-input OR gate:

$$
\begin{aligned}
& y \leftrightarrow(a \vee b)=(y \rightarrow(a \vee b)) \wedge((a \vee b) \rightarrow y) \\
& =(\neg y \vee a \vee b) \wedge((\neg a \wedge \neg b) \vee y)=(\neg y \vee a \vee b) \wedge(\neg a \vee y) \wedge(\neg b \vee y)
\end{aligned}
$$

嶰 - For 3-input OR gate:

$$
y \leftrightarrow(a \vee b \vee c)=(\neg y \vee a \vee b \vee c) \wedge(\neg a \vee y) \wedge(\neg b \vee y) \wedge(\neg c \vee y)
$$

Circuit-SAT \leq_{p} CNF-SAT

- For 3-input AND gate:

$$
y \leftrightarrow(a \wedge b \wedge c)=(\neg y \vee a) \wedge(\neg y \vee b) \wedge(\neg y \vee c) \wedge(\neg a \vee \neg b \vee \neg c \vee y)
$$

- For 2-input OR gate:

$$
\begin{aligned}
& y \leftrightarrow(a \vee b)=(y \rightarrow(a \vee b)) \wedge((a \vee b) \rightarrow y) \\
& =(\neg y \vee a \vee b) \wedge((\neg a \wedge \neg b) \vee y)=(\neg y \vee a \vee b) \wedge(\neg a \vee y) \wedge(\neg b \vee y)
\end{aligned}
$$

- For 3-input OR gate:

$$
y \leftrightarrow(a \vee b \vee c)=(\neg y \vee a \vee b \vee c) \wedge(\neg a \vee y) \wedge(\neg b \vee y) \wedge(\neg c \vee y)
$$

- Circuit-SAT can be converted to CNF-SAT in polynomial time using above transformations
- It can be shown Circuit-SAT has a solution if and only if CNF-SAT has a solution

3-CNF-SAT \in NPC

3-CNF-SAT \in NPC

- 3-CNF-SAT: each clause has exactly 3 literals
- Given an assignment of the variables, truth value can be verified in linear time. Hence 3-CNF-SAT \in NP

3-CNF-SAT \in NPC

- 3-CNF-SAT: each clause has exactly 3 literals
- Given an assignment of the variables, truth value can be verified in linear time. Hence 3-CNF-SAT \in NP
- We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to 3-CNF-SAT

3-CNF-SAT \in NPC

- 3-CNF-SAT: each clause has exactly 3 literals
- Given an assignment of the variables, truth value can be verified in linear time. Hence 3-CNF-SAT \in NP
- We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to 3-CNF-SAT
- Clause with 1 literal:

3-CNF-SAT \in NPC

- 3-CNF-SAT: each clause has exactly 3 literals
- Given an assignment of the variables, truth value can be verified in linear time. Hence 3-CNF-SAT \in NP
- We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to 3-CNF-SAT
- Clause with 1 literal:

$$
x_{1} \equiv\left(x_{1} \vee z_{1} \vee z_{2}\right) \wedge\left(x_{1} \vee \neg z_{1} \vee z_{2}\right) \wedge\left(x_{1} \vee z_{1} \vee \neg z_{2}\right) \wedge\left(x_{1} \vee \neg z_{1} \vee \neg z_{2}\right)
$$

3-CNF-SAT \in NPC

- 3-CNF-SAT: each clause has exactly 3 literals
- Given an assignment of the variables, truth value can be verified in linear time. Hence 3-CNF-SAT \in NP
- We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to 3-CNF-SAT
- Clause with 1 literal:

$$
x_{1} \equiv\left(x_{1} \vee z_{1} \vee z_{2}\right) \wedge\left(x_{1} \vee \neg z_{1} \vee z_{2}\right) \wedge\left(x_{1} \vee z_{1} \vee \neg z_{2}\right) \wedge\left(x_{1} \vee \neg z_{1} \vee \neg z_{2}\right)
$$

- Clause with 2 literals:

3-CNF-SAT \in NPC

- 3-CNF-SAT: each clause has exactly 3 literals
- Given an assignment of the variables, truth value can be verified in linear time. Hence 3-CNF-SAT \in NP
- We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to 3-CNF-SAT
- Clause with 1 literal:

$$
x_{1} \equiv\left(x_{1} \vee z_{1} \vee z_{2}\right) \wedge\left(x_{1} \vee \neg z_{1} \vee z_{2}\right) \wedge\left(x_{1} \vee z_{1} \vee \neg z_{2}\right) \wedge\left(x_{1} \vee \neg z_{1} \vee \neg z_{2}\right)
$$

- Clause with 2 literals:

$$
x_{1} \vee x_{2} \equiv\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(x_{1} \vee x_{2} \vee \neg z_{1}\right)
$$

3-CNF-SAT \in NPC

- 3-CNF-SAT: each clause has exactly 3 literals
- Given an assignment of the variables, truth value can be verified in linear time. Hence 3-CNF-SAT \in NP
- We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to 3-CNF-SAT
- Clause with 1 literal:

$$
x_{1} \equiv\left(x_{1} \vee z_{1} \vee z_{2}\right) \wedge\left(x_{1} \vee \neg z_{1} \vee z_{2}\right) \wedge\left(x_{1} \vee z_{1} \vee \neg z_{2}\right) \wedge\left(x_{1} \vee \neg z_{1} \vee \neg z_{2}\right)
$$

- Clause with 2 literals:

$$
x_{1} \vee x_{2} \equiv\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(x_{1} \vee x_{2} \vee \neg z_{1}\right)
$$

- Clause with 3 literals:

3-CNF-SAT \in NPC

- 3-CNF-SAT: each clause has exactly 3 literals
- Given an assignment of the variables, truth value can be verified in linear time. Hence 3-CNF-SAT \in NP
- We choose CNF-SAT, where clauses can have 1, 2, 3, or more literals, to reduce to 3-CNF-SAT
- Clause with 1 literal:

$$
x_{1} \equiv\left(x_{1} \vee z_{1} \vee z_{2}\right) \wedge\left(x_{1} \vee \neg z_{1} \vee z_{2}\right) \wedge\left(x_{1} \vee z_{1} \vee \neg z_{2}\right) \wedge\left(x_{1} \vee \neg z_{1} \vee \neg z_{2}\right)
$$

- Clause with 2 literals:

$$
x_{1} \vee x_{2} \equiv\left(x_{1} \vee x_{2} \vee z_{1}\right) \wedge\left(x_{1} \vee x_{2} \vee \neg z_{1}\right)
$$

- Clause with 3 literals: No need to change

3-CNF-SAT \in NPC

- Clause with >3 literals: $X=\left(x_{1} \vee x_{2} \vee \ldots x_{k}\right)$

3-CNF-SAT \in NPC

- Clause with >3 literals: $X=\left(x_{1} \vee x_{2} \vee \ldots x_{k}\right)$

$$
Y=\left(x_{1} \vee x_{2} \vee z_{1}\right)\left(\neg z_{1} \vee x_{3} \vee z_{2}\right)\left(\neg z_{2} \vee x_{4} \vee z_{3}\right) \ldots\left(\neg z_{k-3} \vee x_{k-1} \vee x_{k}\right)
$$

3-CNF-SAT \in NPC

- Clause with >3 literals: $X=\left(x_{1} \vee x_{2} \vee \ldots x_{k}\right)$

$$
Y=\left(x_{1} \vee x_{2} \vee z_{1}\right)\left(\neg z_{1} \vee x_{3} \vee z_{2}\right)\left(\neg z_{2} \vee x_{4} \vee z_{3}\right) \ldots\left(\neg z_{k-3} \vee x_{k-1} \vee x_{k}\right)
$$

- The above conversion can be done in polynomial time

3-CNF-SAT \in NPC

- Clause with >3 literals: $X=\left(x_{1} \vee x_{2} \vee \ldots x_{k}\right)$

$$
Y=\left(x_{1} \vee x_{2} \vee z_{1}\right)\left(\neg z_{1} \vee x_{3} \vee z_{2}\right)\left(\neg z_{2} \vee x_{4} \vee z_{3}\right) \ldots\left(\neg z_{k-3} \vee x_{k-1} \vee x_{k}\right)
$$

- The above conversion can be done in polynomial time
- We need to show: $\{X$ is satisfied $\} \leftrightarrow\left\{\right.$ there is a setting of z_{i} 's s.t. Y is satisfied $\}$

3-CNF-SAT \in NPC

- Clause with >3 literals: $X=\left(x_{1} \vee x_{2} \vee \ldots x_{k}\right)$

$$
Y=\left(x_{1} \vee x_{2} \vee z_{1}\right)\left(\neg z_{1} \vee x_{3} \vee z_{2}\right)\left(\neg z_{2} \vee x_{4} \vee z_{3}\right) \ldots\left(\neg z_{k-3} \vee x_{k-1} \vee x_{k}\right)
$$

- The above conversion can be done in polynomial time
- We need to show: $\{X$ is satisfied $\} \leftrightarrow\left\{\right.$ there is a setting of z_{i} 's s.t. Y is satisfied $\}$
- Assume Y is satisfied: we can claim at least one literals x_{1}, \ldots, x_{k} must be true. How? What is the implication on X ?

3-CNF-SAT \in NPC

- Clause with >3 literals: $X=\left(x_{1} \vee x_{2} \vee \ldots x_{k}\right)$

$$
Y=\left(x_{1} \vee x_{2} \vee z_{1}\right)\left(\neg z_{1} \vee x_{3} \vee z_{2}\right)\left(\neg z_{2} \vee x_{4} \vee z_{3}\right) \ldots\left(\neg z_{k-3} \vee x_{k-1} \vee x_{k}\right)
$$

- The above conversion can be done in polynomial time
- We need to show: $\{X$ is satisfied $\} \leftrightarrow\left\{\right.$ there is a setting of z_{i} 's s.t. Y is satisfied $\}$
- Assume Y is satisfied: we can claim at least one literals x_{1}, \ldots, x_{k} must be true. How? What is the implication on X ?
- Conversely, if X is satisfied: some x_{i} must be true.

3-CNF-SAT \in NPC

- Clause with >3 literals: $X=\left(x_{1} \vee x_{2} \vee \ldots x_{k}\right)$

$$
Y=\left(x_{1} \vee x_{2} \vee z_{1}\right)\left(\neg z_{1} \vee x_{3} \vee z_{2}\right)\left(\neg z_{2} \vee x_{4} \vee z_{3}\right) \ldots\left(\neg z_{k-3} \vee x_{k-1} \vee x_{k}\right)
$$

- The above conversion can be done in polynomial time
- We need to show: $\{X$ is satisfied $\} \leftrightarrow\left\{\right.$ there is a setting of z_{i} 's s.t. Y is satisfied $\}$
- Assume Y is satisfied: we can claim at least one literals x_{1}, \ldots, x_{k} must be true. How? What is the implication on X ?
- Conversely, if X is satisfied: some x_{i} must be true.

Set z_{1}, \ldots, z_{i-2} to true and rest to false

Independent Set $($ IS $) \in$ NPC

- IS: given a graph G and an integer k, does there exist k vertices that are independent, that is, no two of which have an edge between them

Independent Set $($ IS $) \in$ NPC

- IS: given a graph G and an integer k, does there exist k vertices that are independent, that is, no two of which have an edge between them
- IS $\in N P$ as a certificate can be verified in polynomial time

Independent Set $($ IS $) \in$ NPC

- IS: given a graph G and an integer k, does there exist k vertices that are independent, that is, no two of which have an edge between them
- IS $\in N P$ as a certificate can be verified in polynomial time
- We reduce 3-SAT to IS

Independent Set $($ IS $) \in$ NPC

- IS: given a graph G and an integer k, does there exist k vertices that are independent, that is, no two of which have an edge between them
- IS $\in N P$ as a certificate can be verified in polynomial time
- We reduce 3-SAT to IS
- Take an instance of 3-SAT: $X=(\bar{x} \vee y \vee \bar{z})(x \vee \bar{y} \vee z)(x \vee y \vee z)(\bar{x} \vee \bar{y})$

Independent Set $($ IS $) \in$ NPC

- IS: given a graph G and an integer k, does there exist k vertices that are independent, that is, no two of which have an edge between them
- IS $\in N P$ as a certificate can be verified in polynomial time
- We reduce 3-SAT to IS
- Take an instance of 3-SAT: $X=(\bar{x} \vee y \vee \bar{z})(x \vee \bar{y} \vee z)(x \vee y \vee z)(\bar{x} \vee \bar{y})$
- Construction of G :
- Each clause is represented as triangle with vertices as the literals
- Connect an edge between two nodes of different clauses if they represent opposite literals

Independent Set $($ IS $) \in$ NPC

- IS: given a graph G and an integer k, does there exist k vertices that are independent, that is, no two of which have an edge between them
- IS $\in N P$ as a certificate can be verified in polynomial time
- We reduce 3-SAT to IS
- Take an instance of 3-SAT: $X=(\bar{x} \vee y \vee \bar{z})(x \vee \bar{y} \vee z)(x \vee y \vee z)(\bar{x} \vee \bar{y})$
- Construction of G :
- Each clause is represented as triangle with vertices as the literals
- Connect an edge between two nodes of different clauses if they represent opposite literals

Independent Set $($ IS $) \in$ NPC

- Given an independent set S of k vertices in G, it is possible to find satisfying truth assignment to $/$

Independent Set $($ IS $) \in$ NPC

- Given an independent set S of k vertices in G, it is possible to find satisfying truth assignment to /
- If I has a truth assignment then G has independent set of size k

Vertex Cover (VC) \in NPC

- A vertex cover of an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E$ then $u \in V^{\prime}$ or $v \in V^{\prime}$ or both. Does graph G has a vertex cover of size k ?

Vertex Cover (VC) \in NPC

- A vertex cover of an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E$ then $u \in V^{\prime}$ or $v \in V^{\prime}$ or both. Does graph G has a vertex cover of size k ?
- Let a set of nodes S be the vertex cover of G, that is S touches every edge in E

Vertex Cover (VC) \in NPC

- A vertex cover of an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E$ then $u \in V^{\prime}$ or $v \in V^{\prime}$ or both. Does graph G has a vertex cover of size k ?
- Let a set of nodes S be the vertex cover of G, that is S touches every edge in E
- The remaining nodes $V-S$ must form an independent set!

Vertex Cover (VC) \in NPC

- A vertex cover of an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E$ then $u \in V^{\prime}$ or $v \in V^{\prime}$ or both. Does graph G has a vertex cover of size k ?
- Let a set of nodes S be the vertex cover of G, that is S touches every edge in E
- The remaining nodes $V-S$ must form an independent set!
- Thus to solve, an instance of (G, k) of independent-set, we simply look for a vertex cover of G with $V-k$ nodes

Vertex Cover $($ VC $) \in$ NPC

- A vertex cover of an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E$ then $u \in V^{\prime}$ or $v \in V^{\prime}$ or both. Does graph G has a vertex cover of size k ?
- Let a set of nodes S be the vertex cover of G, that is S touches every edge in E
- The remaining nodes $V-S$ must form an independent set!
- Thus to solve, an instance of (G, k) of independent-set, we simply look for a vertex cover of G with $V-k$ nodes
- If a vertex cover exists, then all nodes not in VC set form IS

Vertex Cover (VC) \in NPC

- A vertex cover of an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ such that if $(u, v) \in E$ then $u \in V^{\prime}$ or $v \in V^{\prime}$ or both. Does graph G has a vertex cover of size k ?
- Let a set of nodes S be the vertex cover of G, that is S touches every edge in E
- The remaining nodes $V-S$ must form an independent set!
- Thus to solve, an instance of (G, k) of independent-set, we simply look for a vertex cover of G with $V-k$ nodes
- If a vertex cover exists, then all nodes not in VC set form IS
- If no such vertex cover exists, G cannot have an independent set of size k

Clique \in NPC

- A clique in an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ of vertices, each pair of which is connected by an edge in E. Given a graph G, does it have a clique of size k ?

Clique \in NPC

- A clique in an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ of vertices, each pair of which is connected by an edge in E. Given a graph G, does it have a clique of size k ?
- A certificate for clique can be verified in polynomial time

Clique \in NPC

- A clique in an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ of vertices, each pair of which is connected by an edge in E. Given a graph G, does it have a clique of size k ?
- A certificate for clique can be verified in polynomial time
- We reduce 3-CNF-SAT to clique

Clique \in NPC

- A clique in an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ of vertices, each pair of which is connected by an edge in E. Given a graph G, does it have a clique of size k ?
- A certificate for clique can be verified in polynomial time
- We reduce 3-CNF-SAT to clique
- We choose X, CNF-SAT instance, that has k number of clauses $\left(C_{1}, \ldots, C_{k}\right)$, where each clause has exactly 3 literals

Clique \in NPC

- A clique in an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ of vertices, each pair of which is connected by an edge in E. Given a graph G, does it have a clique of size k ?
- A certificate for clique can be verified in polynomial time
- We reduce 3-CNF-SAT to clique
- We choose X, CNF-SAT instance, that has k number of clauses $\left(C_{1}, \ldots, C_{k}\right)$, where each clause has exactly 3 literals
- Graph construction: $G=(V, E)$
- For each clause $C_{r}=\left(I_{1}^{r} \vee I_{2}^{r} \vee I_{3}^{r}\right)$ in X create three vertices $v_{1}^{r}, v_{2}^{r}, v_{3}^{r}$ into V
- Add edge $\left(v_{i}^{r}, v_{j}^{s}\right)$ into E if both of the following hold
- v_{i}^{r} and v_{j}^{s} are in different triples, that is $r \neq s$, and
- their corresponding literals are consistent, that is l_{i}^{r} is not the negation of ζ_{j}^{β}

Clique \in NPC

- Consider a 3SAT instance as $X=C_{1} \wedge C_{2} \wedge C_{3}=(\bar{x} \vee y \vee z)(x \vee \bar{y} \vee \bar{z})(x \vee y \vee z)$

Clique \in NPC

- Consider a 3SAT instance as $X=C_{1} \wedge C_{2} \wedge C_{3}=(\bar{x} \vee y \vee z)(x \vee \bar{y} \vee \bar{z})(x \vee y \vee z)$
- Suppose X has a satisfying assignment: what can we claim?

Clique \in NPC

- Consider a 3SAT instance as $X=C_{1} \wedge C_{2} \wedge C_{3}=(\bar{x} \vee y \vee z)(x \vee \bar{y} \vee \bar{z})(x \vee y \vee z)$
- Suppose X has a satisfying assignment: what can we claim?
- Suppose G contains a clique of size k : what can be claimed?

[^0]: Image source: Computers and Intractability

