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Recursive modeling
• Classical Sanskrit poetry distinguishes between two types of syllables (aksara): light

(laghu) and heavy (guru). In one class of meters, each line of poetry consists of a fixed
number of “beats” (matra), where each light syllable lasts one beat and each heavy
syllable lasts two beats. Pingala observed that there are exactly five 4-beat meters:
−−, − · ·, · · −, · − ·, and · · · ·. How many n-beat meters are possible?

• Consider implementation of cell towers along a straight highway. There are n possible
locations (c1, . . . , cn) available. The i-th location can serve pi number of people. You
can build cell towers in any location as long as you don’t build towers in adjacent
locations. What is the largest number of people you can cover?

C 1 2 3 4 5
P 49 42 85 140 60
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Recursive modeling
• n beats: T(n) = T(n − 1) + T(n − 2), T(0) = 1,T(1) = 1

• Cell tower: S(n) = max{S(n − 1), pn + S(n − 2)}, T(0) = 0,T(1) = p1
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Dynamic Programming
• Overlapping subproblems — Different branches of the recursion will reuse each other’s

work.
• Optimal substructure — The optimal solution for one problem instance is formed from

optimal solutions for smaller problems.
• Polynomial subproblems — The number of subproblems is small enough to be evaluated

in polynomial time.
• A dynamic programming algorithm is one that evaluates all subproblems in a particular

order to ensure that all subproblems are evaluated only once.
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Rod cutting-1
• Given a rod of length n inches and a table of prices pi for i = 1, . . . , n, determine the

maximum revenue rn obtainable by cutting up the rod and selling the pieces
• Example:

length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

• Recursive definition: rn = max{pi + rn−i : 1 ≤ i ≤ n}
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Rod cutting: Top-down-1
• Cut-Rod(p, n)

1. if n = 0 return 0
2. q = −∞
3. for i=1 to n
4. q = max{q, pi + Cut-Rod(p, n − i)}
5. return q
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Rod cutting: Top-down-2
• Initialize LUT[i] = −∞ ∀i = 1, . . . , n
• Cut-Rod-Memoized(p, n, LUT)

1. if LUT[n] ≥ 0 return LUT[n]
2. if n == 0 then q = 0

3. else
4. q = −∞
5. for i=1 to n
6. q = max{q, pi + Cut-Rod-Memoized(p, n − i, LUT)}
7. LUT[n] = q
8. return q
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Rod cutting: Recursion Tree
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Rod cutting: Recursion Tree
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Rod cutting: Bottom-up-1
• Cut-Rod-Bottom-up(p, n)

1. Let r[n] be an array, r[0]=0;
2. for j=1 to n
3. q = −∞
4. for i=1 to j
5. q = max{q, pi + r[j − i]}
6. r[j] = q
7. return r[n]
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Rod cutting: Example
length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30
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Rod cutting: Bottom-up-2
• Cut-Rod-Bottom-up(p, n)

1. Let r[n], s[n] be two arrays, r[0]=0;
2. for j=1 to n
3. q = −∞
4. for i=1 to j
5. if q < pi + r[j − i]
6. q = pi + r[j − i]; s[j] = i
7. r[j] = q
8. return r and s

• Print-Soln(p, n, s):
1. while n > 0

2. print s[n]
3. n = n − s[n]
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Matrix Chain Multiplication
• Given a sequence (chain) ⟨A1, . . . ,An⟩, matrix Ai has dimension pi−1×pi, fully parente-

size the product A1×. . .×An in way that minimizes the number of scalar multiplications.

• For n = 4 we have the following options
(A1(A2(A3A4))), ((A1A2)(A3A4)), ((A1(A2A3))A4)

(A1((A2A3)A4)), (((A1A2)A3)A4)

• Let the dimension of matrices are as follows - 5× 2, 2× 1, 1× 10, 10× 100. Compute
the number of multiplications for above cases.

• Recursive definition:
MCM(i, j) = mink{pi−1pkpj + MCM(i, k) + MCM(k + 1, j)}, if i ≤ k < j

= 0, if i = j
• Subproblems can be identified by two indices i, j
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Matrix Multiplication
• MatMult(Ap×q,Bq×r,Cp×r)

1. Initialize Cij = 0, ∀i, j
2. for i = 1, . . . , p
3. for j = 1, . . . , r
4. for k = 1, . . . , q
5. Cij = Cij + Aik × Bkj

• Time complexity is O(n3). However, we do not need to compute the product.
• We can determine the number of multiplications, pqr, in O(1) time
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MCM: Top-down
• Let us assume Count[n, n] stores number of multiplications and LUT[n, n] stores break-

up point
• Initialize Count[i, j] = ∞ if i ̸= j and 0 if i = j
• MCM(i, j,Count, LUT)

1. if i = j then Count[i, i] = 0; LUT[i, i] = 0; return 0;
2.
3. for k = i, . . . , j − 1

4. qk = MCM(i, k) + MCM(k + 1, j) + pi−1pkpj
5. qmin = mink{qk}; bp = arg mink{qk}
6.
7. return qmin
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MCM: Top-down
• Let us assume Count[n, n] stores number of multiplications and LUT[n, n] stores break-

up point
• Initialize Count[i, j] = ∞ if i ̸= j and 0 if i = j
• MCM(i, j,Count, LUT)

1. if i = j then Count[i, i] = 0; LUT[i, i] = 0; return 0;
2. if Count[i, j] < ∞ return Count[i, j]
3. for k = i, . . . , j − 1

4. qk = MCM(i, k) + MCM(k + 1, j) + pi−1pkpj
5. qmin = mink{qk}; bp = arg mink{qk}
6. Count[i, j] = qmin; LUT[i, j] = bp
7. return qmin
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MCM: Recursion Tree
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MCM: Recursion Tree
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MCM: Example
• Let us assume: p = [30 35 15 5 10 20 25]
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MCM: Bottom-up
• Let us assume Count[n, n] stores number of multiplications and LUT[n, n] stores break-

up point
• MCM-Bottom-Up(i, j,Count, LUT)

1. for i = 1, . . . , n do Count[i, i] = 0, LUT[i, i] = 0

2. for l = 2, . . . , n
3. for i = 1, . . . , n − l + 1

4. j = i + l − 1; Count[i, j] = ∞
5. for k = 1, . . . , j − 1

6. q = Count(i, k) + Count(k + 1, j) + pi−1pkpj
7. if Count[i, j] > q then count[i, j] = q; LUT[i, j] = k
8. return Count, LUT
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MCM: Parenthesization
• MCM-Print(i, j, LUT)

1. if i = j print ”Ai”
2. else
3. print ”(”
4. MCM-Print(i, LUT[i, j], LUT)
5. MCM-Print(LUT[i, j] + 1, j, LUT)
6. print ”)”
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Edit distance-1
• When a spell checker encounters a possible misspelling, it looks in its dictionary for

other words that are close by. What is the appropriate notion of closeness in this case?

• The edit distance between two strings is the minimum number of letter insertions, letter
deletions, and letter substitutions required to transform one string into the other

• Example: SNOWY and SUNNY
S -- N O W Y -- S N O W -- Y
S U N N -- Y S U N -- -- N Y

Cost: 3 Cost: 5
• Problem definition: Given two strings x[1..m] and y[1..n], and opertions (a) insert in y,

(b) delete from x, (c) substitute, find the minimum number of edits needed to transform
the first string to second. Assume cost of operations are as α, β, γ.
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Edit distance-2
• Recursive definition:

Edit(i,j) = min{α+Edit(i,j-1), β+Edit(i-1,j), diff(i,j)+Edit(i-1,j-1)},
where diff(i,j)=0 if xi = yj and γ otherwise

• Edit(i,0)=??, Edit(0,j)=??
• Assuming x=”INTENTION”, y=”EXECUTION” and α = β = 1, γ = 2
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Edit distance-3
• Assuming x=”INTENTION”, y=”EXECUTION” and α = β = 1, γ = 2

# E X E C U T I O N
# 0 1 2 3 4 5 6 7 8 9
I 1 2 3 4 5 6 7 6 7 8
N 2 3 4 5 6 7 8 7 8 7
T 3 4 5 6 7 8 7 8 9 8
E 4 3 4 5 6 7 8 9 10 9
N 5 4 5 6 7 8 9 10 11 10
T 6 5 6 7 8 9 8 9 10 11
I 7 6 7 8 9 10 9 8 9 10
O 8 7 8 9 10 11 10 9 8 9
N 9 8 9 10 11 12 11 10 9 8
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Edit distance-4
• Assuming x=”INTENTION”, y=”EXECUTION” and α = β = 1, γ = 2

# E X E C U T I O N
# 0 1 2 3 4 5 6 7 8 9
I 1 2 3 4 5 6 7 6 7 8
N 2 3 4 5 6 7 8 7 8 7
T 3 4 5 6 7 8 7 8 9 8
E 4 3 4 5 6 7 8 9 10 9
N 5 4 5 6 7 8 9 10 11 10
T 6 5 6 7 8 9 8 9 10 11
I 7 6 7 8 9 10 9 8 9 10
O 8 7 8 9 10 11 10 9 8 9
N 9 8 9 10 11 12 11 10 9 8
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Longest Increasing Subsequence
• For any sequence S, a subsequence of S is another sequence obtained from S by deleting

zero or more elements, without changing the order of the remaining elements; the
elements of the subsequence need not be contiguous in S

• Example: S = 3, 1, 4, 2, 5, 9, 7, 13, 11, 19, 15, 18, Increasing Subsequence – S′ =

3, 4, 5, 9, 13, 19, S′′ = 1, 2, 5, 7, 11, 15, 18

• Given a S, find LIS

• Steps:LIS(n)
1. for j=1,2,...,n
2. LIS(j) = 1 + max{LIS(i) : Si < Sj}, i < j
3. return maxj LIS(j)
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Knapsack
• During a robbery, a burglar finds much more loot than he had expected and has to

decide what to take. His bag will hold a total weight of at most W kgs. There are n
items to pick from, of weight w1, . . . ,wn and INR value v1, . . . , vn. What’s the most
valuable combination of items he can fit into his bag? Develop state-space exploration
based approach.

• What will happen if repetition is allowed?
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Exercise
• Longest Common Subsequence:
• A subsequence of a string is obtained by taking a string and possibly deleting zero

or more elements.
• If x1, . . . , xn is string and 1 ≤ i1 ≤ . . . ≤ ik ≤ n is a strictly increasing sequence of

indices, then xi1 , . . . , xik is a subsequence of x
• For example, art is a subsequence of algorithm.

• In the longest common subsequence problem, given strings x and y we want to find
the longest string that is a subsequence of both

• For example, art is the longest common subsequence of algorithm and parachute.

• Recursive definition: length of x and y are i, j respectively
LCS(i, j) = 0, if i = 0 or j = 0

= max{LCS(i − 1, j), LCS(i, j − 1), LCS(i − 1, j − 1) + eq(xi, yj)}
eq(xi, yj) = xi == yj ? 1 : 0;
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Thank you!


