CS514: Design and Analysis of Algorithms

Recursion: Backtracking

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in
https://www.iitp.ac.in/~arijit/

Permutation Generation

Permutation Generation

- Given the string dog, generate all possible permutations

'dog'
$' ‘$

'pending'
' used '

Permutation Generation

- Given the string dog, generate all possible permutations

Permutation Generation

- Given the string dog, generate all possible permutations

Permutation Generation

- Given the string dog, generate all possible permutations

Permutation Generation

- Given the string dog, generate all possible permutations

Permutation Generation

- Given the string dog, generate all possible permutations

Permutation Generation

- Given the string dog, generate all possible permutations

Permutation Generation

- Given the string dog, generate all possible permutations

Permutation Generation

- Given the string dog, generate all possible permutations

Permutation Generation

- Given the string dog, generate all possible permutations

Permutation Generation

- Given the string dog, generate all possible permutations

Permutation Generation

- permutation(pending, used)

1. if length(pending) $==0$ \{ print used; return \}
2. for $\mathrm{i}=1$ to length(pending)
3. $\quad \mathrm{c}=$ pending $[\mathrm{i}]$
4. rest $=$ pending $[1 . .(i-1)(i+1) \ldots]$
5. permutation $\left(\right.$ rest,$\left.\{\text { used }\}^{*}\{c\}\right)$

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- Given the string dog, generate all possible combinations of the characters

$[\mathrm{dog}]$
[]

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- Given the string dog, generate all possible combinations of the characters

Combination Generation

- combination(pending, used)

1. if length(pending) $==0$ \{ print used; return \}
2. $\mathrm{c}=$ pending [1]
3. rest $=$ pending $[2 \ldots$.
4. combination(rest, $\{\text { used }\}^{*}\{c\}$)
5. combination(rest, $\{$ used $\}$)

Coin change

- Given a set of coins C, is it possible to provide a sum S using C ?
- Example: $C=\{1,2,4,7,8,10\}, S=15$

Coin change

- Given a set of coins C, is it possible to provide a sum S using C ?
- Example: $C=\{1,2,4,7,8,10\}, S=15$

Coin change

- Given a set of coins C, is it possible to provide a sum S using C ?
- Example: $C=\{1,2,4,7,8,10\}, S=15$

N-Queens

Need to place N -queens on this board
Rules:

- No queens are attacking each other

N-Queens

Need to place N -queens on this board
Rules:

- No queens are attacking each other

N-Queens

Need to place N -queens on this board
Rules:

- No queens are attacking each other

Other variants:

- At least a queen on the main diagonal
- Two queens on the two main diagonals
- Enumeration of all solutions

4 Queens

4 Queens

4 Queens

4 Queens

4 Queens

4 Queens

4 Queens

4 Queens

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Game trees

- There is a pile of $n=13$ coins. There are two players. At each step, a player can take either one or two coins from the pile. The player who takes the last coin looses the game. If you are the first one to make a move, what will be your strategy?

Exercise-1

- During a robbery, a burglar finds much more loot than he had expected and has to decide what to take. His bag will hold a total weight of at most W kgs. There are n items to pick from, of weight w_{1}, \ldots, w_{n} and INR value v_{1}, \ldots, v_{n}. What's the most valuable combination of items he can fit into his bag? Develop state-space exploration based approach.

Exercise-1

- During a robbery, a burglar finds much more loot than he had expected and has to decide what to take. His bag will hold a total weight of at most W kgs. There are n items to pick from, of weight w_{1}, \ldots, w_{n} and INR value v_{1}, \ldots, v_{n}. What's the most valuable combination of items he can fit into his bag? Develop state-space exploration based approach.
- What will happen if repetition is allowed?

Exercise-2

- Suppose you are given a string of letters representing text in some foreign language, but without any spaces or punctuation, and you want to break this string into its individual constituent words. For example
- ilikeicecreamandmango:
- i like ice cream and mango
- i like icecream and man go
- bothearthandsarturnspin:
- both earth and saturn spin
- bot heart hands at urns pin
- Can you develop a state-space exploration based approach to find all possible break-ups?

