CS514: Design and Analysis of Algorithms

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in
https://www.iitp.ac.in/~arijit/

General Information

• Room - 409 (Block 9)

- Class timings
 - Monday 1800-1900
 - Tuesday 1800-1900
 - Thursday 1800-1900

Books

- Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, *Introduction to Algorithms*, Third Edition, MIT Press/McGraw-Hill
- Sanjoy Dasgupta, Christos H. Papadimitriou and Umesh V. Vazirani, Algorithms, Tata McGraw-Hill, 2008.
- Steven Skiena, The Algorithm Design Manual, Springer
- Jon Kleinberg and Éva Tardos, *Algorithm Design*, Pearson, 2005.
- Robert Sedgewick and Kevin Wayne, Algorithms, fourth edition, Addison Wesley, 2011.
- Udi Manber, Algorithms A Creative Approach, Addison-Wesley, 1989
- Jeff Erickson, *Algorithms*
- Tim Roughgarden, Algorithms Illuminated

CS514

Evaluation

- Two quizzes 20%
- Midsem 30%
- Endsem 50%

CS514: Design and Analysis of Algorithms

Introduction

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in
https://www.iitp.ac.in/~arijit/

• Is it a jumbled form of *logarithm*?

- Is it a jumbled form of *logarithm*?
- The word algorithm came into existence sometime after 1957

- Is it a jumbled form of *logarithm*?
- The word algorithm came into existence sometime after 1957
- Closest word that existed was algorism it means the process of doing arithmetic using Arabic numerals

- Is it a jumbled form of *logarithm*?
- The word algorithm came into existence sometime after 1957
- Closest word that existed was algorism it means the process of doing arithmetic using Arabic numerals
- It came from the name of a famous Persian textbook author, Abu Abd Allah Muhammad ibn Musa al-Khwarizmi

- Is it a jumbled form of *logarithm*?
- The word algorithm came into existence sometime after 1957
- Closest word that existed was algorism it means the process of doing arithmetic using Arabic numerals
- It came from the name of a famous Persian textbook author, Abu Abd Allah Muhammad ibn Musa al-Khwarizmi
- He wrote the celebrated Arabic text Kitab al-jabr wa'l-muqabala ("Rules of restoring and equating")

- Is it a jumbled form of *logarithm*?
- The word algorithm came into existence sometime after 1957
- Closest word that existed was algorism it means the process of doing arithmetic using Arabic numerals
- It came from the name of a famous Persian textbook author, Abu Abd Allah Muhammad ibn Musa al-Khwarizmi
- He wrote the celebrated Arabic text Kitab al-jabr wa'l-muqabala ("Rules of restoring and equating")
- Gradually the form and meaning of algorism became corrupted and resulted into algorithm

• Input — an algorithm has zero or more inputs

- Input an algorithm has zero or more inputs
- Output an algorithm has one or more outputs

- Input an algorithm has zero or more inputs
- Output an algorithm has one or more outputs
- Finiteness an algorithm must terminates after finite number of steps

- Input an algorithm has zero or more inputs
- Output an algorithm has one or more outputs
- Finiteness an algorithm must terminates after finite number of steps
- Definiteness each step of algorithm needs to be defined precisely and unabiguously

- Input an algorithm has zero or more inputs
- Output an algorithm has one or more outputs
- Finiteness an algorithm must terminates after finite number of steps
- Definiteness each step of algorithm needs to be defined precisely and unabiguously
 - add salt to taste

- Input an algorithm has zero or more inputs
- Output an algorithm has one or more outputs
- Finiteness an algorithm must terminates after finite number of steps
- Definiteness each step of algorithm needs to be defined precisely and unabiguously
 - add salt to taste
- Effectiveness operations must all be sufficiently basic that they can in principle be done exactly and in a finite length of time by someone using pencil and paper

S514

- Input an algorithm has zero or more inputs
- Output an algorithm has one or more outputs
- Finiteness an algorithm must terminates after finite number of steps
- Definiteness each step of algorithm needs to be defined precisely and unabiguously
 - add salt to taste
- Effectiveness operations must all be sufficiently basic that they can in principle be done exactly and in a finite length of time by someone using pencil and paper
 - If 4 is the largest integer n for which there is a solution to the equation $w^n + x^n + y^n = z^n$ in positive integers w, x, y, and z, then go to step 6

CS514

- Input an algorithm has zero or more inputs
- Output an algorithm has one or more outputs
- Finiteness an algorithm must terminates after finite number of steps
- Definiteness each step of algorithm needs to be defined precisely and unabiguously
 - add salt to taste
- Effectiveness operations must all be sufficiently basic that they can in principle be done exactly and in a finite length of time by someone using pencil and paper
 - If 4 is the largest integer n for which there is a solution to the equation $w^n + x^n + y^n = z^n$ in positive integers w, x, y, and z, then go to step 6
- An algorithm is an explicit, precise, unambiguous, mechanically-executable sequence of elementary instructions, usually intended to accomplish a specific purpose. – Jeff Erickson

S514

Overview

- Algorithm and program
- Pseudo-code
- Algorithm + Data-Structures = Program
- Initial solution + Analysis + Solution Refinement + Data-Structures = Final Program
- Use of recursive definition for initial solution
- Use recurrence equation for proofs and analysis
- Solution refinement through recursion transformation and traversal
- Data structures for saving past results for future use

- Sample problems
 - Finding MAX
 - Finding MAX and MIN
 - Finding MAX and 2nd-MAX
 - Fibonacci numbers
 - Searching in ordered / unordered list
 - Sorting
 - Pattern matching
 - Permutation and combination
 - Shortest path

CS514

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
- 5. if $(x_1 > x')$ return x_1
- 6. else return x'

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
- 5. if $(x_1 > x')$ return x_1
- 6. else return x'

 $\{5,6,10,3,1,12,2\}$

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
- 4. $x' = \max(L')$ 5. if $(x_1 > x')$ return x_1
- else return x'6.

 $\{5, 6, 10, 3, 1, 12, 2\}$ $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
 - 5. if $(x_1 > x')$ return x_1
 - 6. else return x'

 $\{5, 6, 10, 3, 1, 12, 2\}$ $x_{1} = 5, L' = \{6, 10, 3, 1, 12, 2\}$ $x_{1} = 6, L' = \{10, 3, 1, 12, 2\}$

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
 - 5. if $(x_1 > x')$ return x_1
 - 6. else return x'

 $\{5, 6, 10, 3, 1, 12, 2\}$ $x_{1} = 5, L' = \{6, 10, 3, 1, 12, 2\}$ $x_{1} = 6, L' = \{10, 3, 1, 12, 2\}$ $x_{1} = 10, L' = \{3, 1, 12, 2\}$

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
 - 5. if $(x_1 > x')$ return x_1
 - 6. else return x'

 $\{5, 6, 10, 3, 1, 12, 2\}$ $x_{1} = 5, L' = \{6, 10, 3, 1, 12, 2\}$ $x_{1} = 6, L' = \{10, 3, 1, 12, 2\}$ $x_{1} = 10, L' = \{3, 1, 12, 2\}$ $x_{1} = 3, L' = \{1, 12, 2\}$

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
 - 5. if $(x_1 > x')$ return x_1
 - 6. else return x'

 $\{5, 6, 10, 3, 1, 12, 2\}$ $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$ $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$ $x_1 = 10, L' = \{3, 1, 12, 2\}$ $x_1 = 3, L' = \{1, 12, 2\}$ $x_1 = 1, L' = \{12, 2\}$

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
 - 5. if $(x_1 > x')$ return x_1
 - 6. else return x'

 $\{5, 6, 10, 3, 1, 12, 2\}$ $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$ $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$ $x_1 = 10, L' = \{3, 1, 12, 2\}$ $x_1 = 3, L' = \{1, 12, 2\}$ $x_1 = 1, L' = \{12, 2\}$ $x_1 = 12, L' = \{2\}$

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
 - 5. if $(x_1 > x')$ return x_1
 - 6. else return x'

 $\{5, 6, 10, 3, 1, 12, 2\}$ $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$ $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$ $x_1 = 10, L' = \{3, 1, 12, 2\}$ $x_1 = 3, L' = \{1, 12, 2\}$ $x_1 = 1, L' = \{12, 2\}$ $x_1 = 12, L' = \{2\}$ $L' = \{2\}$

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
 - 5. if $(x_1 > x')$ return x_1
 - 6. else return x'

 $\{5, 6, 10, 3, 1, 12, 2\}$ $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$ $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$ $x_1 = 10, L' = \{3, 1, 12, 2\}$ $x_1 = 3, L' = \{1, 12, 2\}$ $x_1 = 1, L' = \{12, 2\}$ $x_1 = 12, L' = \{2\}$ $L' = \{2\}$

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
 - 5. if $(x_1 > x')$ return x_1
 - 6. else return x'

 $\{5, 6, 10, 3, 1, 12, 2\}$ $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$ $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$ $x_1 = 10, L' = \{3, 1, 12, 2\}$ $x_1 = 3, L' = \{1, 12, 2\}$ $x_{1} = 1, L' = \{12, 2\}$ $x_{1} = 12, L' = \{2\}$ $L' = \{2\}$ 12

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
 - 5. if $(x_1 > x')$ return x_1
 - 6. else return x'

 $\{5, 6, 10, 3, 1, 12, 2\}$ $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$ $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$ $x_1 = 10, L' = \{3, 1, 12, 2\}$ $x_1 = 3, L' = \{1, 12, 2\}$ $x_{1} = 1, L' = \{12, 2\}$ $x_{1} = 12, L' = \{2\}$ $L' = \{2\}$

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
 - 5. if $(x_1 > x')$ return x_1
 - 6. else return x'

 $\{5, 6, 10, 3, 1, 12, 2\}$ $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$ $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$ $x_{1} = 10, L' = \{3, 1, 12, 2\}$ $x_{1} = 3, L' = \{1, 12, 2\}$ 12
12 $x_{1} = 1, L' = \{12, 2\}$ $x_{1} = 12, L' = \{2\}$ $L' = \{2\}$ 12

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
 - 5. if $(x_1 > x')$ return x_1
 - 6. else return x'

 $\{5, 6, 10, 3, 1, 12, 2\}$ $x_1 = 5, L' = \{6, 10, 3, 1, 12, 2\}$ $x_1 = 6, L' = \{10, 3, 1, 12, 2\}$ $x_1 = 10, L' = \{3, 1, 12, 2\}$ $x_1 = 3, L' = \{1, 12, 2\}$ 1212 $x_{1} = 1, L' = \{12, 2\}$ $x_{1} = 12, L' = \{2\}$ $L' = \{2\}$ 12

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
 - 5. if $(x_1 > x')$ return x_1
 - 6. else return x'

$$\{5, 6, 10, 3, 1, 12, 2\}$$

$$x_{1} = 5, L' = \{6, 10, 3, 1, 12, 2\}$$

$$x_{1} = 6, L' = \{10, 3, 1, 12, 2\}$$

$$x_{1} = 10, L' = \{3, 1, 12, 2\}$$

$$x_{1} = 3, L' = \{1, 12, 2\}$$

$$x_{1} = 1, L' = \{12, 2\}$$

$$x_{1} = 12, L' = \{2\}$$

$$L' = \{2\}$$

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
 - 5. if $(x_1 > x')$ return x_1
 - 6. else return x'

$$\{5, 6, 10, 3, 1, 12, 2\}$$

$$x_{1} = 5, L' = \{6, 10, 3, 1, 12, 2\}$$

$$x_{1} = 6, L' = \{10, 3, 1, 12, 2\}$$

$$x_{1} = 10, L' = \{3, 1, 12, 2\}$$

$$x_{1} = 3, L' = \{1, 12, 2\}$$

$$x_{1} = 1, L' = \{12, 2\}$$

$$x_{1} = 12, L' = \{2\}$$

$$L' = \{2\}$$

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Sequential comparison:
 - 1. max(L)
 - 2. if |L| = 1 return x_1
 - 3. $L' = L \{x_1\}$
 - 4. $x' = \max(L')$
- 5. if $(x_1 > x')$ return x_1
- 6. else return x'

Complexity analysis: $T(n) = T(n-1) + 1, \quad n > 1$ $= 0, \qquad n = 1$

$$\{5, 6, 10, 3, 1, 12, 2\}$$

$$x_{1} = 5, L' = \{6, 10, 3, 1, 12, 2\}$$

$$x_{1} = 6, L' = \{10, 3, 1, 12, 2\}$$

$$x_{1} = 10, L' = \{3, 1, 12, 2\}$$

$$x_{1} = 3, L' = \{1, 12, 2\}$$

$$x_{1} = 1, L' = \{12, 2\}$$

$$x_{1} = 12, L' = \{2\}$$

$$L' = \{2\}$$

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(L)
 - 2. if |L| = 1 return x_1
 - 3. Split *L* into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return y

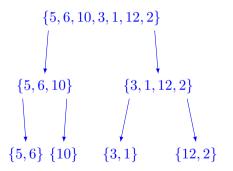
- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(L)
 - 2. if |L| = 1 return x_1
 - 3. Split *L* into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return y

 $\{5,6,10,3,1,12,2\}$

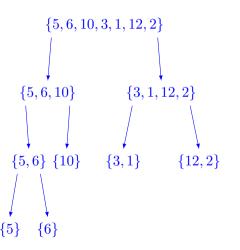
- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(L)
 - 2. if |L| = 1 return x_1
 - 3. Split *L* into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return y

$$\{5, 6, 10, 3, 1, 12, 2\}$$

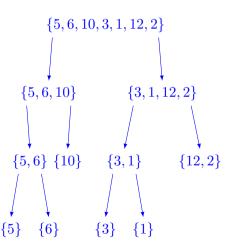
- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(L)
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return y



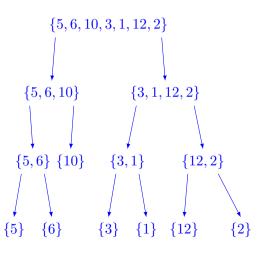
- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(L)
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return y



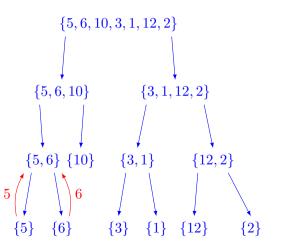
- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(L)
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return y



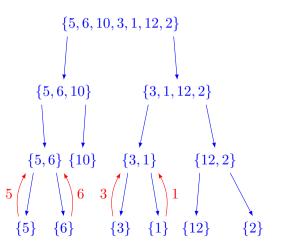
- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(L)
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return y



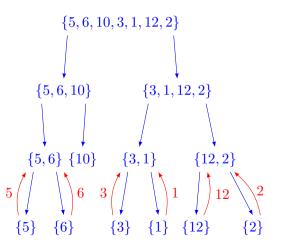
- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(L)
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return y



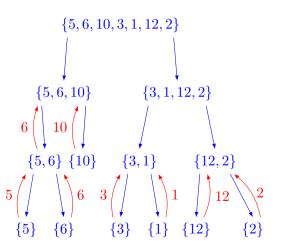
- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(L)
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return y



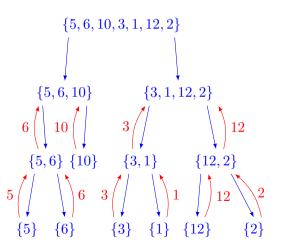
- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(L)
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return y



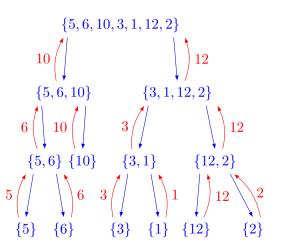
- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(L)
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return y



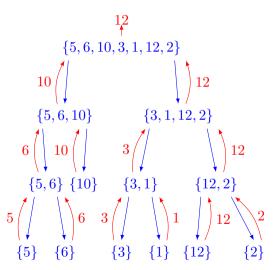
- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(*L*)
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return y



- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(*L*)
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return y

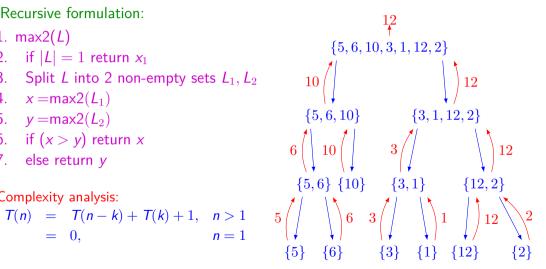


- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(*L*)
 - 2. if |L| = 1 return x_1
 - 3. Split L into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return y



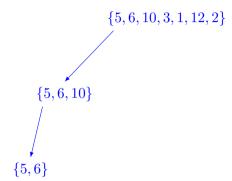
- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find $\max\{L\}$
- Recursive formulation:
 - 1. max2(L)
 - 2. if |L| = 1 return x_1
 - 3. Split *L* into 2 non-empty sets L_1, L_2
 - 4. $x = \max 2(L_1)$
 - 5. $y = \max 2(L_2)$
 - 6. if (x > y) return x
 - 7. else return *y*

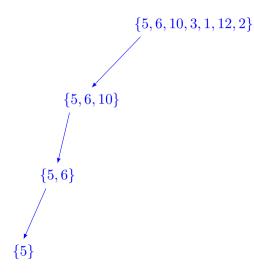
Complexity analysis:

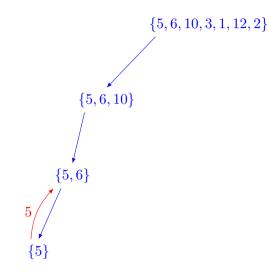


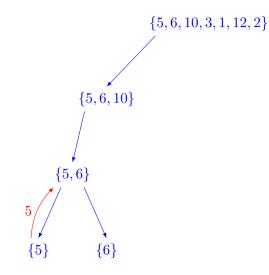
 $\{5,6,10,3,1,12,2\}$

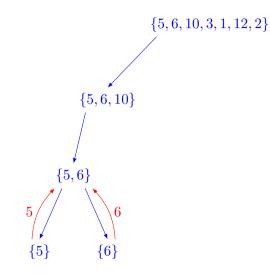
 $\{5, 6, 10, 3, 1, 12, 2\}$ $\{5, 6, 10\}$

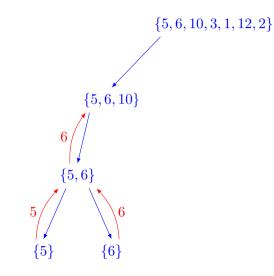


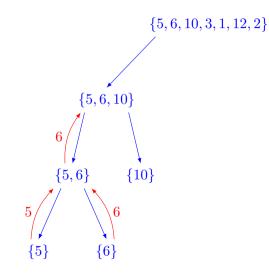


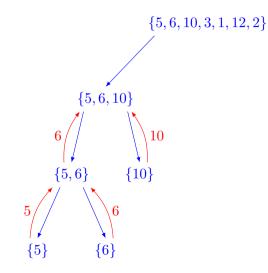


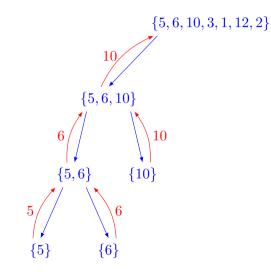


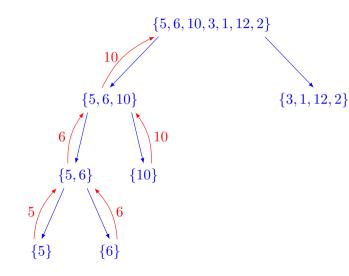


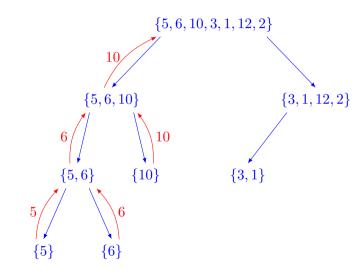


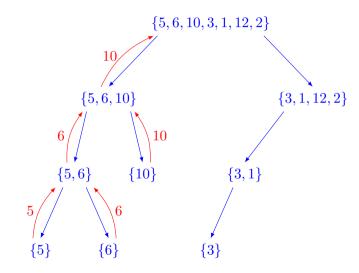


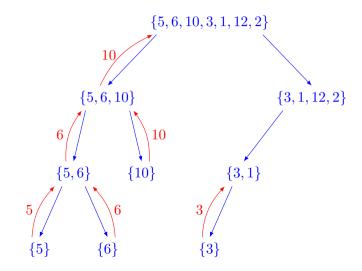


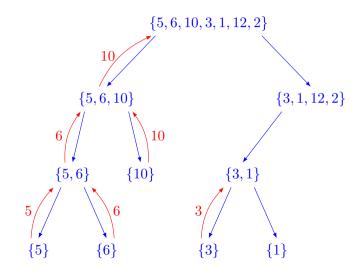


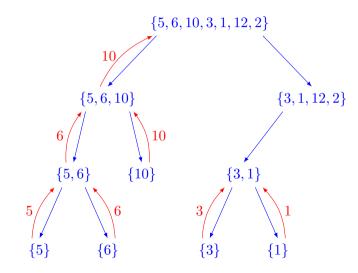


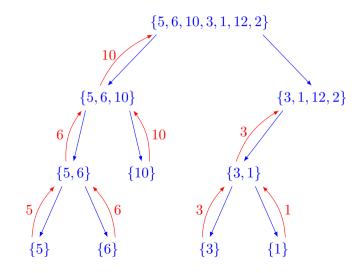


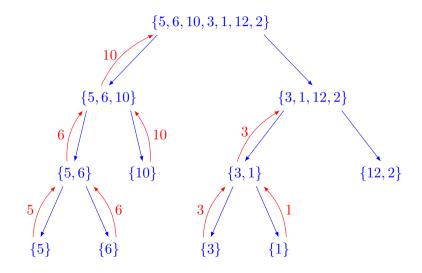


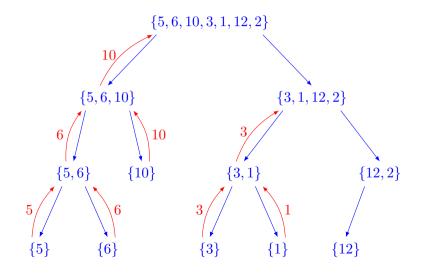


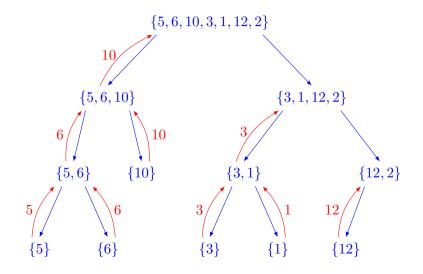


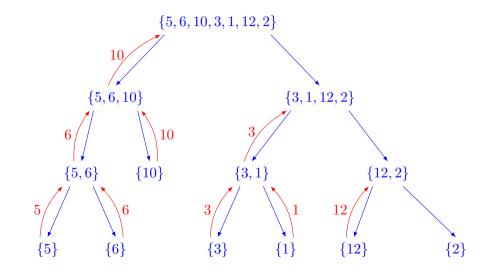


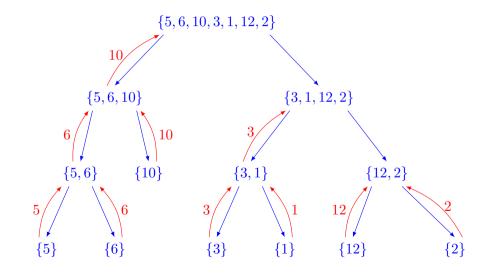


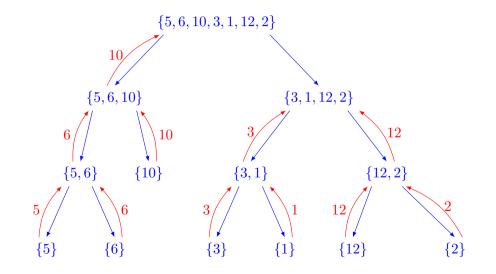


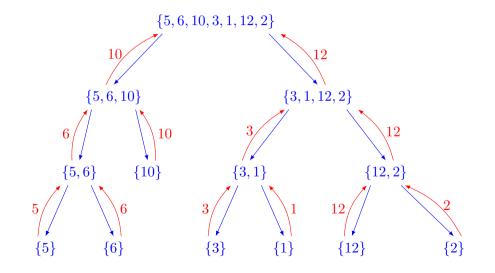


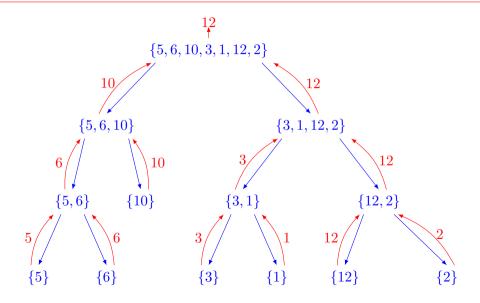








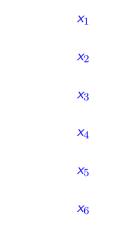




Comparison Tournament

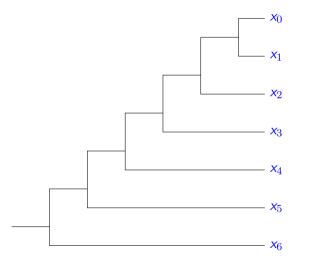
• Finding of maximum can be viewed as a tournament of players taken two at a time

 x_0



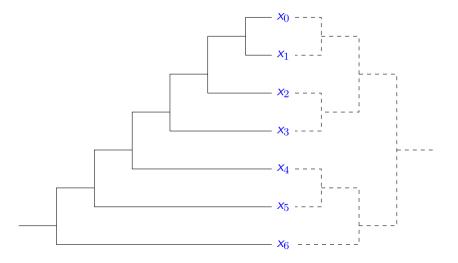
Comparison Tournament

• Finding of maximum can be viewed as a tournament of players taken two at a time



Comparison Tournament

• Finding of maximum can be viewed as a tournament of players taken two at a time



MAX & MIN (1)

• Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find max $\{L\}$ and min $\{L\}$

MAX & MIN (1)

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find max $\{L\}$ and min $\{L\}$
- Sequential comparison
 - 1. maxmin(L)
 - 2. if |L|=1 return $\langle x_1, x_1 \rangle$
 - 3. $L' = L \{x_1\}$
 - 4. $\langle y_1, y_2 \rangle = \operatorname{maxmin}(L')$
 - 5. if $x_1 > y_1$ then $m_1 = x_1$ else $m_1 = y_1$
 - 6. if $x_1 < y_2$ then $m_2 = x_1$ else $m_2 = y_2$
 - 7. return $\langle m_1, m_2 \rangle$

MAX & MIN (2)

- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find max $\{L\}$ and min $\{L\}$
- Recursive definition
 - 1. maxmin2(L)
 - 2. if |L|=1 return $\langle x_1, x_1 \rangle$
 - 3. if $|\mathcal{L}|{=}2$ if $x_1 > x_2$ return $\langle x_1, x_2 \rangle$ else return $\langle x_2, x_1 \rangle$
 - 4. Split *L* into 2 non-empty sets L_1, L_2
- 5. $\langle y_1, y_2 \rangle = \text{maxmin2}(L_1)$
- 6. $\langle z_1, z_2 \rangle = \text{maxmin2}(L_2)$
- 7. if $y_1 > z_1$ then $m_1 = y_1$ else $m_1 = z_1$
- 8. if $y_2 < z_2$ then $m_2 = y_2$ else $m_2 = z_2$
- 9. return $\langle m_1, m_2 \rangle$

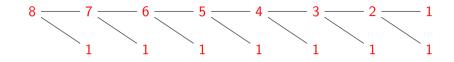
MAX & MIN (3)

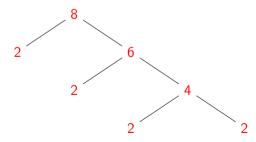
- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find max $\{L\}$ and min $\{L\}$
- Recursive definition Choice of split
 - Recurrence relation:

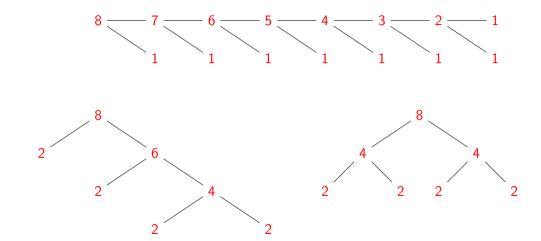
$$\Gamma(n) = 0, \qquad n = 1$$

- 1 $n = 2$

$$= T(k) + T(n-k) + 2, \quad n = 2$$







• Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find max $\{L\}$ and 2nd-max $\{L\}$

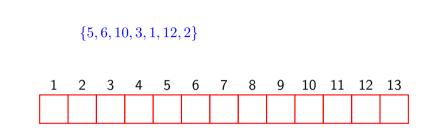
- Given $L = \{x_1, x_2, \dots, x_n\}$, all x_i are integers. We need to find max $\{L\}$ and 2nd-max $\{L\}$
- Recursive definition
 - 1. max2ndmax(L)
- 2. if |L|=1 return $\langle x_1, x_1 \rangle$
- 3. if $|\mathcal{L}|{=}2$ if $x_1 > x_2$ return $\langle x_1, x_2 \rangle$ else return $\langle x_2, x_1 \rangle$
- 4. Split *L* into 2 non-empty sets L_1, L_2
- 5. $\langle y_1, y_2 \rangle = \max 2 \operatorname{ndmax}(L_1)$
- 6. $\langle z_1, z_2 \rangle = \max 2 \operatorname{ndmax}(L_2)$

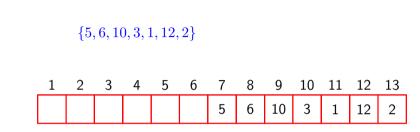
7. if
$$(y_1 > z_1)$$
 { $m_1 = y_1; m_2 = z_1 > y_1?z_1:y_1;$ }

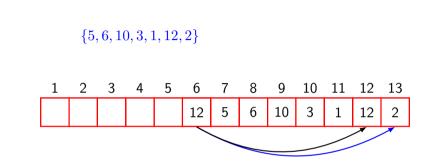
8. else {
$$m_1 = z_1; m_2 = y_1 > z_2?y_1: z_2;$$
 }

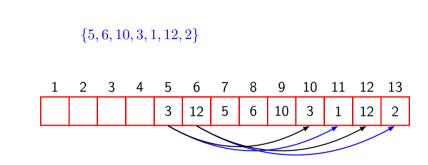
- 9. return $\langle m_1, m_2
 angle$
- Explore different splitting options

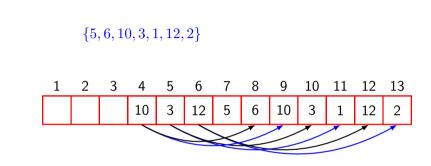
 $\{5,6,10,3,1,12,2\}$

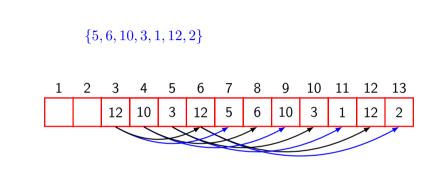


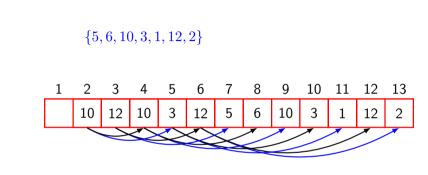


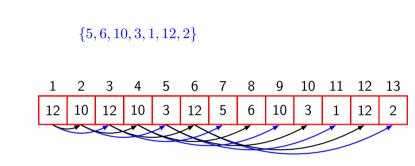


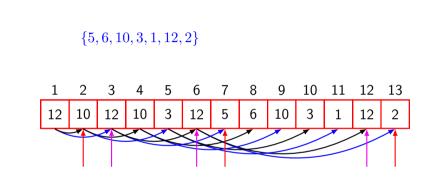












Thank you!