CS514: Design and Analysis of Algorithms

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in
https://www.iitp.ac.in/~arijit/

General Information

- Class timings
- Room - 409 (Block 9)
- Monday - 1800-1900
- Tuesday - 1800-1900
- Thursday - 1800-1900

Books

- Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, Introduction to Algorithms, Third Edition, MIT Press/McGraw-Hill
- Sanjoy Dasgupta, Christos H. Papadimitriou and Umesh V. Vazirani, Algorithms, Tata McGraw-Hill, 2008.
- Steven Skiena, The Algorithm Design Manual, Springer
- Jon Kleinberg and Éva Tardos, Algorithm Design, Pearson, 2005.
- Robert Sedgewick and Kevin Wayne, Algorithms, fourth edition, Addison Wesley, 2011.
- Udi Manber, Algorithms - A Creative Approach, Addison-Wesley, 1989
- Jeff Erickson, Algorithms
- Tim Roughgarden, Algorithms Illuminated

Evaluation

CS514: Design and Analysis of Algorithms

Introduction

Arijit Mondal
Dept of CSE
arijit@iitp.ac.in
https://www.iitp.ac.in/~arijit/

Algorithm

Algorithm

- Is it a jumbled form of logarithm?
- The word algorithm came into existence sometime after 1957

Algorithm

- Is it a jumbled form of logarithm?
- The word algorithm came into existence sometime after 1957
- Closest word that existed was algorism - it means the process of doing arithmetic using Arabic numerals

Algorithm

- Is it a jumbled form of logarithm?
- The word algorithm came into existence sometime after 1957
- Closest word that existed was algorism - it means the process of doing arithmetic using Arabic numerals
- It came from the name of a famous Persian textbook author, Abu Abd Allah Muhammad ibn Musa al-Khwarizmi

Algorithm

- Is it a jumbled form of logarithm?
- The word algorithm came into existence sometime after 1957
- Closest word that existed was algorism - it means the process of doing arithmetic using Arabic numerals
- It came from the name of a famous Persian textbook author, Abu Abd Allah Muhammad ibn Musa al-Khwarizmi
- He wrote the celebrated Arabic text Kitab al-jabr wa'l-muqabala ("Rules of restoring and equating")

Algorithm

- Is it a jumbled form of logarithm?
- The word algorithm came into existence sometime after 1957
- Closest word that existed was algorism - it means the process of doing arithmetic using Arabic numerals
- It came from the name of a famous Persian textbook author, Abu Abd Allah Muhammad ibn Musa al-Khwarizmi
- He wrote the celebrated Arabic text Kitab al-jabr wa'l-muqabala ("Rules of restoring and equating")
- Gradually the form and meaning of algorism became corrupted and resulted into algorithm

Properties of algorithm

Properties of algorithm

- Input - an algorithm has zero or more inputs
- Output - an algorithm has one or more outputs

Properties of algorithm

- Input - an algorithm has zero or more inputs
- Output - an algorithm has one or more outputs
- Finiteness - an algorithm must terminates after finite number of steps

Properties of algorithm

- Input - an algorithm has zero or more inputs
- Output - an algorithm has one or more outputs
- Finiteness - an algorithm must terminates after finite number of steps
- Definiteness - each step of algorithm needs to be defined precisely and unabiguously

Properties of algorithm

- Input - an algorithm has zero or more inputs
- Output - an algorithm has one or more outputs
- Finiteness - an algorithm must terminates after finite number of steps
- Definiteness - each step of algorithm needs to be defined precisely and unabiguously
- add salt to taste

Properties of algorithm

- Input - an algorithm has zero or more inputs
- Output - an algorithm has one or more outputs
- Finiteness - an algorithm must terminates after finite number of steps
- Definiteness - each step of algorithm needs to be defined precisely and unabiguously
- add salt to taste
- Effectiveness - operations must all be sufficiently basic that they can in principle be done exactly and in a finite length of time by someone using pencil and paper

Properties of algorithm

- Input - an algorithm has zero or more inputs
- Output - an algorithm has one or more outputs
- Finiteness - an algorithm must terminates after finite number of steps
- Definiteness - each step of algorithm needs to be defined precisely and unabiguously
- add salt to taste
- Effectiveness - operations must all be sufficiently basic that they can in principle be done exactly and in a finite length of time by someone using pencil and paper
- If 4 is the largest integer n for which there is a solution to the equation $w^{n}+x^{n}+y^{n}=$ z^{n} in positive integers w, x, y, and z, then go to step 6

Properties of algorithm

- Input - an algorithm has zero or more inputs
- Output - an algorithm has one or more outputs
- Finiteness - an algorithm must terminates after finite number of steps
- Definiteness - each step of algorithm needs to be defined precisely and unabiguously
- add salt to taste
- Effectiveness - operations must all be sufficiently basic that they can in principle be done exactly and in a finite length of time by someone using pencil and paper
- If 4 is the largest integer n for which there is a solution to the equation $w^{n}+x^{n}+y^{n}=$ z^{n} in positive integers w, x, y, and z, then go to step 6
- An algorithm is an explicit, precise, unambiguous, mechanically-executable sequence of elementary instructions, usually intended to accomplish a specific purpose. - Jeff Erickson

Overview

- Algorithm and program
- Pseudo-code
- Algorithm + Data-Structures = Program
- Initial solution + Analysis + Solution Refinement + Data-Structures $=$ Final Program
- Use of recursive definition for initial solution
- Use recurrence equation for proofs and analysis
- Solution refinement through recursion transformation and traversal
- Data structures for saving past results for future use
- Sample problems
- Finding MAX
- Finding MAX and MIN
- Finding MAX and 2nd-MAX
- Fibonacci numbers
- Searching in ordered / unordered list
- Sorting
- Pattern matching
- Permutation and combination
- Shortest path

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x\right)$ return x_{1}
6. else return x^{\prime}

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

$$
\{5,6,10,3,1,12,2\}
$$

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}

$$
\begin{gathered}
\not\{5,6,10,3,1,12,2\} \\
x_{1}=5, L^{\prime}=\{6,10,3,1,12,2\}
\end{gathered}
$$

3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$

$$
\begin{gathered}
\{5,6,10,3,1,12,2\} \\
x_{1}=5, L^{\prime}=\{6,10,3,1,12,2\} \\
x_{1}=6, L^{\prime}=\{10,3,1,12,2\}
\end{gathered}
$$

5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

$$
\begin{gathered}
\quad\{5,6,10,3,1,12,2\} \\
x_{1}=5, L^{\prime}=\{6,10,3,1,12,2\} \\
x_{1}=6, L^{\prime}=\{10,3,1,12,2\} \\
x_{1}=10, L^{\prime}=\{3,1,12,2\}
\end{gathered}
$$

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

$$
\begin{gathered}
\{5,6,10,3,1,12,2\} \\
x_{1}=5, L^{\prime}=\{6,10,3,1,12,2\} \\
x_{1}=6, L^{\prime}=\{10,3,1,12,2\} \\
x_{1}=10, L^{\prime}=\{3,1,12,2\} \\
x_{1}=3, L^{\prime}=\{1,12,2\}
\end{gathered}
$$

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

$$
\begin{gathered}
\{5,6,10,3,1,12,2\} \\
x_{1}=5, L^{\prime}=\{6,10,3,1,12,2\} \\
x_{1}=6, L^{\prime}=\{10,3,1,12,2\} \\
x_{1}=10, L^{\prime}=\{3,1,12,2\} \\
x_{1}=3, L^{\prime}=\{1,12,2\} \\
x_{1}=1, L^{\prime}=\{12,2\}
\end{gathered}
$$

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

$$
\begin{gathered}
\{5,6,10,3,1,12,2\} \\
x_{1}=5, L^{\prime}=\{6,10,3,1,12,2\} \\
x_{1}=6, L^{\prime}=\{10,3,1,12,2\} \\
x_{1}=10, L^{\prime}=\{3,1,12,2\} \\
x_{1}=1, L^{\prime}=\{1,12,2\} \\
x_{1}=\{12,2\} \\
x_{1}=12, L^{\prime}=\{2\}
\end{gathered}
$$

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

$$
\begin{gathered}
\{5,6,10,3,1,12,2\} \\
x_{1}=5, L^{\prime}=\{6,10,3,1,12,2\} \\
x_{1}=6, L^{\prime}=\{10,3,1,12,2\} \\
x_{1}=10, L^{\prime}=\{3,1,12,2\} \\
x_{1}=1, L^{\prime}=\{12,2\} \\
x_{1}=12, L^{\prime}=\{2\} \\
L^{\prime}=\{2\}
\end{gathered}
$$

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

$$
\begin{gathered}
\{5,6,10,3,1,12,2\} \\
x_{1}=5, L^{\prime}=\{6,10,3,1,12,2\} \\
x_{1}=6, L^{\prime}=\{10,3,1,12,2\} \\
x_{1}=10, L^{\prime}=\{3,1,12,2\} \\
x_{1}=1, L^{\prime}=\{12,2\} \\
x_{1}=12, L^{\prime}=\{2\} \\
L^{\prime}=\{2\}
\end{gathered}
$$

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

$$
\begin{gathered}
\{5,6,10,3,1,12,2\} \\
x_{1}=5, L^{\prime}=\{6,10,3,1,12,2\} \\
x_{1}=6, L^{\prime}=\{10,3,1,12,2\} \\
x_{1}=10, L^{\prime}=\{3,1,12,2\} \\
x_{1}=3, L^{\prime}=\{1,12,2\} \\
x_{1}=1, L^{\prime}=\{12,2\} \\
x_{1}=12, L^{\prime}=\{2\} \\
L^{\prime}=\{2\}
\end{gathered}
$$

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

$$
\begin{gathered}
\{5,6,10,3,1,12,2\} \\
x_{1}=5, L^{\prime}=\{6,10,3,1,12,2\} \\
x_{1}=6, L^{\prime}=\{10,3,1,12,2\} \\
x_{1}=10, L^{\prime}=\{3,1,12,2\} \\
x_{1}=3, L^{\prime}=\{1,12,2\} \\
x_{1}=1, L^{\prime}=\{12,2\} \\
x_{1}=12, L^{\prime}=\{2\} \\
L^{\prime}=\{2\}
\end{gathered}
$$

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

$$
\begin{gathered}
\{5,6,10,3,1,12,2\} \\
x_{1}=5, L^{\prime}=\{6,10,3,1,12,2\} \\
x_{1}=6, L^{\prime}=\{10,3,1,12,2\} \\
x_{1}=10, L^{\prime}=\{3,1,12,2\} \\
x_{1}=3, L^{\prime}=\{1,12,2\} \\
x_{1}=1, L^{\prime}=\{12,2\} \\
x_{1}=12, L^{\prime}=\{2\} \\
L^{\prime}=\{2\}
\end{gathered}
$$

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

$$
\begin{gathered}
\{5,6,10,3,1,12,2\} \\
x_{1}=5, L^{\prime}=\{6,10,3,1,12,2\} \\
x_{1}=6, L^{\prime}=\{10,3,1,12,2\} \\
x_{1}=10, L^{\prime}=\{3,1,12,2\} \\
x_{1}=3, L^{\prime}=\{1,12,2\} \\
x_{1}=1, L^{\prime}=\{12,2\} \\
x_{1}=12, L^{\prime}=\{2\} \\
L^{\prime}=\{2\}
\end{gathered}
$$

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

Finding MAX of n elements (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Sequential comparison:

1. $\max (L)$
2. if $|L|=1$ return x_{1}
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $x^{\prime}=\max \left(L^{\prime}\right)$
5. if $\left(x_{1}>x^{\prime}\right)$ return x_{1}
6. else return x^{\prime}

Complexity analysis:

$$
\begin{aligned}
T(n) & =T(n-1)+1, & & n>1 \\
& =0, & & n=1
\end{aligned}
$$

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}
3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
6. if $(x>y)$ return x
7. else return y

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}

$$
\{5,6,10,3,1,12,2\}
$$

3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
6. if $(x>y)$ return x
7. else return y

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}
3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
$\{5,6,10,3,1,12,2\}$
6. if $(x>y)$ return x
7. else return y

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}
3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
6. if $(x>y)$ return x
7. else return y

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}
3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
6. if $(x>y)$ return x
7. else return y

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}
3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
6. if $(x>y)$ return x
7. else return y

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}
3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
6. if $(x>y)$ return x
7. else return y

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}
3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
6. if $(x>y)$ return x
7. else return y

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}
3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
6. if $(x>y)$ return x
7. else return y

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}
3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
6. if $(x>y)$ return x
7. else return y

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}
3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
6. if $(x>y)$ return x
7. else return y

$$
\{5,6,10,3,1,12,2\}
$$

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}
3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
6. if $(x>y)$ return x
7. else return y

$$
\{5,6,10,3,1,12,2\}
$$

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}
3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
6. if $(x>y)$ return x
7. else return y

$$
\{5,6,10,3,1,12,2\}
$$

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}
3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
6. if $(x>y)$ return x
7. else return y

Finding MAX of n elements (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$
- Recursive formulation:

1. $\max 2(L)$
2. if $|L|=1$ return x_{1}
3. Split L into 2 non-empty sets L_{1}, L_{2}
4. $x=\max 2\left(L_{1}\right)$
5. $y=\max 2\left(L_{2}\right)$
6. if $(x>y)$ return x
7. else return y

Complexity analysis:

$$
\begin{aligned}
T(n) & =T(n-k)+T(k)+1, & & n>1 \\
& =0, & & n=1
\end{aligned}
$$

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

$\{5,6,10,3,1,12,2\}$

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Recursion Flow: Finding MAX of n elements (2)

Comparison Tournament

- Finding of maximum can be viewed as a tournament of players taken two at a time

```
X0
X1
X2
X3
X4
```

x_{5}
x_{6}

Comparison Tournament

- Finding of maximum can be viewed as a tournament of players taken two at a time

Comparison Tournament

- Finding of maximum can be viewed as a tournament of players taken two at a time

MAX \& MIN (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$ and $\min \{L\}$

MAX \& MIN (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$ and $\min \{L\}$
- Sequential comparison

1. $\operatorname{maxmin}(L)$
2. if $|L|=1$ return $\left\langle x_{1}, x_{1}\right\rangle$
3. $L^{\prime}=L-\left\{x_{1}\right\}$
4. $\left\langle y_{1}, y_{2}\right\rangle=\operatorname{maxmin}\left(L^{\prime}\right)$
5. if $x_{1}>y_{1}$ then $m_{1}=x_{1}$ else $m_{1}=y_{1}$
6. if $x_{1}<y_{2}$ then $m_{2}=x_{1}$ else $m_{2}=y_{2}$
7. return $\left\langle m_{1}, m_{2}\right\rangle$

MAX \& MIN (2)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$ and $\min \{L\}$
- Recursive definition

1. $\operatorname{maxmin} 2(L)$
2. if $|L|=1$ return $\left\langle x_{1}, x_{1}\right\rangle$
3. if $|L|=2$ if $x_{1}>x_{2}$ return $\left\langle x_{1}, x_{2}\right\rangle$ else return $\left\langle x_{2}, x_{1}\right\rangle$
4. Split L into 2 non-empty sets L_{1}, L_{2}
5. $\left\langle y_{1}, y_{2}\right\rangle=\operatorname{maxmin} 2\left(L_{1}\right)$
6. $\left\langle z_{1}, z_{2}\right\rangle=\operatorname{maxmin} 2\left(L_{2}\right)$
7. if $y_{1}>z_{1}$ then $m_{1}=y_{1}$ else $m_{1}=z_{1}$
8. if $y_{2}<z_{2}$ then $m_{2}=y_{2}$ else $m_{2}=z_{2}$
9. return $\left\langle m_{1}, m_{2}\right\rangle$

MAX \& MIN (3)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$ and $\min \{L\}$
- Recursive definition - Choice of split
- Recurrence relation:

$$
\begin{array}{rlcl}
T(n) & = & 0, & n=1 \\
& = & 1, & n=2 \\
& = & T(k)+T(n-k)+2, & n=2
\end{array}
$$

Options for splitting

Options for splitting

Options for splitting

Options for splitting

MAX \& 2nd-MAX (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$ and 2 nd-max $\{L\}$

MAX \& 2nd-MAX (1)

- Given $L=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, all x_{i} are integers. We need to find $\max \{L\}$ and 2nd-max $\{L\}$
- Recursive definition

1. max2ndmax (L)
2. if $|L|=1$ return $\left\langle x_{1}, x_{1}\right\rangle$
3. if $|L|=2$ if $x_{1}>x_{2}$ return $\left\langle x_{1}, x_{2}\right\rangle$ else return $\left\langle x_{2}, x_{1}\right\rangle$
4. Split L into 2 non-empty sets L_{1}, L_{2}
5. $\left\langle y_{1}, y_{2}\right\rangle=\max 2 \operatorname{ndmax}\left(L_{1}\right)$
6. $\left\langle z_{1}, z_{2}\right\rangle=\max 2 \operatorname{ndmax}\left(L_{2}\right)$
7. if $\left(y_{1}>z_{1}\right)\left\{m_{1}=y_{1} ; m_{2}=z_{1}>y_{1} ? z_{1}: y_{1} ;\right\}$
8. else $\left\{m_{1}=z_{1} ; m_{2}=y_{1}>z_{2} ? y_{1}: z_{2} ;\right\}$
9. return $\left\langle m_{1}, m_{2}\right\rangle$

- Explore different splitting options

MAX \& 2nd-MAX (2)

$$
\{5,6,10,3,1,12,2\}
$$

$\{5,6,10,3,1,12,2\}$

$$
\{5,6,10,3,1,12,2\}
$$

1	2	3	4	5	6	7	8	9	10	11	12	13
						5	6	10	3	1	12	2

$$
\{5,6,10,3,1,12,2\}
$$

MAX \& 2nd-MAX (2)

$$
\{5,6,10,3,1,12,2\}
$$

MAX \& 2nd-MAX (2)

$$
\{5,6,10,3,1,12,2\}
$$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 10 | 3 | 12 | 5 | 6 | 10 | 3 | 1 | 12 | 2 |

$$
\{5,6,10,3,1,12,2\}
$$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 12 | 10 | 3 | 12 | 5 | 6 | 10 | 3 | 1 | 12 | 2 |

$\{5,6,10,3,1,12,2\}$

1	2	3	4	5	6	7	8	9	10	11	12	13
	10	12	10	3	12	5	6	10	3	1	12	2

$$
\{5,6,10,3,1,12,2\}
$$

1	2	3	4	5	6	7	8	9	10	11	12	13
12	10	12	10	3	12	5	6	10	3	1	12	2

$$
\{5,6,10,3,1,12,2\}
$$

