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General Information
• Class timings
• Monday — 1800-1900
• Tuesday — 1800-1900
• Thursday — 1800-1900

• Room - 409 (Block 9)
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Books
• Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, Introduc-

tion to Algorithms, Third Edition, MIT Press/McGraw-Hill
• Sanjoy Dasgupta, Christos H. Papadimitriou and Umesh V. Vazirani, Algorithms, Tata

McGraw-Hill, 2008.
• Steven Skiena, The Algorithm Design Manual, Springer
• Jon Kleinberg and Éva Tardos, Algorithm Design, Pearson, 2005.
• Robert Sedgewick and Kevin Wayne, Algorithms, fourth edition, Addison Wesley, 2011.
• Udi Manber, Algorithms – A Creative Approach, Addison-Wesley, 1989
• Jeff Erickson, Algorithms
• Tim Roughgarden, Algorithms Illuminated
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Evaluation
• Two quizzes - 20%
• Midsem - 30%
• Endsem - 50%
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Algorithm
• Is it a jumbled form of logarithm?

• The word algorithm came into existence sometime after 1957
• Closest word that existed was algorism – it means the process of doing arithmetic using

Arabic numerals
• It came from the name of a famous Persian textbook author, Abu Abd Allah Muhammad

ibn Musa al-Khwarizmi
• He wrote the celebrated Arabic text Kitab al-jabr wa’l-muqabala (”Rules of restoring

and equating”)
• Gradually the form and meaning of algorism became corrupted and resulted into algo-

rithm
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Properties of algorithm
• Input — an algorithm has zero or more inputs

• Output — an algorithm has one or more outputs
• Finiteness — an algorithm must terminates after finite number of steps
• Definiteness — each step of algorithm needs to be defined precisely and unabiguously
• add salt to taste

• Effectiveness — operations must all be sufficiently basic that they can in principle be
done exactly and in a finite length of time by someone using pencil and paper
• If 4 is the largest integer n for which there is a solution to the equation wn+xn+yn =

zn in positive integers w, x, y, and z, then go to step 6

• An algorithm is an explicit, precise, unambiguous, mechanically-executable sequence
of elementary instructions, usually intended to accomplish a specific purpose. – Jeff
Erickson
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Overview
• Algorithm and program
• Pseudo-code
• Algorithm + Data-Structures = Program
• Initial solution + Analysis + Solution Refine-

ment + Data-Structures = Final Program
• Use of recursive definition for initial solution
• Use recurrence equation for proofs and anal-

ysis
• Solution refinement through recursion trans-

formation and traversal
• Data structures for saving past results for fu-

ture use

• Sample problems
• Finding MAX
• Finding MAX and MIN
• Finding MAX and 2nd-MAX
• Fibonacci numbers
• Searching in ordered / un-

ordered list
• Sorting
• Pattern matching
• Permutation and combination
• Shortest path



{5, 6, 10, 3, 1, 12, 2}

x1 = 5, L′ = {6, 10, 3, 1, 12, 2}

x1 = 6, L′ = {10, 3, 1, 12, 2}

x1 = 10, L′ = {3, 1, 12, 2}

x1 = 3, L′ = {1, 12, 2}

x1 = 1, L′ = {12, 2}

x1 = 12, L′ = {2}

L′ = {2}
2
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12

12

12

12

12

Complexity analysis:
T(n) = T(n − 1) + 1, n > 1

= 0, n = 1
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Finding MAX of n elements (1)
• Given L = {x1, x2, . . . , xn}, all xi are integers. We need to find max{L}
• Sequential comparison:

1. max(L)
2. if |L| = 1 return x1
3. L′ = L − {x1}
4. x′ = max(L′)
5. if (x1 > x′) return x1
6. else return x′
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MAX &MIN (1)
• Given L = {x1, x2, . . . , xn}, all xi are integers. We need to find max{L} and min{L}

• Sequential comparison
1. maxmin(L)
2. if |L|=1 return ⟨x1, x1⟩
3. L′ = L − {x1}
4. ⟨y1, y2⟩ = maxmin(L′)
5. if x1 > y1 then m1 = x1 else m1 = y1
6. if x1 < y2 then m2 = x1 else m2 = y2
7. return ⟨m1,m2⟩
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• Sequential comparison

1. maxmin(L)
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MAX &MIN (2)
• Given L = {x1, x2, . . . , xn}, all xi are integers. We need to find max{L} and min{L}
• Recursive definition

1. maxmin2(L)
2. if |L|=1 return ⟨x1, x1⟩
3. if |L|=2 if x1 > x2 return ⟨x1, x2⟩ else return ⟨x2, x1⟩
4. Split L into 2 non-empty sets L1, L2

5. ⟨y1, y2⟩ = maxmin2(L1)
6. ⟨z1, z2⟩ = maxmin2(L2)
7. if y1 > z1 then m1 = y1 else m1 = z1
8. if y2 < z2 then m2 = y2 else m2 = z2
9. return ⟨m1,m2⟩
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MAX &MIN (3)
• Given L = {x1, x2, . . . , xn}, all xi are integers. We need to find max{L} and min{L}
• Recursive definition - Choice of split
• Recurrence relation:

T(n) = 0, n = 1

= 1, n = 2

= T(k) + T(n − k) + 2, n = 2
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MAX & 2nd-MAX (1)
• Given L = {x1, x2, . . . , xn}, all xi are integers. We need to find max{L} and 2nd-max{L}

• Recursive definition
1. max2ndmax(L)
2. if |L|=1 return ⟨x1, x1⟩
3. if |L|=2 if x1 > x2 return ⟨x1, x2⟩ else return ⟨x2, x1⟩
4. Split L into 2 non-empty sets L1, L2

5. ⟨y1, y2⟩ = max2ndmax(L1)
6. ⟨z1, z2⟩ = max2ndmax(L2)
7. if (y1 > z1) { m1 = y1; m2 = z1 > y1?z1 : y1; }
8. else { m1 = z1; m2 = y1 > z2?y1 : z2; }
9. return ⟨m1,m2⟩

• Explore different splitting options
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Thank you!


