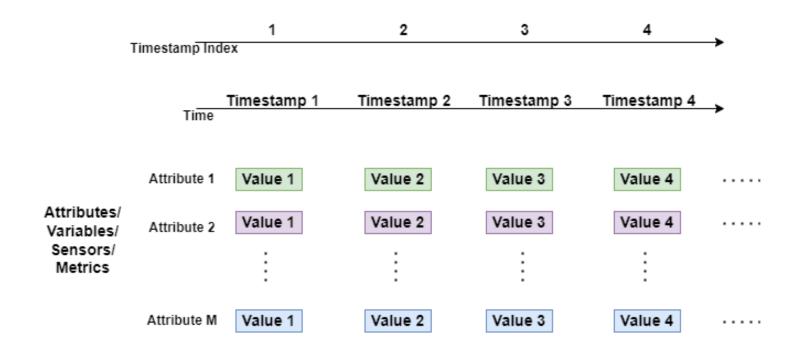
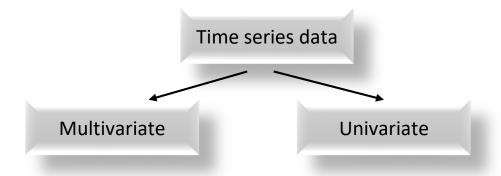
Introduction to Time Series

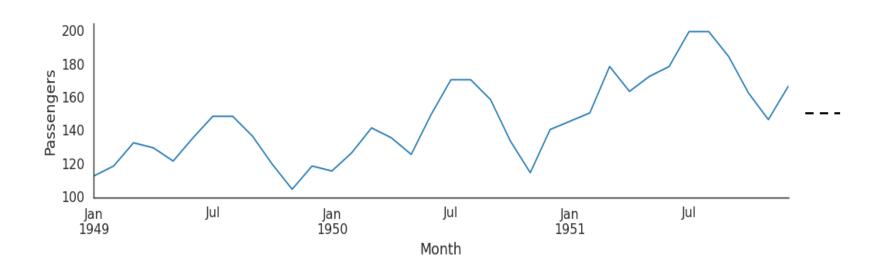
• Time series is quantitative observations recorded over time in chronological order



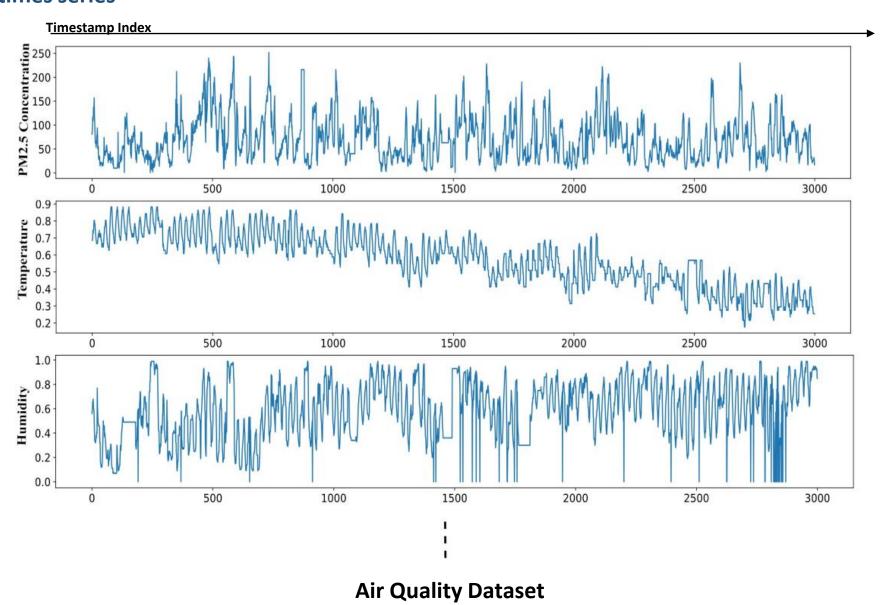


## • A univariate times series

|    | Month   | #Passengers |
|----|---------|-------------|
| 0  | 1949-01 | 112         |
| 1  | 1949-02 | 118         |
| 2  | 1949-03 | 132         |
| 3  | 1949-04 | 129         |
| 4  | 1949-05 | 121         |
| 5  | 1949-06 | 135         |
| 6  | 1949-07 | 148         |
| 7  | 1949-08 | 148         |
| 8  | 1949-09 | 136         |
| 9  | 1949-10 | 119         |
| 10 | 1949-11 | 104         |
| 11 | 1949-12 | 118         |
| 12 | 1950-01 | 115         |
|    |         | _           |

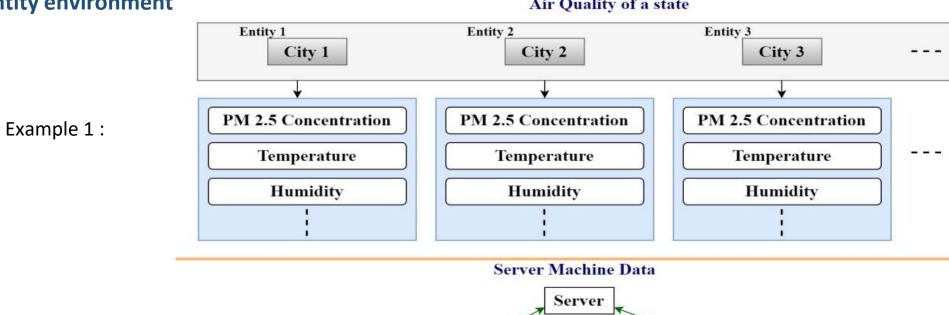


## A multivariate times series

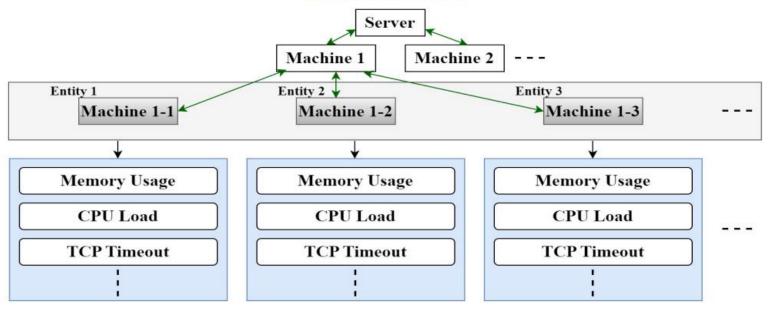


### Multi-entity environment

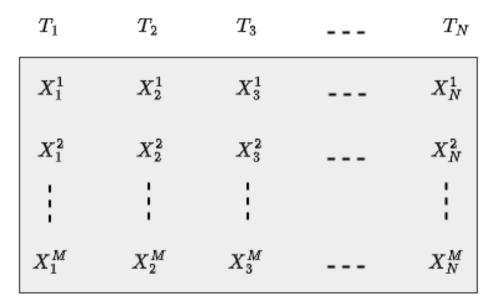
### Air Quality of a state



Example 2:



### A Time Series Data



- N : Number of timestamps
- M: Number of attributes
- $X_t^m$ : Value of an attribute m at timestamp t (m  $\in$  M , t  $\in$  T)

• Time series data is analysed for three broad categories of tasks: Forecasting, classification, and anomaly detection

# Forecasting in multivariate time series

### Single step forecasting

# 

### Multi step forecasting

### Input

### Output

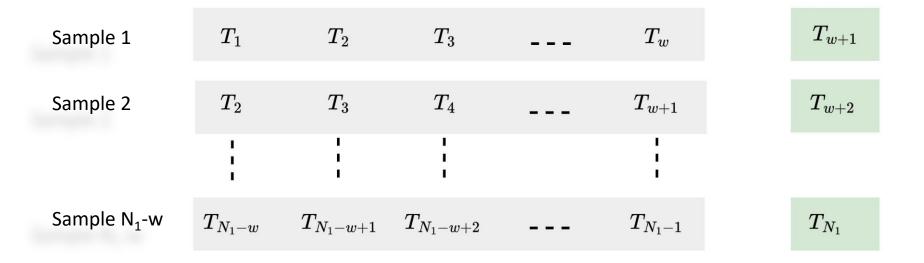
**Output** 

- t : Timestamp index
- w: Window size / number of time stamps of historical observations
- M: Number of attributes

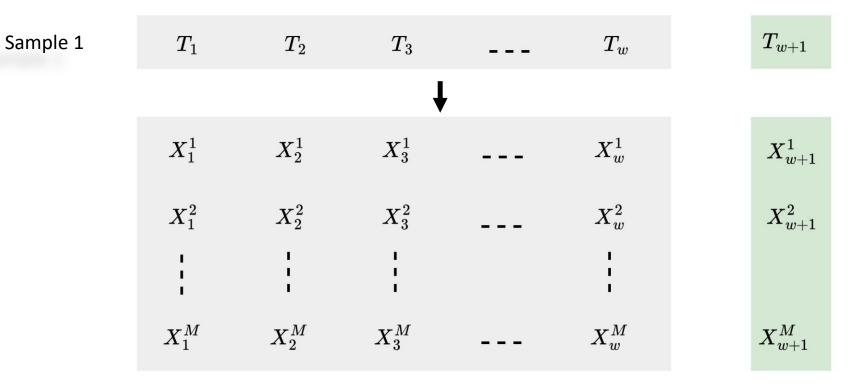
# **Pre-processing for forecasting**



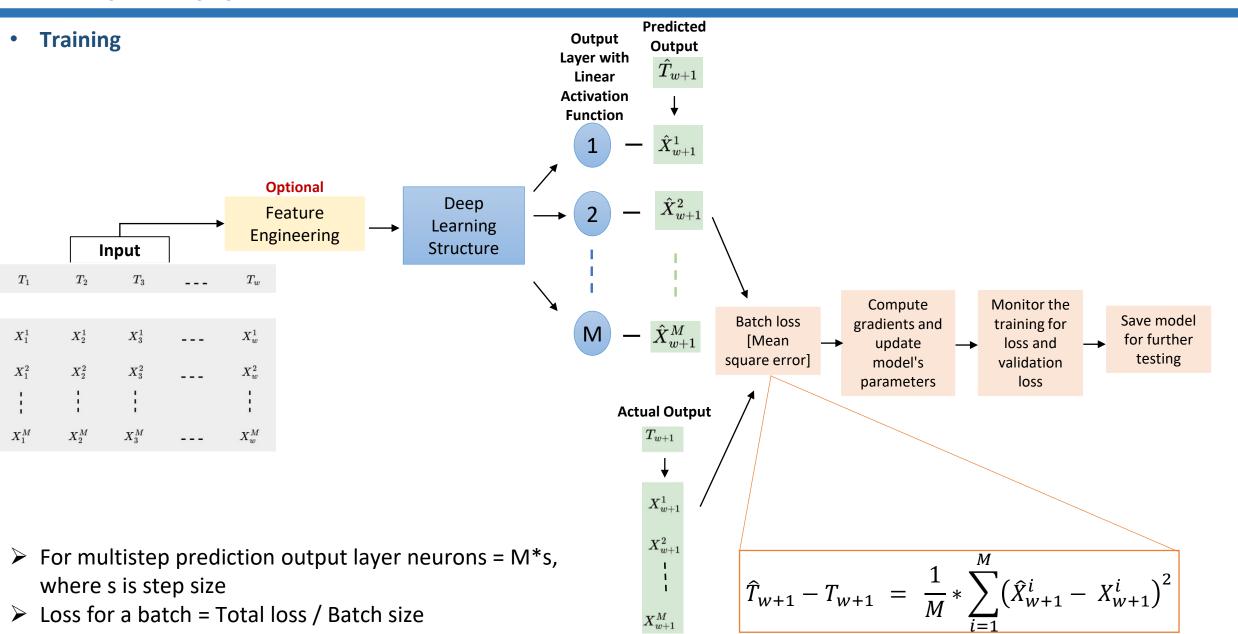
### Input-Output samples for training



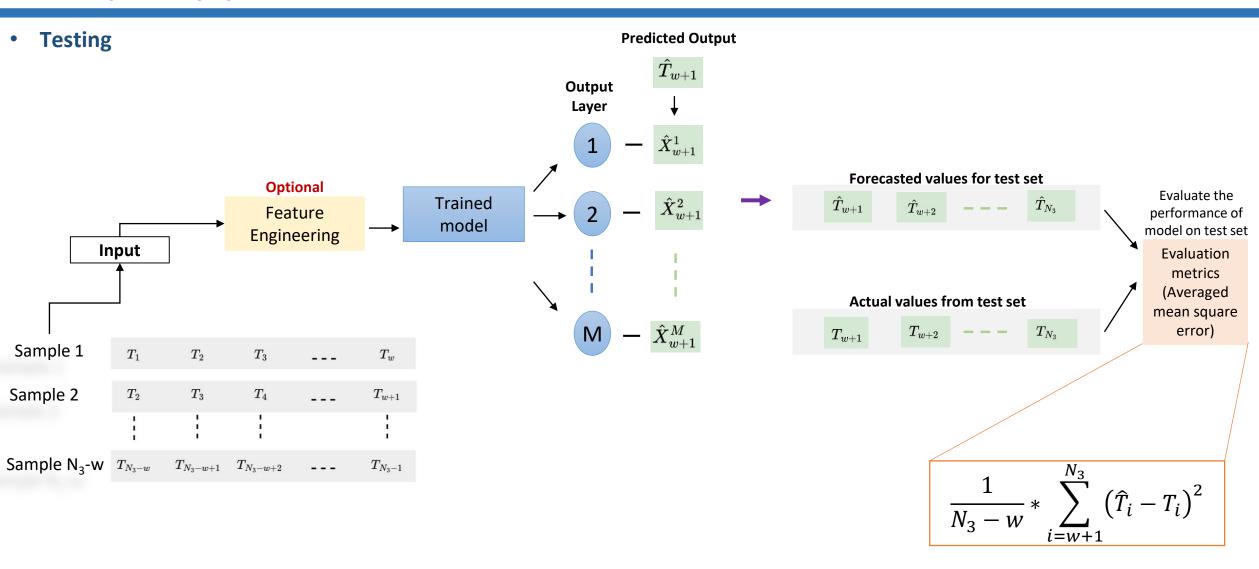
# **Pre-processing for forecasting**



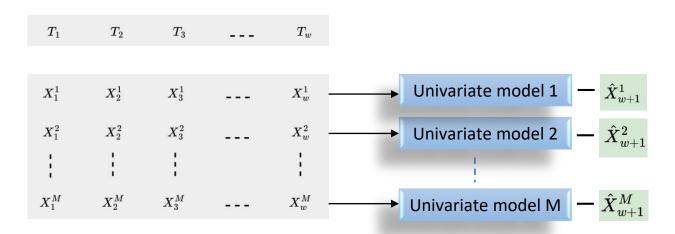
# A complete pipeline



# A complete pipeline

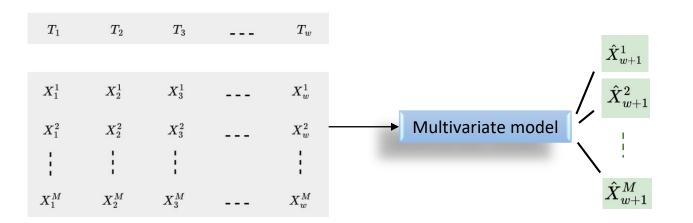


### Based on univariate models



- Auto Regression (AR)
- Moving Average (MA)
- ARMA
- ARIMA
- Seasonal ARIMA
- Profet model by facebook
- Feed forward network
- N-Beats

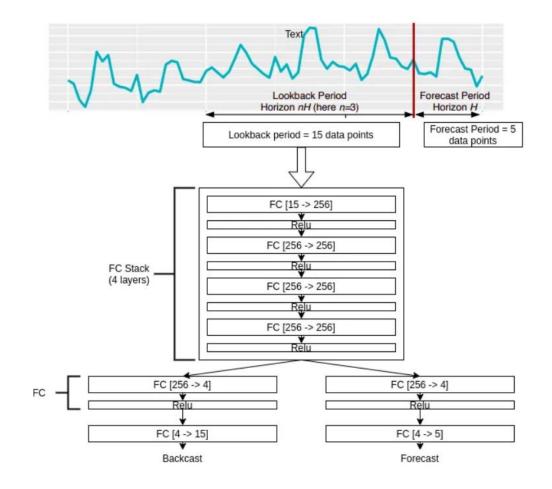
Based on Multivariate models

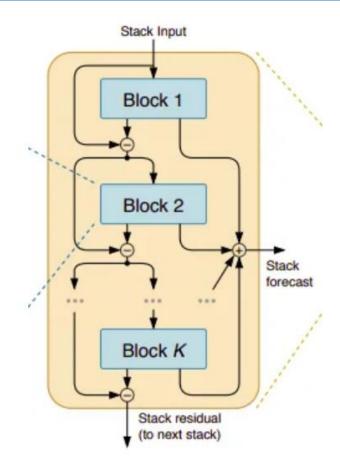


- RNN / GRU / LSTM
- CNN

### Univariate models

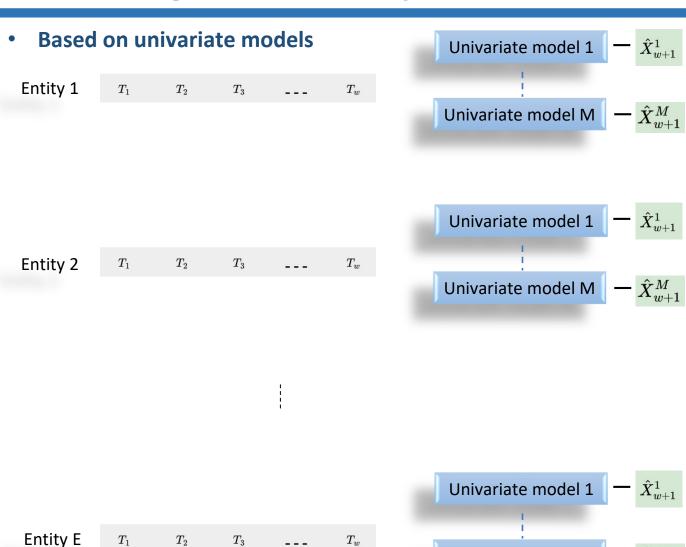
- AR(h):  $\hat{T}_i = \beta_0 + \beta_1 \hat{T}_{i-1} + \beta_2 \hat{T}_{i-2} + ... + \beta_h \hat{T}_{i-h} + \text{error}_i$
- MA(h):  $\hat{T}_i = \beta_0 + \beta_1 e_{i-1} + \beta_2 e_{i-2} + ... + \beta_h e_{i-h} + error_i$
- ARMA:  $AR(1) + MA(1) = [ \hat{T}_i = C + \beta_1 \hat{T}_{i-1} + \beta_1 e_{i-1} + error_i ]$  or ARIMA(1,0,1)
- ARIMA:
  AR + MA + Lag differencing
  - ARIMA(1,1,1) = [  $\hat{T}_i = C + \beta_1 \widehat{T}_{i-1} \widehat{T}_{i-2} + \beta_1 e_{i-1} + error_i ]$
- **SARIMA**: AR + MA + Lag differencing + Seasonal differencing
- **Prophet**: Introduced by Facebook
  - Trend + Seasonality + Holiday + Error
- Feed forward Network
- N-Beats: A deep neural architecture based on backward and forward residual links





- Univariate models
- Computationally expensive for multivariate series and multi-entity environment
- Not able to capture relationship between attributes

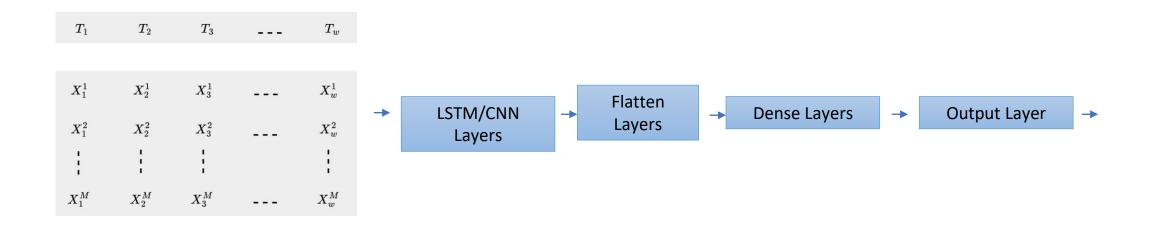
# Forecasting in multi-entity environment



Univariate model M

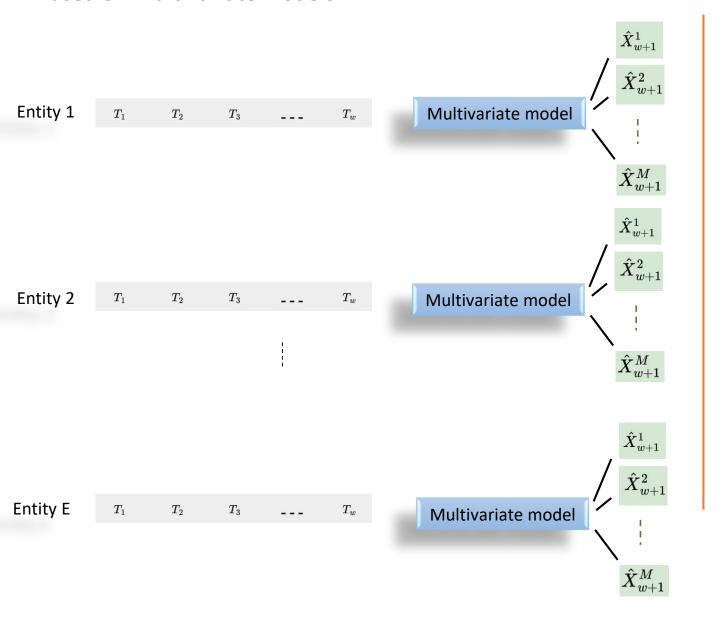
Error = 
$$\frac{1}{N*M*E} * \sum_{e=1}^{E} \sum_{m=1}^{M} \sum_{i=1}^{N} (\hat{X}_{i}^{m,e} - X_{i}^{m,e})^{2}$$

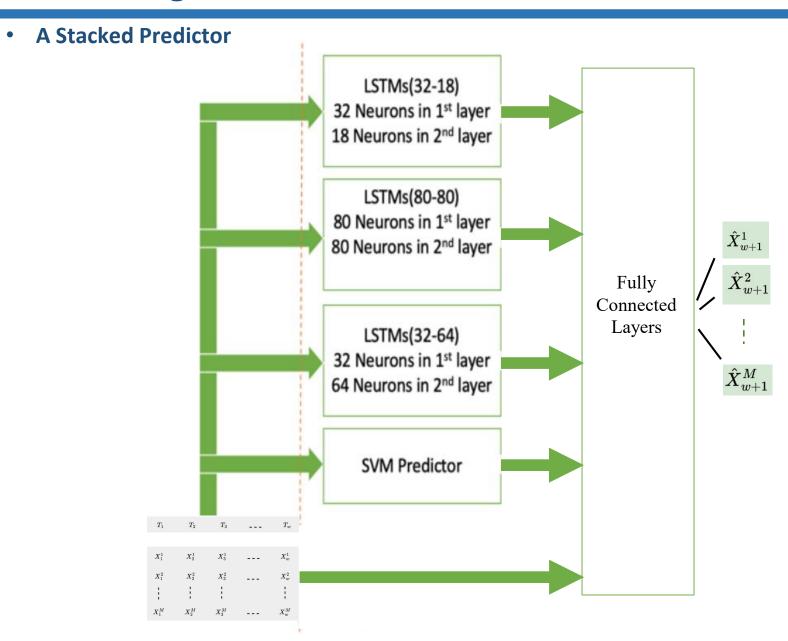
### Multivariate models



# Forecasting in multi-entity environment

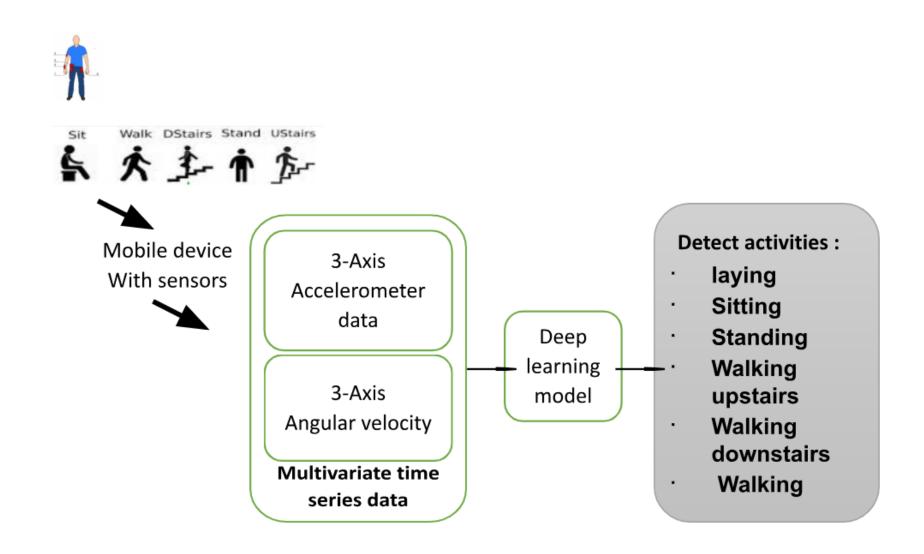
### Based on Multivariate models



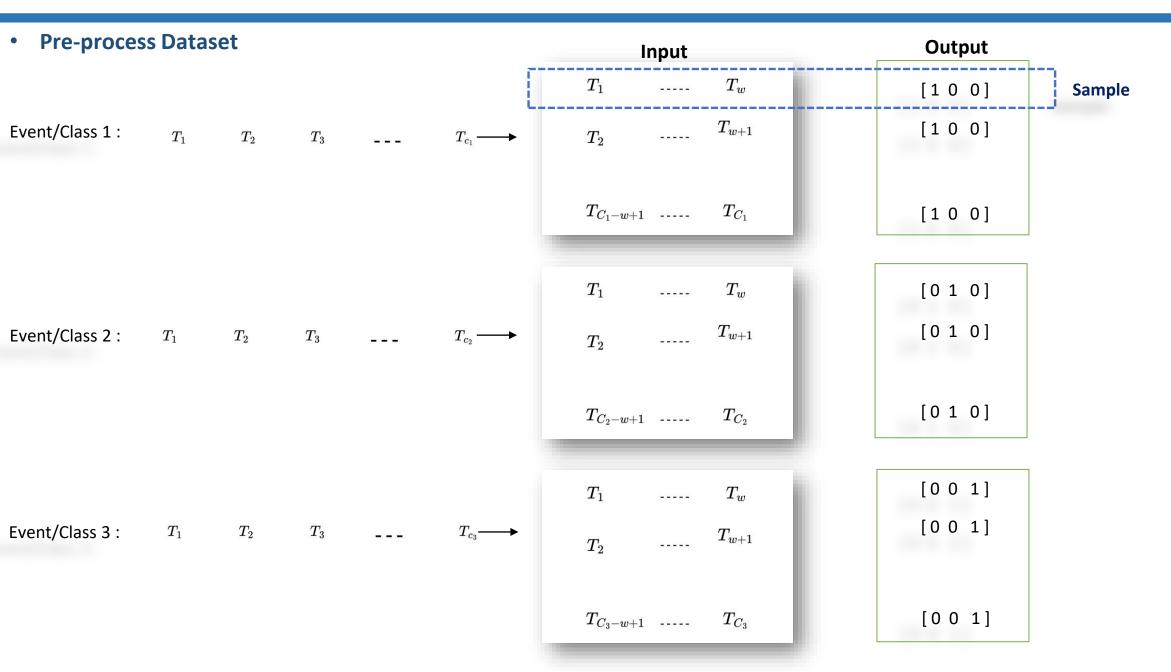


# Classification in multivariate time series

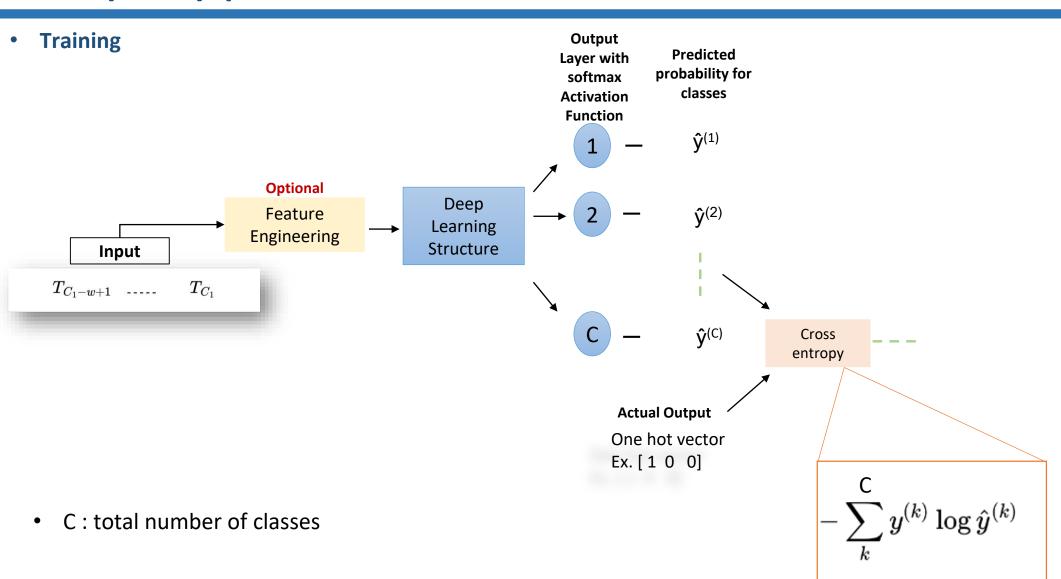
### • Example



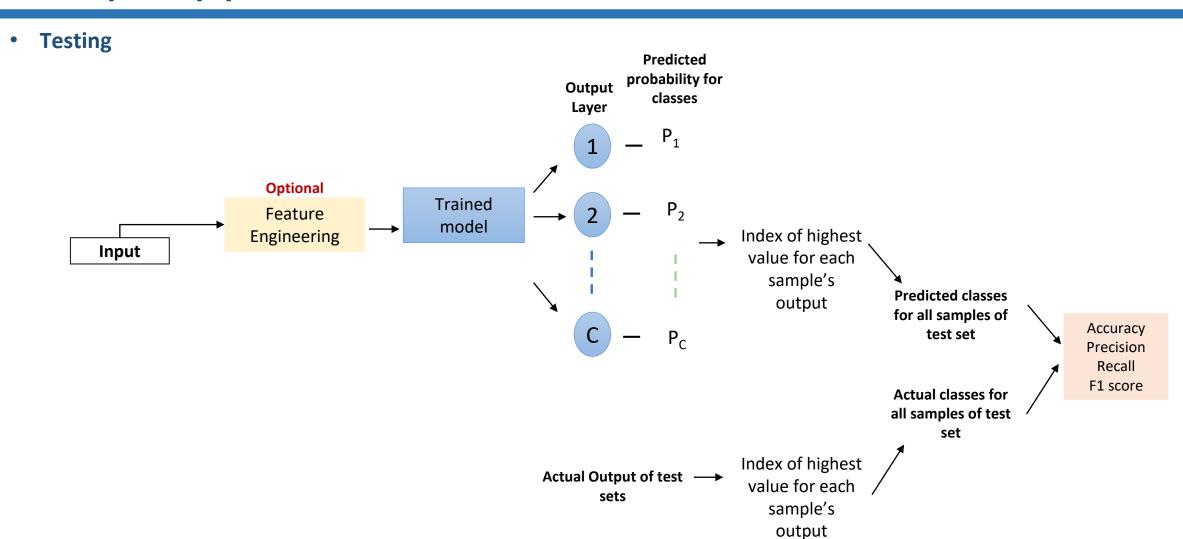
# Classification in multivariate time series



# A complete pipeline

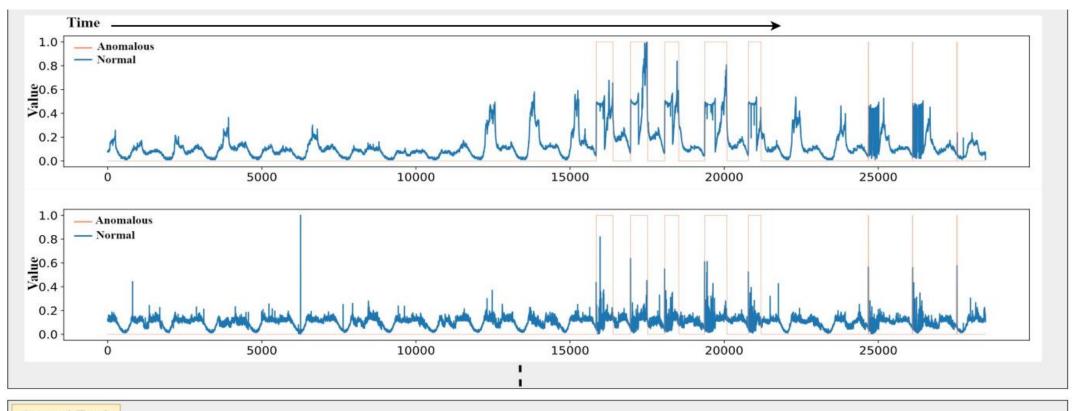


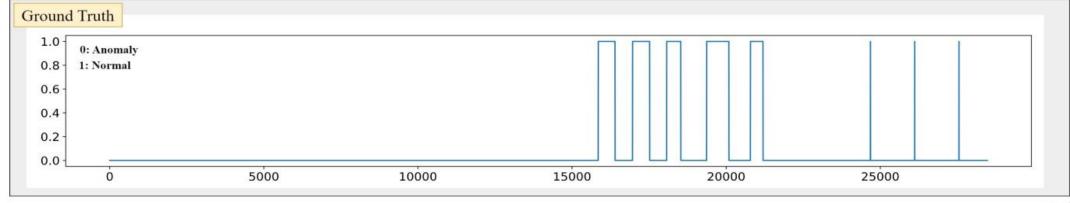
# A complete pipeline



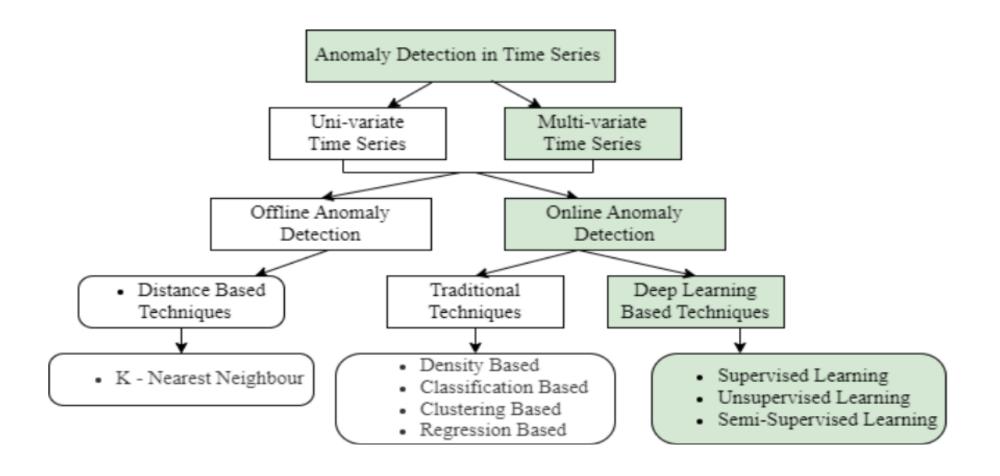
# **Anomaly detection in multivariate time series**

### Anomaly in a multivariate time series





# **Anomaly detection in multivariate time series**



# **Anomaly detection in multivariate time series**

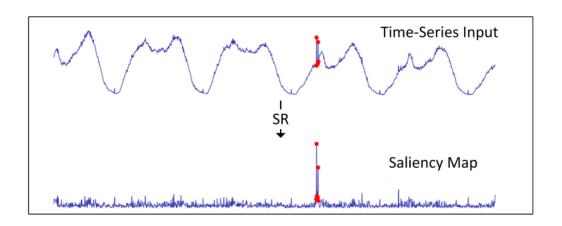
- Supervised learning methods
  - Solve problem using classification approach
  - Require labelling
  - Future anomalies may not be similar to the labelled anomalies
  - Problem of class imbalance
- Unsupervised learning methods
  - Solve problem by learning the property of the data
  - Poor performance in noisy data
  - Assume that the frequency of occurring abnormal instances is significantly less in the training dataset

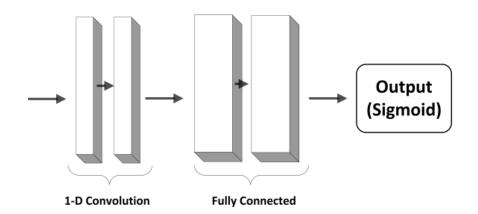
- Semi-supervised learning methods
  - Reconstruction based approach
  - Prediction based approach

# **Unsupervised learning methods**

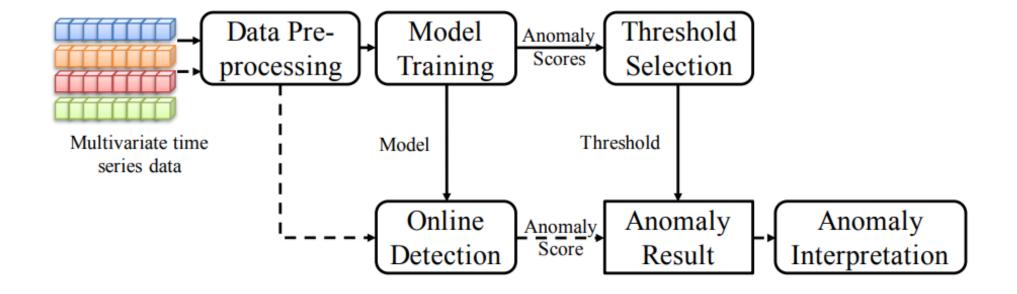
Identify the anomaly from training set using traditional methods

Train a model

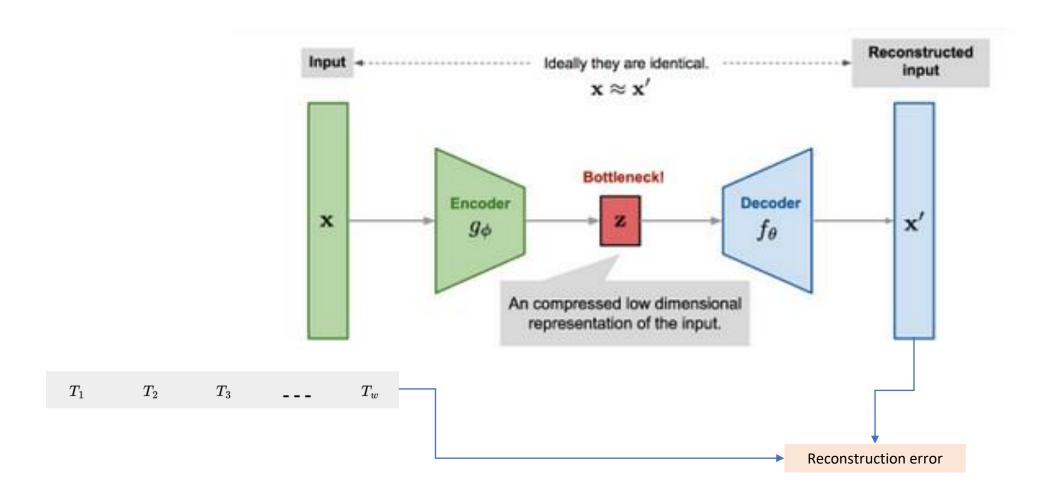




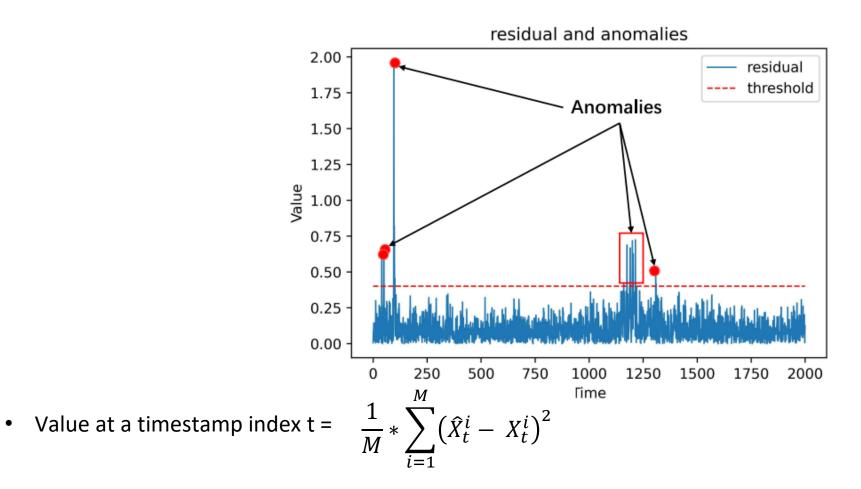
# **Semi-supervised learning methods**



# **Reconstruction based approach**



# **Reconstruction/ Prediction error**



- > Thresholding
  - Static thresholding
  - · Dynamic thresholding

# Feature engineering on input sample

- Dimensionality reduction
  - Principle component analysis
  - Singular value decomposition
- Feature extraction
  - Time domain features
  - Frequency domain features
- ➤ Noise removal methods
  - Moving average
  - Exponential smoothing
  - Fourier transform based methods

- > Data augmentation
  - Jittering
  - Scaling

- > Time series to image conversion
  - Recurrence plot
  - Spectrogram images