CS365: Deep Learning

Optimization

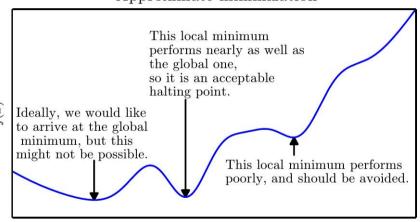
Arijit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Deep Learning

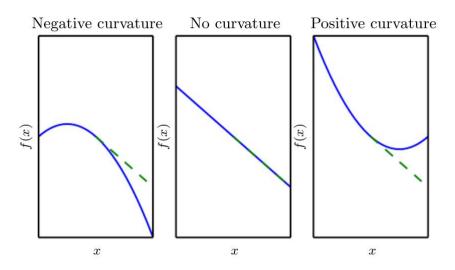
Minimization of cost function

Approximate minimization



x

Curvature



Problem of optimization

- Differs from traditional pure optimization problem
- Performance of a task is optimized indirectly
- We optimize $J(\theta) = \mathbb{E}_{(x,y) \sim \hat{p}_{data}} L(f(x,\theta),y)$ where \hat{p} is the empirical distribution
- We would like to optimize $J^*(\theta) = \mathbb{E}_{(x,y) \sim p_{\text{data}}} L(f(x,\theta),y)$ where p is the data generating distribution
 - Also known as risk
- We hope minimizing J will minimize J*

• We minimize empirical risk

$$\mathbb{E}_{(\mathsf{x},\mathsf{y})\sim\hat{p}_{\mathsf{data}}}[L(f(\mathsf{x},\boldsymbol{\theta}),\mathsf{y})] = \frac{1}{m}\sum_{i}L(f(\mathsf{x}^{(i)},\boldsymbol{\theta}),\mathsf{y}^{(i)})$$

- We can hope empirical risk minimizes the risk as well
 - Empirical risk minimization is prone to overfitting
 - Gradient based solution approach may lead to problem with 0-1 loss cost function

- - Typically in machine learning update of parameters is done based on an expected value of

- Objective function usually decomposes as a sum over training example

- Batch

Batch (contd.)

- Common gradient is given by $\nabla_{\theta} = \mathbb{E}_{(x,y) \sim \hat{p}_{data}} \nabla_{\theta} \log p_{model}(x,y,\theta)$
- It becomes expensive as we need to compute for all examples
- Random sample is chosen, then average of the same is taken
- Standard error in mean is $\frac{\sigma}{\sqrt{n}}$ where σ is the true standard deviation
- Redundancy in training examples is an issue
- Optimization algorithm that uses entire training set is called batch of deterministic gradient descent
- Optimization algorithm that uses single example at a time is known as stochastic gradient descent or online method

Issues in optimization

- III conditioning
- Local minima
- Plateaus
- Saddle points
 - Flat region

- Cliffs
- Exploding gradients
- Vanishing gradients
- Long term dependencies
- Inexact gradients

- III conditioning of Hessian matrix
 - Common problem in most of the numerical optimization
 - The ratio of smallest to largest eigen value determines the condition number
 - We have the following

$$f(x) = f(x^{(0)}) + (x - x^{(0)})^T g + \frac{1}{2} (x - x^{(0)})^T H(x - x^{(0)})$$

$$f(x - \epsilon g) = f(x^{(0)}) - \epsilon g^T g + \frac{1}{2} \epsilon g^T H \epsilon g$$

- It becomes a problem when $\frac{1}{2}\epsilon^2 \mathbf{g}^T \mathbf{H} \mathbf{g} \epsilon \mathbf{g}^T \mathbf{g} > 0$
- In many cases gradient norm does not shrink much during learning and g^THg grows more rapidly
- Makes the learning process slow

- Neural network and any models with multiple equivalently parameterized latent variables results in local minima
 - This is due to model identifiability
- Model is identifiable if sufficiently large training set can rule out all but one setting of model parameters
 - Model with latent variables are often not identifiable as exchanging of two variables does not change the model
 - m layers with n unit each can result in $(n!)^m$ arrangements
 - This non-identifiability is known as weight space symmetry
 - Neural network has other non-identifiability scenario
 - ReLU or MaxOut weight is scaled by $\frac{\alpha}{\alpha}$ and output is scaled by $\frac{1}{\alpha}$

Other issues

• For a function $f: \mathbb{R}^n \to \mathbb{R}$, the expected ratio of number of saddle points to local minima

- Saddle points
- Gradient is 0 but some have higher and some have lower value around the point
- Hessian matrix has both positive and negative eigen value
- In high dimension local minima are rare, saddle points are common
 - grows exponentially with *n*

• Eigenvalue of Hessian matrix

- Cliffs uses gradient clipping
- Long term dependency mostly applicable for RNN
 - $w^t = Vdiag(\lambda)^t V^{-1}$
 - vanishing and exploding gradient
- Inexact gradients bias in estimation of gradient

end while

Stochastic gradient descent • Inputs — Learning rate (ϵ_k) , weight parameters (θ)

- Algorithm for SGD:
- while stopping criteria not met

Sample a minibatch
$$\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$$
 with labels $\{y^{(i)}\}$

Sample a minibatch
$$\{x^{(1)}, x^{(2)}\}$$

Update parameters $\theta = \theta - \epsilon_k \hat{g}$

Estimate of gradient
$$\hat{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(\mathbf{x}^{(i)}, \theta), y^{(i)})$$

$$\nabla_{o}L(f(\mathbf{x}^{(i)}))$$

$$(i)$$
, $\boldsymbol{\theta}$), $\boldsymbol{v}^{(i)}$

th labels
$$\{y^{(\prime)}\}$$

- Learning rate is a crucial parameter
- Learning rate ϵ_{k} is used in the kth iteration
- Gradient does not vanishes even when we reach minima as minibatch can introduce noise
- True gradient becomes small and then 0 when batch gradient descent is used
- Sufficient condition on learning rate for convergence of SGD
 - $\sum_{k=1}^{\infty} \epsilon_k = \infty$, $\sum_{k=1}^{\infty} \epsilon_k^2 < \infty$
- Common way is to decay the learning rate $\epsilon_k = (1-\alpha)\epsilon_0 + \alpha\epsilon_\tau$ with $\alpha = \frac{k}{\tau}$

Stochastic gradient descent

- Choosing learning rate is an art than science!
 - Typically ϵ_{τ} is 1% of ϵ_{0}
- SGD usually performs well for most of the cases
- For large task set SGD may converge within the fixed tolerance of final error before it has

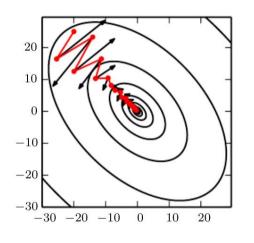
processed all training examples

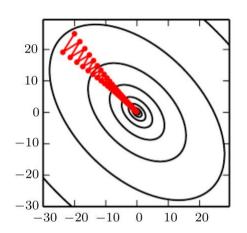
- SGD is the most popular. However, learning may be slow sometime
- Idea is to accelerate learning especially in high curvature, small but consistent gradients
- Accumulates an exponential decaying moving average of past gradients and continue to move in that direction
 - Introduces a parameter v that play the role of velocity
 - The velocity is set to an exponentially decaying average of negative gradients
 - Update is given by

$$\mathbf{v} = \alpha \mathbf{v} - \epsilon \nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}, \boldsymbol{\theta}), \mathbf{y}^{(i)}) \right)$$

 \bullet α — hyperparameter, denotes the decay rate

Momentum





SGD with momentum

• Inputs — Learning rate (ϵ) , weight parameters (θ) , momentum parameter (α) , initial velocity (v)

• Algorithm:

while stopping criteria not met

Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}\$ with labels $\{y^{(i)}\}\$

Estimate of gradient: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)})$ Update of velocity: $\mathbf{v} = \alpha \mathbf{v} - \epsilon \mathbf{g}$

Update parameters: $\theta = \theta + v$

Momentum

• The step size depends on how large and how aligned a sequence gradients are

• Typical values for α is 0.5, 0.9, 0.99. However this parameter can be adapted.

- Largest when many successive gradients are in same direction
- If it observes g always, then it will accelerate in -g with terminal velocity $\frac{\epsilon |g|}{1-\alpha}$

Deep Learning

Nesternov momentum

• Inputs — Learning rate (ϵ) , weight parameters (θ) , momentum parameter (α) , initial

• Algorithm:

velocity (v)

while stopping criteria not met

- Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}\$ with labels $\{y^{(i)}\}\$
 - Interim update: $\tilde{\boldsymbol{\theta}} = \boldsymbol{\theta} + \alpha \mathbf{v}$
 - Gradient at interim point: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \tilde{\theta}), y^{(i)})$
 - Update of velocity: $\mathbf{v} = \alpha \mathbf{v} \epsilon \mathbf{g}$
 - Update parameters: $\theta = \theta + v$

- Training algorithms are iterative in nature
- Require to specify initial point
- Training deep model is difficult task and affected by initial choice
 - Convergence
 - Computation time
 - Numerical instability
- Need to break symmetry while initializing the parameters

Adaptive learning rate

- Learning rate can affect the performance of the model
- Cost may be sensitive in one direction and insensitive in the other directions
- If partial derivative of loss with respect to model remains the same sign then the learning rate should decrease
 - Applicable for full batch optimization

Steps for AdaGrad

• Inputs — Global learning rate (ϵ) , weight parameters (θ) , small constant (δ) , gradient accumulation (r)

- Algorithm:
 - while stopping criteria not met
 - Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}\$ with labels $\{y^{(i)}\}\$
 - Gradient: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)})$
 - Accumulated squared gradient: $r = r + g \odot g$
 - Update: $\Delta \theta = -\frac{\epsilon}{\delta + \sqrt{r}} \odot g$
 - Apply update: $\theta = \theta + \Delta \theta$
 - end while

- Inputs Global learning rate (ϵ) , weight parameters (θ) , small constant (δ) , gradient
- Algorithm:

while stopping criteria not met

accumulation (r), decay rate (ρ)

Sample a minibatch from set
$$\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$$
 with labels $\{y^{(i)}\}$

Gradient: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)})$ Accumulated squared gradient: $\mathbf{r} = \rho \mathbf{r} + (1 - \rho) \mathbf{g} \odot \mathbf{g}$

Update:
$$\Delta \theta = -\frac{\epsilon}{\sqrt{\delta + r}} \odot g$$

Apply undeter
$$\theta = 0$$

Apply update: $\theta = \theta + \Delta \theta$

Inputs — Global learning rate (ε), weight parameters (θ), small constant (δ), gradient accumulation (r), decay rate (ρ), initial velocity (ν), momentum coefficient (α)
 Algorithm:

while stopping criteria not met

Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ with labels $\{y^{(i)}\}$

Interim update: $\tilde{\theta} = \theta + \alpha v$ Gradient: $\mathbf{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(\mathbf{x}^{(i)}, \tilde{\theta}), y^{(i)})$

Accumulated squared gradient: $\mathbf{r} = \rho \mathbf{r} + (1 - \rho)\mathbf{g} \odot \mathbf{g}$

Update of velocity: $\mathbf{v} = \alpha \mathbf{v} - \frac{\epsilon}{\sqrt{r}} \odot \mathbf{g}$

Apply update: $oldsymbol{ heta} = oldsymbol{ heta} + {\sf v}$

Approximate 2nd order method

• Taking 2nd order term to train deep neural network

• The cost function at θ near the point θ_0 is given by

$$J(oldsymbol{ heta}) pprox J(oldsymbol{ heta}_0) + (oldsymbol{ heta} - oldsymbol{ heta}_0)^T
abla_{oldsymbol{ heta}} J(oldsymbol{ heta}_0) + rac{1}{2} (oldsymbol{ heta} - oldsymbol{ heta}_0)^T \mathsf{H} (oldsymbol{ heta} - oldsymbol{ heta}_0)$$

• Solution for critical point provides
$${m heta}^* = {m heta}_0 - {\sf H}^{-1}
abla_{m heta} {\it J}({m heta}_0)$$

- If the function is quadratic then it jumps to minimum
- If the surface is not quadratic but H is positive definite then this approach is also

applicable

This approach is known as Newton's method

- Inputs Initial parameters (θ_0)
- Algorithm:

while stopping criteria not met

Sample a minibatch from set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}\$ with labels $\{y^{(i)}\}\$

Compute gradient: $g = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x^{(i)}, \theta), y^{(i)})$

Compute Hessian: $H = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}}^{2} L(f(x^{(i)}, \boldsymbol{\theta}), y^{(i)})$

Compute inverse Hessian: H^{-1}

Compute update: $\Delta \theta = -H^{-1}g$

Apply update: $\theta = \theta + \Delta \theta$

Batch normalization

- Reduces internal covariate shift
- Issues with deep neural network
 - Vanishing gradients
 - Use smaller learning rate
 - Use proper initialization
 - Use ReLU or MaxOut which does not saturate
- This approach provides inputs that has zero mean and unit variance to every layer of input in neural network

- Applying to activation *x* over a mini-batch
- Input values of x over a minibatch $\mathcal{B} = \{x_{1...m}\}$, parameters to be learned γ, β
- Output $\{y_i = \mathsf{BN}_{\gamma,\beta}(x_i)\}$
 - Minibatch mean: $\mu_{\mathcal{B}} = \frac{1}{m} \sum_{i=1}^{m} x_i$
 - Minibatch variance: $\sigma_{\mathcal{B}}^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i \mu_{\mathcal{B}})^2$
 - Normalize: $\hat{x}_i = \frac{x_i \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$
 - Scale and shift: $y_i = \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$

Training & inference using batch-norm

• Input — Network N with trainable parameters θ , subset of activations $\{x^{(k)}\}_{k=1}^K$, Output —

- Steps:
 - Training BN network: $N_{BN}^{tr} = N$
 - for $k = 1, \dots, K$
 - for $K=1,\ldots,K$

Batch-normalized network for inference $N_{\rm BN}^{\rm inf}$

- Add transformation $y^{(k)} = \mathsf{BN}_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to $N^{\mathsf{tr}}_{\mathsf{BN}} = N$
- Modify each layer in $N_{\mathsf{BN}}^{\mathsf{tr}} = N$ with input $x^{(k)}$ to take $y^{(k)}$ instead
- Train $N_{\text{BN}}^{\text{tr}}$ and optimize $\boldsymbol{\theta} \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^{K}$
- $\bullet \ \mathsf{N}_{\mathsf{BN}}^{\mathsf{inf}} = \mathsf{N}_{\mathsf{BN}}^{\mathsf{tr}}$
 - for $k=1,\ldots,K$
 - Process mu
- ullet Process multiple training minibatches and determine $\mathbb{E}[x] = \mathbb{E}_{\mathcal{B}}[\mu_{\mathcal{B}}]$ and $V[x] = \mathbb{E}_{\mathcal{B}}[x]$
 - $\frac{m}{m-1}\mathbb{E}_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$ In $N_{\mathsf{BN}}^{\mathsf{inf}}$ replace the transform $y = \mathsf{BN}_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{M_{\mathsf{N}}^1 + \epsilon}} x + (\beta \frac{\gamma \mathbb{E}[x]}{\sqrt{M_{\mathsf{N}}^1 + \epsilon}})$

24