CS365: Deep Learning

Neural Networks-II

Ariiit Mondal

Dept. of Computer Science & Engineering Indian Institute of Technology Patna arijit@iitp.ac.in

Deep Learning

Machine Learning

- A form of applied statistics with
 - Increased emphasis on the use of computers to statistically estimate complicated function
 - Decreased emphasis on proving confidence intervals around these functions
 - Two primary approaches
 - Frequentist estimators
 - Bayesian inference
- A ML/DL algorithm is an algorithm that is able to learn from data
- Mitchelle (1997)
 - A computer program is said to learn from experience E with respect to some class of task T and performance measure P, if its performance at task in T as measured by P, improves with experience E.

Typical tasks

- Classification
 - ullet Need to predict which of the k categories some input belongs to
 - Need to have a function $f: \mathbb{R}^n \to \{1, 2, \dots, k\}$
 - y = f(x) input x is assigned a category identified by y
 - Examples
 - Object identification
 - Face recognition
- Regression
 - Need to predict numeric value for some given input
 - Need to have a function $f: \mathbb{R}^n \to \mathbb{R}$
 - Examples
 - Energy consumption
 - Amount of insurance claim

- Classification with missing inputs
 - Need to have a set of functions
 - Each function corresponds to classifying x with different subset of inputs missing
 - Examples
 - Medical diagnosis (expensive or invasive)

- Classification with missing inputs
 - Need to have a set of functions
 - Each function corresponds to classifying x with different subset of inputs missing
 - Examples
 - Medical diagnosis (expensive or invasive)
- Transcription
 - Need to convert relatively unstructured data into discrete, textual form
 - Optical character recognition
 - Speech recognition

- Classification with missing inputs
 - Need to have a set of functions
 - Each function corresponds to classifying x with different subset of inputs missing
 - Examples
 - Medical diagnosis (expensive or invasive)
- Transcription
 - Need to convert relatively unstructured data into discrete, textual form
 - Optical character recognition
 - Speech recognition
- Machine translation
- Conversion of sequence of symbols in one language to some other language
 - Natural language processing (English to Spanish conversion)

- Structured output
 - Output is a vector with important relationship between the different elements
 - Mapping natural language sentence into a tree that describes grammatical structure
 - Pixel based image segmentation (eg. identify roads)

- Structured output
 - Output is a vector with important relationship between the different elements
 - Mapping natural language sentence into a tree that describes grammatical structure
 - Pixel based image segmentation (eg. identify roads)
- Anomaly detection
 - Observes a set of events or objects and flags if some of them are unusual
 - Fraud detection in credit card

- Structured output
 - Output is a vector with important relationship between the different elements
 - Mapping natural language sentence into a tree that describes grammatical structure
 - Pixel based image segmentation (eg. identify roads)
- Anomaly detection
 - Observes a set of events or objects and flags if some of them are unusual
 - Fraud detection in credit card
- Synthesis and sampling
 - Generate new example similar to past examples
 - Useful for media application
 - Text to speech

- Accuracy is one of the key measures
 - The proportion of examples for which the model produces correct outputs
 - Similar to error rate
 - Error rate often referred as expected 0-1 loss
- Mostly interested how DL algorithm performs on unseen data
- Choice of performance measure may not be straight forward
 - Transcription
 - Accuracy of the system at transcribing entire sequence
 - Any partial credit for some elements of the sequence are correct

7

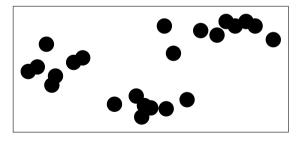
Supervised learning

- Allowed to use labeled dataset
- Example Iris
 - Collection of measurements of different parts of Iris plant
 - Each plant means each example
 - Features
 - Sepal length/width, petal length/width
 - Also record which species the plant belong to

- x_i are input variables
- y output variable
- Need to find a function $f: X_1 \times X_2 \times ... X_n \to Y$
- Goal is to minimize error/loss function
- Godi is to minimize error/1033 function
- Like to minimize over all dataset
- We have limited dataset

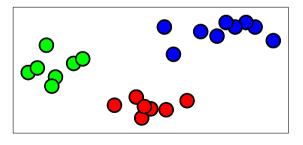
Unsupervised learning

- Learns useful properties of the structure of data set
- Unlabeled data
 - Tries to learn entire probability distribution that generated the dataset
 - Examples
 - Clustering, dimensionality reduction



Unsupervised learning

- Learns useful properties of the structure of data set
- Unlabeled data
 - Tries to learn entire probability distribution that generated the dataset
 - Examples
 - Clustering, dimensionality reduction



Supervised vs Unsupervised learning • Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)• Supervised tries to predict y from x ie. p(y|x)Deep Learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
- Supervised tries to predict y from x ie. p(y|x)
- Unsupervised learning can be decomposed as supervised learning

$$p(x) = \prod_{i=1}^{n} p(x_i|x_1, x_2, \dots, x_{i-1})$$

Supervised vs Unsupervised learning

- Unsupervised attempts to learn implicitly or explicitly probability distribution of p(x)
- Supervised tries to predict y from x ie. p(y|x)
- Unsupervised learning can be decomposed as supervised learning

$$p(x) = \prod_{i=1}^{n} p(x_i|x_1, x_2, \dots, x_{i-1})$$

• Solving supervised learning using traditional unsupervised learning

$$p(y|x) = \frac{p(x, y)}{\sum_{y'} p(x, y')}$$

Pre-activation in layer

$$k > 0 \ (h^{(0)}(x) = x)$$

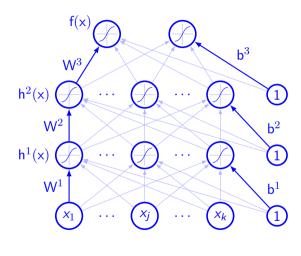
$$a^{(k)}(x) = b^{(k)} + W^{(k)}h^{(k-1)}x$$

Hidden layer activation

$$\mathsf{h}^{(k)}(\mathsf{x}) = \mathsf{g}(\mathsf{a}^{(k)}(\mathsf{x}))$$

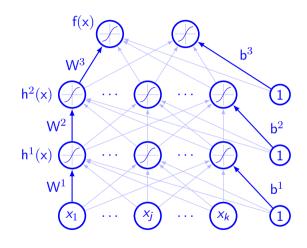
 $\mathbf{h}^{(k)}(\mathbf{x}) =$ • Output layer activation

$$\mathsf{h}^{(\mathit{L}+1)}(\mathsf{x}) = \mathit{o}(\mathsf{a}^{(\mathit{L}+1)}(\mathsf{x})) = \mathsf{f}(\mathsf{x})$$

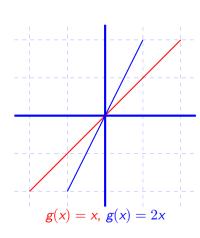


Multi layer neural network

- Design issues
 - Number of layers
 - Number of neurons in each layer
 - Activation function
 - Output function
 - Loss function
 - Optimizer

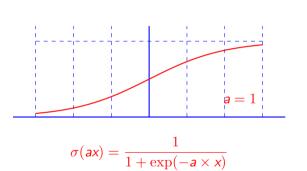


- Linear activation function
 - Not very interesting
 - No change in values
 - Huge range

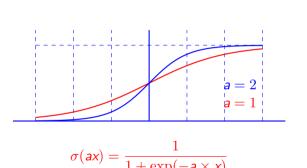


Activation function • Sigmoid function • Values lie between 0 and 1 • Strictly increasing function Bounded

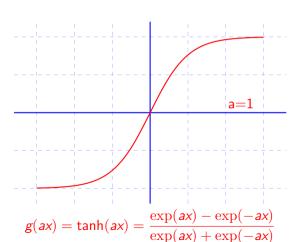
- Sigmoid function
 - Values lie between 0 and 1
 - Strictly increasing function
 - Bounded



- Sigmoid function
 - Values lie between 0 and 1
 - Strictly increasing function
 - Bounded

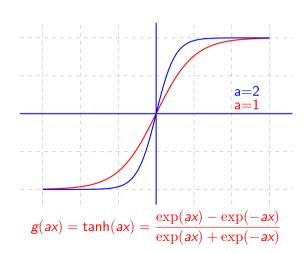


- Hyperbolic Tangent (Tanh) function
 - Can be positive or negative
 - Values lie between -1 and 1
 - Challed the personal and for all a
 - Strictly increasing function
 - Bounded



Deep Learning

- Hyperbolic Tangent (Tanh) function
 - Can be positive or negative
 - Values lie between -1 and 1
 - Ctuintly in averaging from the
 - Strictly increasing functionBounded



- ReLU is defined as $g(z) = \max\{0, z\}$
 - Using non-zero slope, $h_i = g(z, \alpha)_i = \max(0, z_i) + \alpha_i \min(0, z_i)$
 - ullet Absolute value rectification will make $lpha_i = -1$ and g(z) = |z|
 - Leaky ReLU assumes very small values for α_i
 - Parametric ReLU tries to learn α_i parameters
- Maxout unit $g(z)_i = \max_{i \in \mathcal{D}(i)} z_i$
 - $j \in \mathbb{G}^{(i)}$
 - Suitable for learning piecewise linear function

used

Logistic sigmoid & hyperbolic tangent

- Logistic sigmoid $g(z) = \sigma(z)$
 - Hyperbolic tangent g(z) = tanh(z)
 - $tanh(z) = 2\sigma(2z) 1$
 - Widespread saturation of sigmoidal unit is an issue for gradient based learning
 - Usually discouraged to use as hidden units
 - Usually, hyperbolic tangent function performs better where sigmoidal function must be
 - Behaves linearly at 0

 - Sigmoidal activation function are more common in settings other than feedforward network

- Differentiable functions are usually preferred
- Activation function $h = \cos(Wx + b)$ performs well for MNIST data set
- Sometimes no activation function helps in reducing the number of parameters
- Radial Basis Function $\phi(x, c) = \phi(||x c||)$
 - Gaussian $\exp(-(\varepsilon r)^2)$
 - Softplus $g(x) = \zeta(x) = \log(1 + exp(x))$
- Hard tanh g(x) = max(-1, min(1, x))
- Hidden unit design is an active area of research

2

Hidden units

- Active area of research and does not have good guiding theoretical principle
- Usually rectified linear unit (ReLU) is chosen in most of the cases
- Design process consists of trial and error, then the suitable one is chosen
- Some of the activation functions are not differentiable (eg. ReLU)
 - Still gradient descent performs well
 - Neural network does not converge to local minima but reduces the value of cost function to a very small value

Linear units

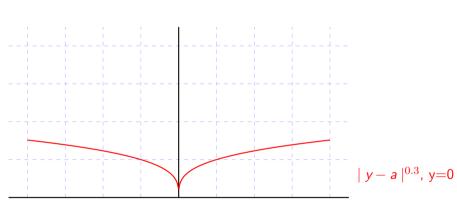
- Suited for Gaussian output distribution
- Given features h. linear output unit produces $\hat{\mathbf{v}} = \mathbf{W}^T \mathbf{h} + \mathbf{b}$
- This can be treated as conditional probability $p(y|x) = \mathcal{N}(y; \hat{y}, I)$
- Maximizing log-likelihood is equivalent to minimizing mean square error

Sigmoid unit

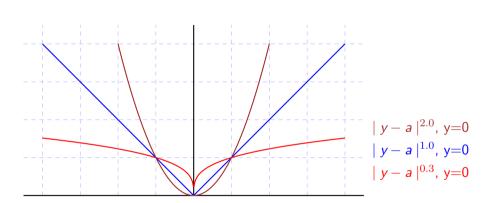
- Mostly suited for binary classification problem that is Bernoulli output distribution
- The neural networks need to predict p(y=1|x)
 - If linear unit has been chosen, $p(y = 1|x) = \max\{0, \min\{1, W^T h + b\}\}$
 - Gradient?
- Model should have strong gradient whenever the answer is wrong
- Let us assume unnormalized log probability is linear with $z = W^T h + b$
 - Therefore, $\log \tilde{P}(y) = yz \Rightarrow \tilde{P}(y) = \exp(yz) \Rightarrow P(y) = \frac{\exp(yz)}{\sum_{y' \in \{0,1\}} \exp(y'z)}$
 - It can be written as $P(y) = \sigma((2y-1)z)$
 - The loss function for maximum likelihood is $J(\theta) = -\log P(y|\mathbf{x}) = -\log \sigma((2y-1)z) = \zeta((1-2y)z)$

- Similar to sigmoid. Mostly suited for multinoulli distribution
- We need to predict a vector \hat{y} such that $\hat{y}_i = P(Y = i|x)$
- A linear layer predicts unnormalized probabilities $z = W^T h + b$ that is $z_i = \log \tilde{P}(y = i | x)$
- Formally, softmax(z)_i = $\frac{\exp z_i}{\sum_i \exp(z_i)}$
- Log in log-likelihood can undo exp $\log \operatorname{softmax}(z)_i = z_i \log \sum_i \exp(z_j)$
 - Does it saturate?
 - What about incorrect prediction?
- Invariant to addition of some scalar to all input variables ie. $\mathsf{softmax}(z) = \mathsf{softmax}(z+c)$

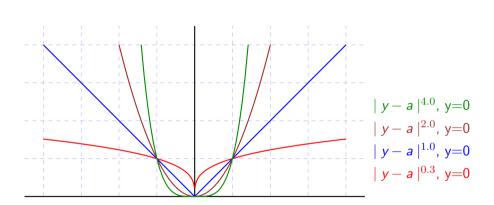
- Need to compare $\hat{y} = f(x)$ with the true label y for an input x
- For a single input example loss will be measured as $\mathcal{L}(y, f(x))$
- Average loss over a set of examples will be $\frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(y_i, \hat{y}_i)$
- Target is to minimize the loss function
- Given the weights of the network W, the forward propagation yields $\hat{y}_i = f(x, W)$
- Our goal is as follows: minimize $\frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(y_i, f(x_i, W))$
- Generic loss function can have the following form $|y-a|^p$
- Euclidean norm p=2



Loss curve

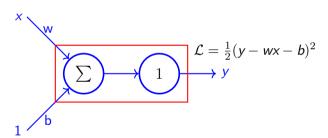


Loss curve



- Prediction of the value of a continuous variable
 - Example price of a house, solar power generation in photo-voltaic cell, etc.
- Takes a vector $\mathbf{x} \in \mathbb{R}^n$ and predict scalar $\mathbf{y} \in \mathbb{R}$
 - Predicted value will be represented as $\hat{y} = \mathbf{w}^T \mathbf{x}$ where \mathbf{w} is a vector of parameters
 - x_i receives positive weight Increasing the value of the feature will increase the value of y
 - x_i receives negative weight Increasing the value of the feature will decrease the value of y
 - Weight value is very high/large Large effect on prediction

Linear regression using neural network



- \bullet Assume, we have m examples not used for training
 - This is known as test set
- Design matrix of inputs is X^(test) and target output is a vector y^(test)
 - Performance is measured by Mean Square Error (MSE)

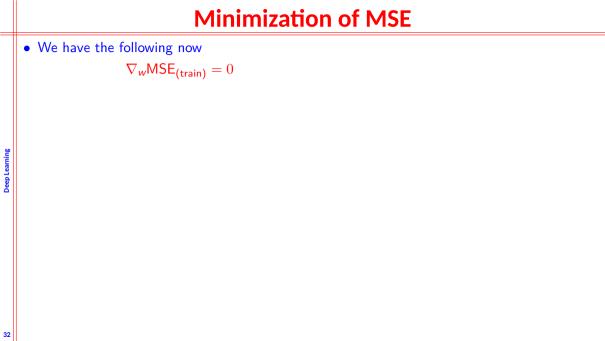
$$\mathsf{MSE}_{(\mathsf{test})} = \frac{1}{m} \sum_{\cdot} \left(\hat{y}^{(\mathsf{test})} - y^{(\mathsf{test})} \right)_{i}^{2} = \frac{1}{m} \| \hat{y}^{(\mathsf{test})} - y^{(\mathsf{test})} \|_{2}^{2}$$

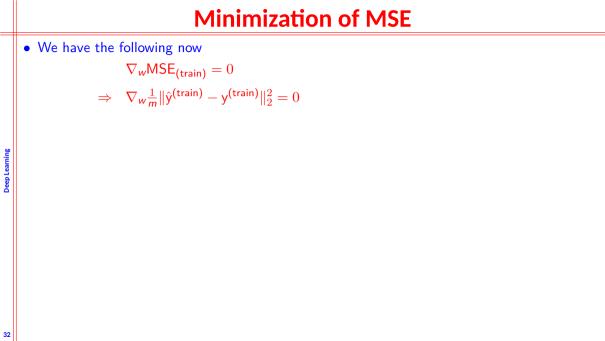
• Error increases when the Euclidean distance between target and prediction increases

- Assume, we have m examples not used for training
 - This is known as test set
- Design matrix of inputs is X^(test) and target output is a vector y^(test)
 - Performance is measured by Mean Square Error (MSE)

$$\mathsf{MSE}_{(\mathsf{test})} = \frac{1}{m} \sum_{i} \left(\hat{y}^{(\mathsf{test})} - y^{(\mathsf{test})} \right)_{i}^{2} = \frac{1}{m} \|\hat{y}^{(\mathsf{test})} - y^{(\mathsf{test})}\|_{2}^{2}$$

- Error increases when the Euclidean distance between target and prediction increases
- The learning algorithm is allowed to gain experience from training set $(X^{(train)}, y^{(train)})$
- One of the common ideas is to minimize MSE_(train) for training set





• We have the following now

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \nabla_{w} \frac{1}{2} \| \hat{\mathbf{y}}^{(\mathsf{train})} - \mathbf{y}^{(\mathsf{train})} \| \hat{\mathbf{y}}^{(\mathsf{train})} \| \hat{\mathbf{y}}^{(\mathsf{tra$$

$$\Rightarrow \nabla_{\mathbf{w}} \frac{1}{m} \|\hat{\mathbf{y}}^{(\text{train})} - \mathbf{y}^{(\text{train})}\|_2^2 = 0$$

$$\Rightarrow \frac{1}{m} \nabla_{\mathbf{w}} \| \mathbf{X}^{(\text{train})} \mathbf{w} - \mathbf{y}^{(\text{train})} \|_2^2 = 0$$

$$\frac{1}{m} \nabla_{w} || \mathbf{A} \nabla_{w} - \mathbf{y} \nabla_{w} ||_{2} = 0$$

$$\nabla_{w} (\text{train}) \nabla_{w} (\text{train}) \nabla$$

$$\Rightarrow \nabla_{w}(X^{(train)}w - y^{(train)})^{T}(X^{(train)}w - y^{(train)}) = 0$$

$$\nabla_w \frac{1}{m} \|\hat{\mathbf{y}}^{(\mathsf{train})} - \mathbf{y}^{(\mathsf{train})} \|$$

$$\|\hat{\mathbf{v}}^{(\mathsf{train})} - \mathbf{v}^{(\mathsf{train})}\|$$

We have the following now

$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \nabla_{w} \frac{1}{m} \|\hat{\mathbf{y}}^{(\mathsf{train})} - \mathbf{y}^{(\mathsf{train})}\|_{2}^{2} = 0$$

$$\Rightarrow \frac{1}{m} \nabla_{\mathbf{w}} \| \mathbf{X}^{(\text{train})} \mathbf{w} - \mathbf{y}^{(\text{train})} \|_2^2 = 0$$

$$\nabla_{w}(X^{(\text{train})}w - y^{(\text{train})})^{T}(X^{(\text{train})})$$

$$\nabla_{w}(X^{(train)}w - y^{(train)})^{T}(X^{(train)})^{T}$$

$$\nabla_{w}(\mathbf{w}^{T}\mathbf{X}^{(\text{train})T}\mathbf{X}^{(\text{train})}\mathbf{w} - 2\mathbf{w}^{T}\mathbf{X}$$

$$\Rightarrow \nabla_{w}(X^{(train)}w - y^{(train)})^{T}(X^{(train)}w - y^{(train)}) = 0$$

$$\nabla_{w}(X^{(\text{train})}W - y^{(\text{train})}) \cdot (X^{(\text{train})}W$$

$$\Rightarrow \nabla_{w}(w^{T}X^{(\text{train})T}X^{(\text{train})}w - 2w^{T}X^{(\text{train})T}y^{(\text{train})} + y^{(\text{train})T}y^{(\text{train})}) = 0$$

$$\mathbf{v}^T \mathbf{X}^{(\text{train})T} \mathbf{X}^{(\text{train})} \mathbf{w} - 2 \mathbf{w}^T \mathbf{X}^{(\text{train})}$$

$$(com) \cdot X(com) W = 2W \cdot X(com)$$

• We have the following now
$$\nabla_w \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_w \frac{1}{m} \| \hat{\mathsf{y}}^{(\mathsf{train})} - \mathsf{y}^{(\mathsf{train})} \|_2^2 = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_w \| \mathsf{X}^{(\mathsf{train})} \mathsf{w} - \mathsf{y}^{(\mathsf{train})} \|_2^2 = 0$$

$$\Rightarrow \quad \nabla_w (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - \mathsf{y}^{(\mathsf{train})})^T (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - \mathsf{y}^{(\mathsf{train})}) = 0$$

$$\nabla_{w}(X^{(\text{train})}w - y^{(\text{train})})^{T}(X^{(\text{train})})^{T}$$

$$\nabla_{w}(\mathbf{x}^{T}\mathbf{X}^{(\text{train})T}\mathbf{X}^{(\text{train})}\mathbf{w} - 2\mathbf{w}^{T}\mathbf{X}$$

$$\Rightarrow \nabla_{w}(w^{T}X^{(train)T}X^{(train)}w - 2w^{T}X^{(train)T}y^{(train)} + y^{(train)T}y^{(train)}) = 0$$

$$\Rightarrow \nabla_{w}(w^{T}X^{(train)}X^{(train)}w - 2w^{T}X^{(train)}Y^{(train)}Y^{(train)}Y^{(train)}Y^{(train)}W - 2X^{(train)}Y^{(train)}Y^{(train)} = 0$$

$$^{\mathsf{n})}\mathsf{w} - 2\mathsf{w}^{\mathsf{T}}\mathsf{X}^{(\mathsf{train})}$$

$$y - 2w^T X^{(train)T} y^{(train)T}$$

We have the following now

the following how
$$\nabla_w \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \quad \nabla_w \frac{1}{m} \|\hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})}\|_2^2 = 0$$

$$\Rightarrow \quad \frac{1}{m} \nabla_w \|\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})}\|_2^2 = 0$$

$$\Rightarrow \quad \nabla_w (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})})^T (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})}) = 0$$

$$\Rightarrow \quad \nabla_w (\mathsf{w}^T \mathsf{X}^{(\mathsf{train})} \mathsf{X}^T \mathsf{X}^{(\mathsf{train})} \mathsf{w} - 2 \mathsf{w}^T \mathsf{X}^T \mathsf{X}^T \mathsf{v}^{(\mathsf{train})} + y^{(\mathsf{train})} \mathsf{v}^T \mathsf{y}^T \mathsf{v}^{(\mathsf{train})}) = 0$$

 \Rightarrow w = $(X^{(train)}TX^{(train)})^{-1}X^{(train)}T_{V}^{(train)}$

• We have the following now
$$\nabla_{w} \mathsf{MSE}_{(\mathsf{train})} = 0$$

$$\Rightarrow \nabla_{w} \frac{1}{m} \|\hat{y}^{(\mathsf{train})} - y^{(\mathsf{train})}\|_{2}^{2} = 0$$

$$\Rightarrow \frac{1}{m} \nabla_{w} \| \mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})} \|_{2}^{2} = 0$$

$$\Rightarrow \nabla_{w} (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})})^{T} (\mathsf{X}^{(\mathsf{train})} \mathsf{w} - y^{(\mathsf{train})}) = 0$$

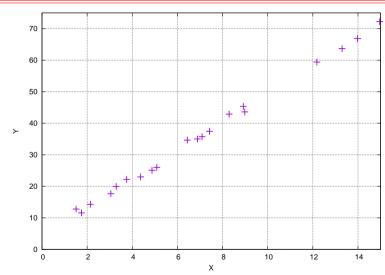
$$\Rightarrow \nabla_{w} (\mathsf{w}^{T} \mathsf{X}^{(\mathsf{train})} \mathsf{X}^{(\mathsf{train})} \mathsf{w} - 2\mathsf{w}^{T} \mathsf{X}^{(\mathsf{train})} \mathsf{y}^{(\mathsf{train})} + y^{(\mathsf{train})} \mathsf{y}^{(\mathsf{train})}) = 0$$

$$\Rightarrow 2\mathsf{X}^{(\mathsf{train})} \mathsf{X}^{(\mathsf{train})} \mathsf{w} - 2\mathsf{X}^{(\mathsf{train})} \mathsf{y}^{(\mathsf{train})} = 0$$

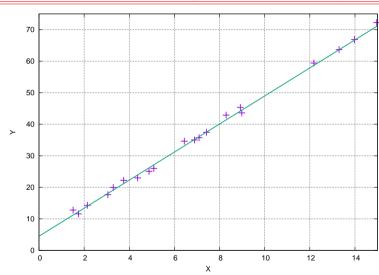
$$\Rightarrow \mathsf{w} = (\mathsf{X}^{(\mathsf{train})} \mathsf{X}^{(\mathsf{train})})^{-1} \mathsf{X}^{(\mathsf{train})} \mathsf{y}^{(\mathsf{train})}$$

• Linear regression with bias term $\hat{y} = [\mathbf{w}^T \quad \mathbf{w}_0][\mathbf{x} \quad 1]^T$

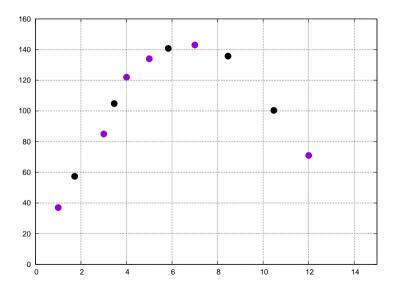
Regression example



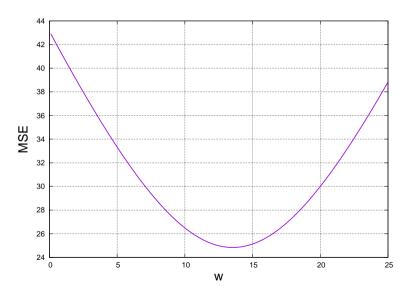
Regression example



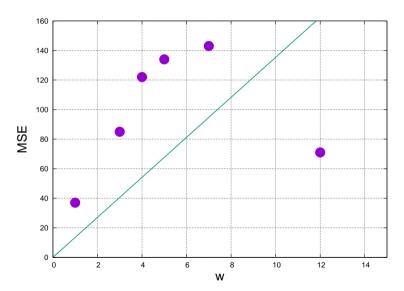
Example



Example: Variation of MSE wrt w

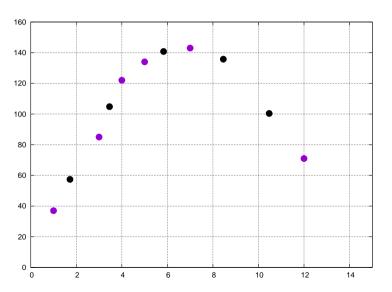


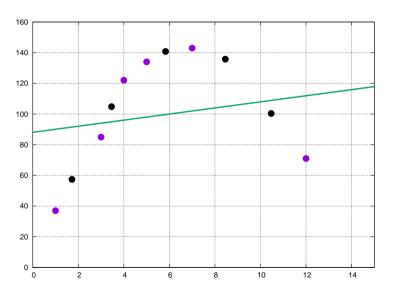
Example: Best fit

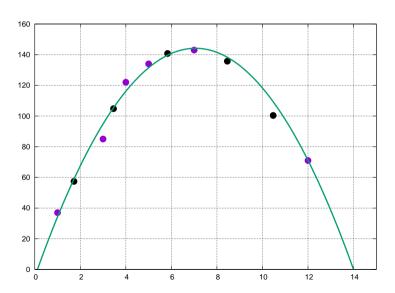


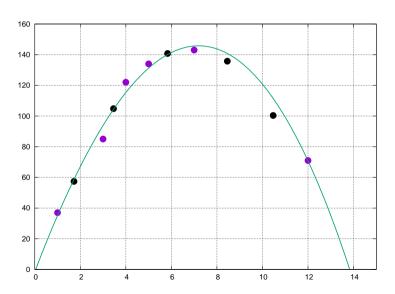
Error

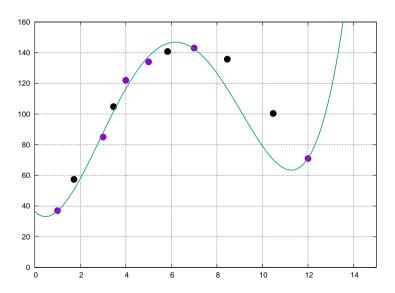
Regression example

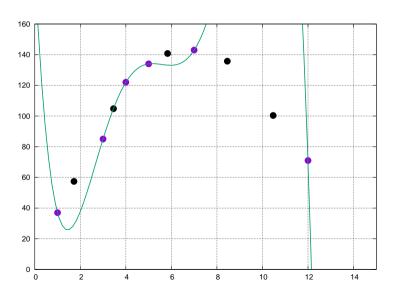


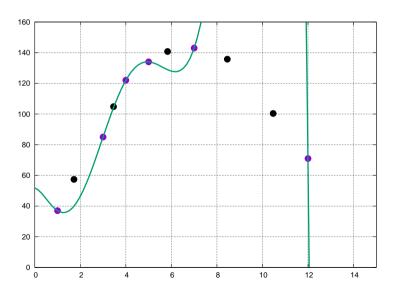








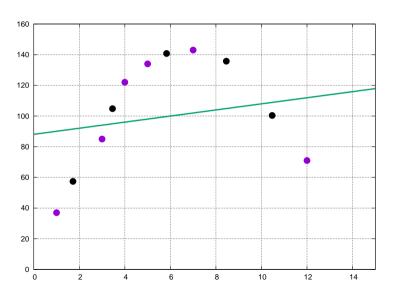




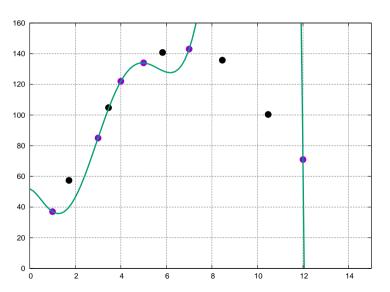
Underfitting & Overfitting

- Underfitting
- When the model is not able to obtain sufficiently low error value on the training set
- Overfitting
- When the gap between training set and test set error is too large

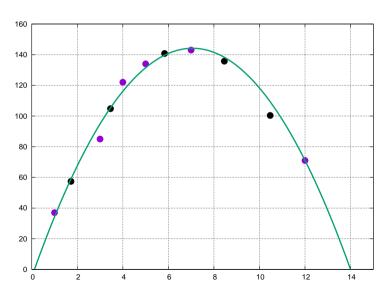
Underfitting example



Overfitting example



Better fit



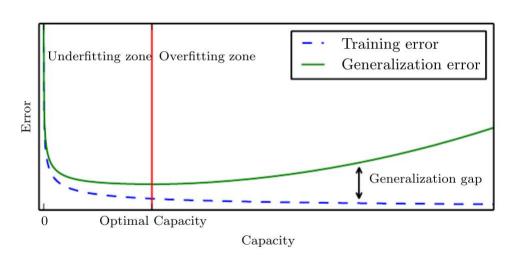
Capacity

- Ability to fit wide variety of functions
 - Low capacity will struggle to fit the training set
 - High capacity will can overfit by memorizing the training set
- Capacity can be controlled by choosing hypothesis space
 - A polynomial of degree 1 gives linear regression $\hat{y} = b + wx$
 - By adding x^2 term, it can learn quadratic curve $\hat{y} = b + w_1 x + w_2 x^2$
 - Output is still a linear function of parameters
- Capacity is determined by the choice of model (Representational capacity)
- Finding best function is very difficult optimization problem
 - Learning algorithm does not find the best function but reduces the training error
 - Imperfection in optimization algorithm can further reduce the capacity of model (effective capacity)

Capacity (contd.)

- Occam's razor
 - Among equally well hypotheses, choose the simplest one
- Vapnik-Chervonenski dimension Capacity for binary classifier
 - Largest possible value of m for which a training set of m different x points that the classifier can label arbitrarily
- Training and test error is bounded from above by a quantity that grows as model capacity grows but shrinks as the number of training example increases
 - Bounds are usually provided for ML algorithm and rarely provided for DL
 - Capacity of deep learning model is difficult as the effective capacity is limited by optimization algorithm
 - Little knowledge on non-convex optimization

Error vs Capacity



- Parametric model learns a function described by a parameter vector
 - Size of vector is finite and fixed
- Nearest neighbor regression
 - Finds out the nearest entry in training set and returns the associated value as the predicted one
 - Mathematically, for a given point x, $\hat{y} = y_i$ where $i = \arg\min ||X_{i,:} x||_2^2$
- Wrapping parametric algorithm inside another algorithm

Bayes error

- Ideal model is an oracle that knows the true probability distribution for data generation
- Such model can make error because of noise
 - Supervised learning
 - Mapping of x to y may be stochastic
 - y may be deterministic but x does not have all variables
- Error by an oracle in predicting from the true distribution is known as Bayes error

Note

- Training and generalization error varies as the size of training set varies
- Expected generalization error can never increase as the number of training example increases
- Any fixed parametric model with less than the optimal capacity will asymptote to an error value that exceeds the Bayes error
 - It is possible to have optimal capacity but have large gap between training and generalization error
 - Need more training examples