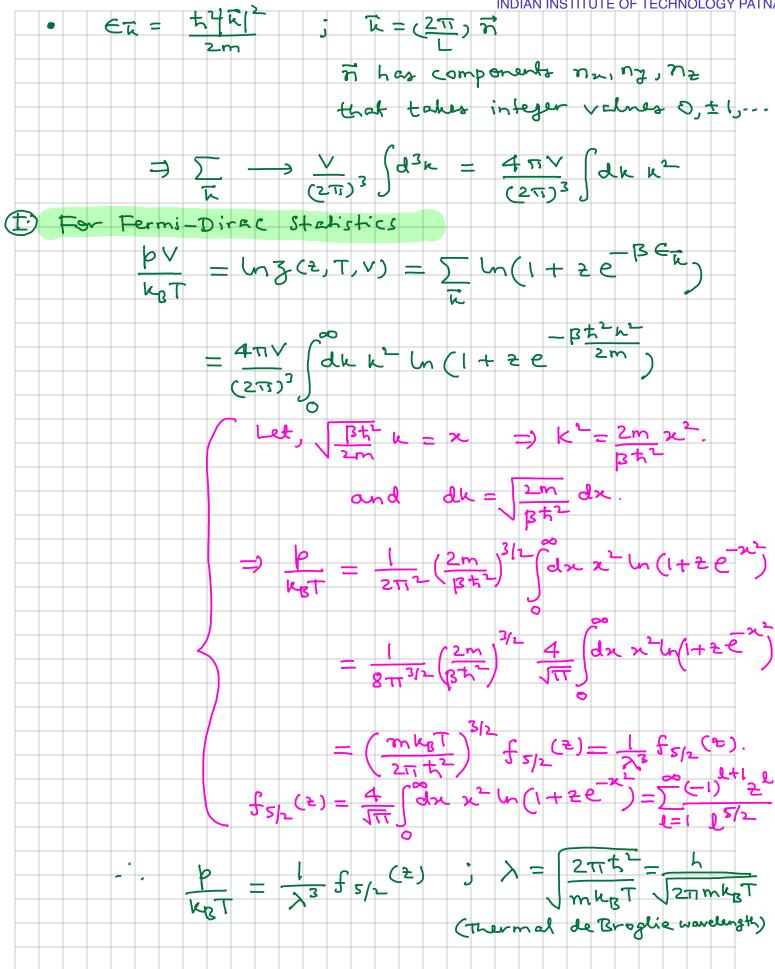
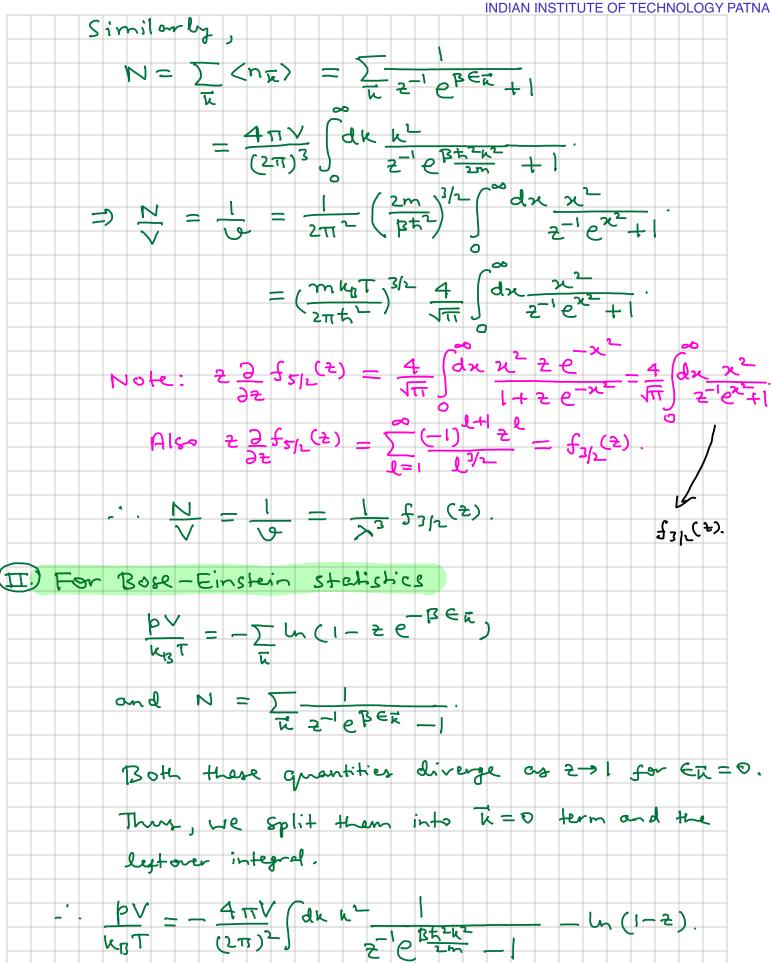


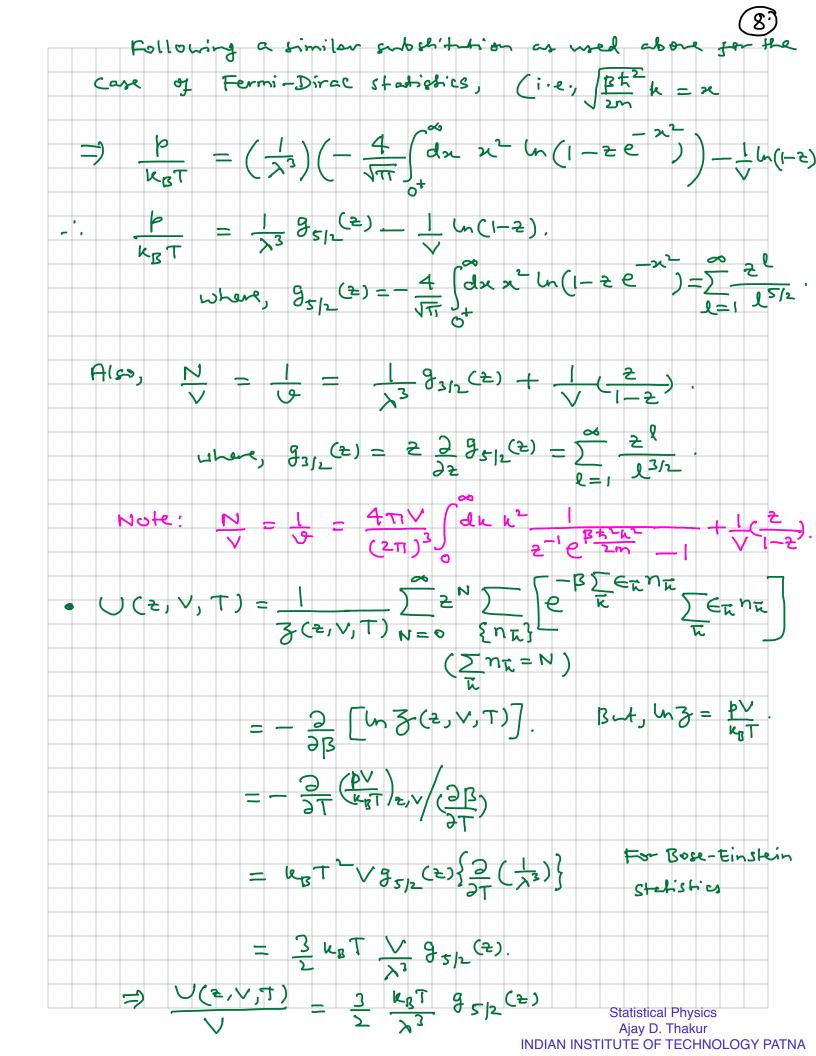
(ii) Antisymmetric Charice: INDIAN INSTITUTE OF TEC 2 3	CHNOLOGY PATN
A B - (-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(-(
- A B	
- A B	
(b) Distinguishable particles care 1 2 3 A B - B A - - A B - B A A - - A A A B - - A B - B -	
(b) Distinguishable particles care 1 2 3 A B - B A - - A B - B A A - - A A A B - - A B - B -	
L 2 3 A B - G A - - A B - G A A - U B - A B - U B - A B - U B - A B - U B - A B - U B - A B	
L 2 3 A B - G A - - A B - G A A - C B - A A B - C - A B - A - C - A B - A - C - A B - C - B - C	
A B - B - B - B - B - B - B - B - B - B	
B A A B - B B A A - B - B - C B A A A A A A A A A A A A A A A A A A B A A B A A B A B A A A A A A B A A B A A B A A B A A B A A B A A B A A B A A B A A B A A B A A B A A B A A B A A B A A B	
- A B - B - B - B - B - B - B - B - B - B -	
_ B A A - B B - A A B - A	
A - C C C - A A, C	
B - A A,B	
A,B	
X	
Ideal gas of N-indistinguishable particle	
Ideal gas of N-indistinguishable particle	
Ideal gas of N-indistinguishable particle	
	>
Quantum states are characterized by a	set
of occupation numbers	
$\{n_1,n_2,\dots,n_j,\dots\} \equiv \{n_j\}$	
CO, 1 \times Fermion	\\$
nj= } O, I,, N \ J Bosons	
LO, L N V Bosons	
$S \cdot t \cdot j = \sum_{j=1}^{n} \epsilon_{j} n_{j}$	
where, ej is energy og j	

Case I: Bose-Einstein Statistics

The runs from O to co.


$$\exists \zeta(T,V,r) = T = T = \sum_{n=0}^{\infty} \exp\{-\beta(e_j-r)\pi\}\}.$$


$$\exists \zeta(T,V,r) = T = \sum_{n=0}^{\infty} \exp\{-\beta(e_j-r)\}\}.$$

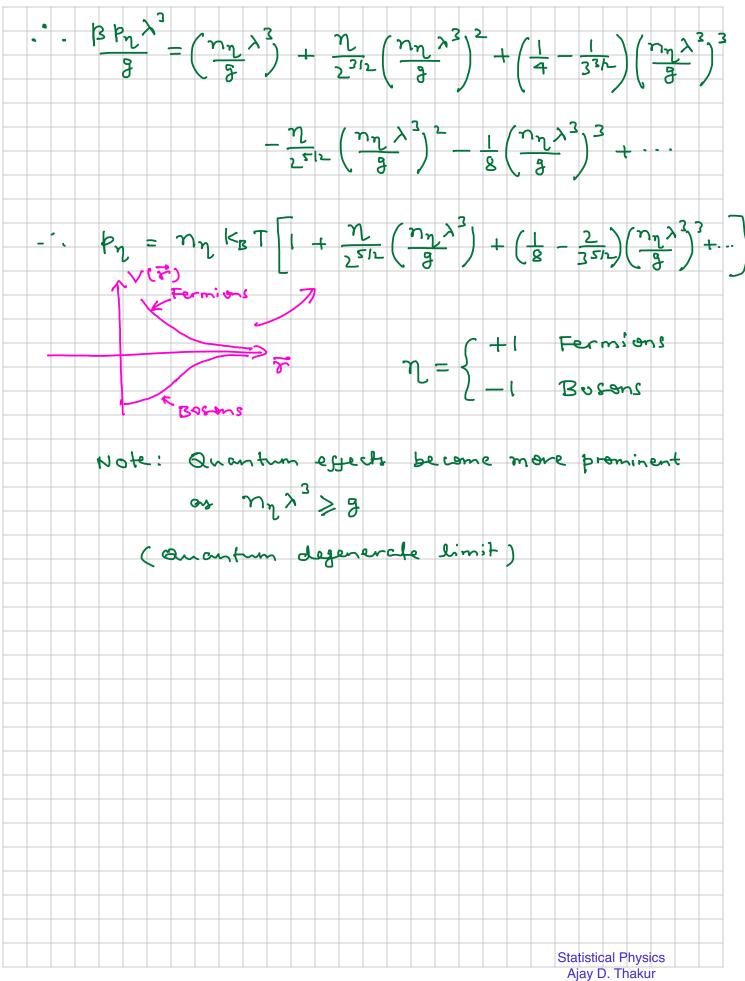

$$\exists \zeta(T,V,r) = -\sum_{n=0}^{\infty} \int_{-\beta(e_j-r)}^{\beta(e_j-r)} \exp\{\beta(e_j-r)\}.$$

$$\exists \zeta(T,V,r) = -\sum_{n=0}^{\infty} \int_{-\beta(e_j-r)}^{\beta(e_j-r$$

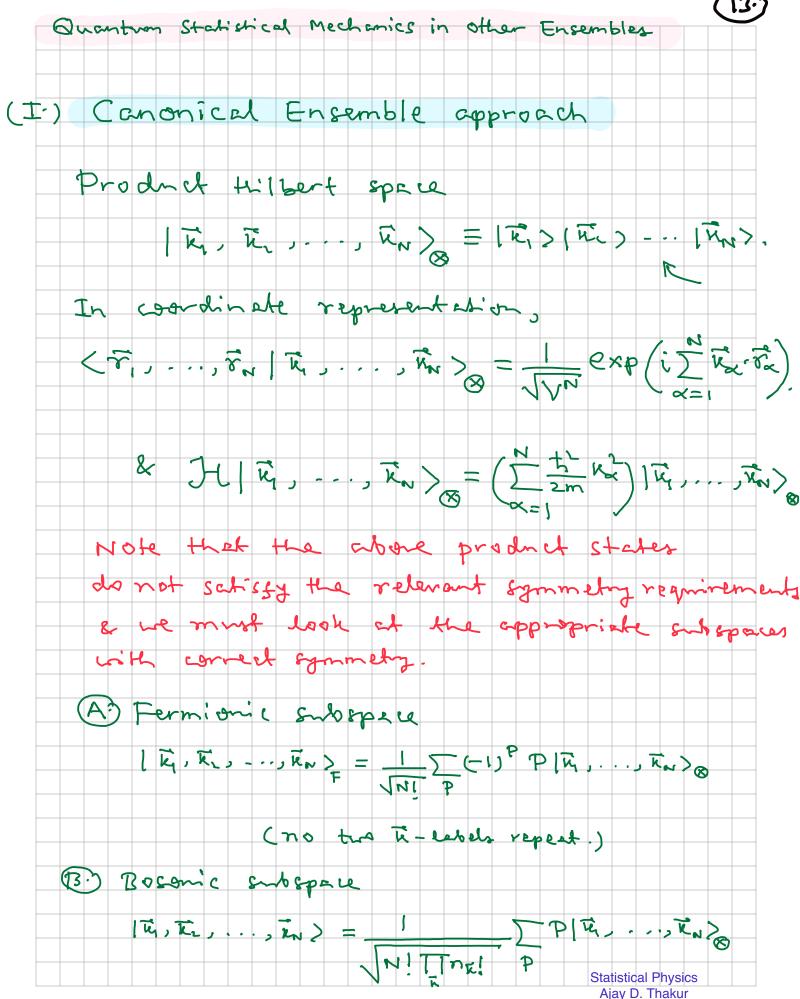
Remarks			
· Define Car	and ther	modynamic	potential
Φ (T,	√, M) = -	- bV =	1 (n 3 (T, v, m)
3 · t ·)	KBT	= ln z (T,	Υ, []
	on, p'	<u>v</u> = u,z(2, T, V) where, z = exp(B+
	1		
	ntum (ii)	basis, e	nergy levels are given
by € ₹ .			
Here			_β€π,
kpT = h	3 (Z, T, Y)	= 7 5 ln	-BET
	ch	we, { (-) B	ose-Einstein statistics ermi-Dirac statistics
			REZ
· 2 2 mz	-(₹, ∀, 寸) =	= > = = = = = = = = = = = = = = = = = =	-Ber
		00	
Now, <n< td=""><td>ズ) = 1 子(を</td><td>5 T, V) N=0</td><td>$\sum_{n \in \mathcal{N}} n \in e \times p(-\beta \sum_{n \in \mathcal{N}} \in n \in).$</td></n<>	ズ) = 1 子(を	5 T, V) N=0	$\sum_{n \in \mathcal{N}} n \in e \times p(-\beta \sum_{n \in \mathcal{N}} \in n \in).$
		2	This
	1 3) Ln Z (2,T,)	Y) = 2-1 e Ber 71
⇒ N =	<u> </u>	= 5 1 2-1eB	= = = = (mz(z,T,V).
	N		

	Similarly, gor	Fermi-Dirac Statistics,	
	(\(\frac{1}{2}, \nabla, \tau^{\tau}\)	$= \frac{3}{2} \frac{k_B T}{\lambda^3} f_{1/2}$	
		2 N 3 - 3 / 2	
• <u>T</u>	n a unified no	otah on:	
	1. 7 (T V W) :	- n \ lo [1+n exp{B(M	€ _₹)}]
	on Silving.	= n > h [1+nexp{B(M	~ 3) .
		= n = h [1+nze=BER]	
		(+1 Fermions	
		-1 Busans	
		(-1 Bosard	
	$\langle \mathcal{L}_{1} \rangle = -\frac{3(1)}{3(1)}$	n3n _ 1	
	3(1	B ∈ = 1 = 2 -1 e B ∈ = 1 η	
	$N_n = \sum \langle r \rangle$	NE) =) BET	
	$N_{\eta} = \sum_{k} \langle r \rangle$	2-1e BER +n	
	and, $U_{\eta} = \sum \in \mathbb{R}$	(72) = = = = = = = = = = = = = = = = = = =	
	र	R Z-I eBEZ +n	,
			dependently.
	with a joint prol	sability:	
	Pn ({nr})	= 37 exp - 3(ex	ー~) カ z 」.
		S	atistical Physics

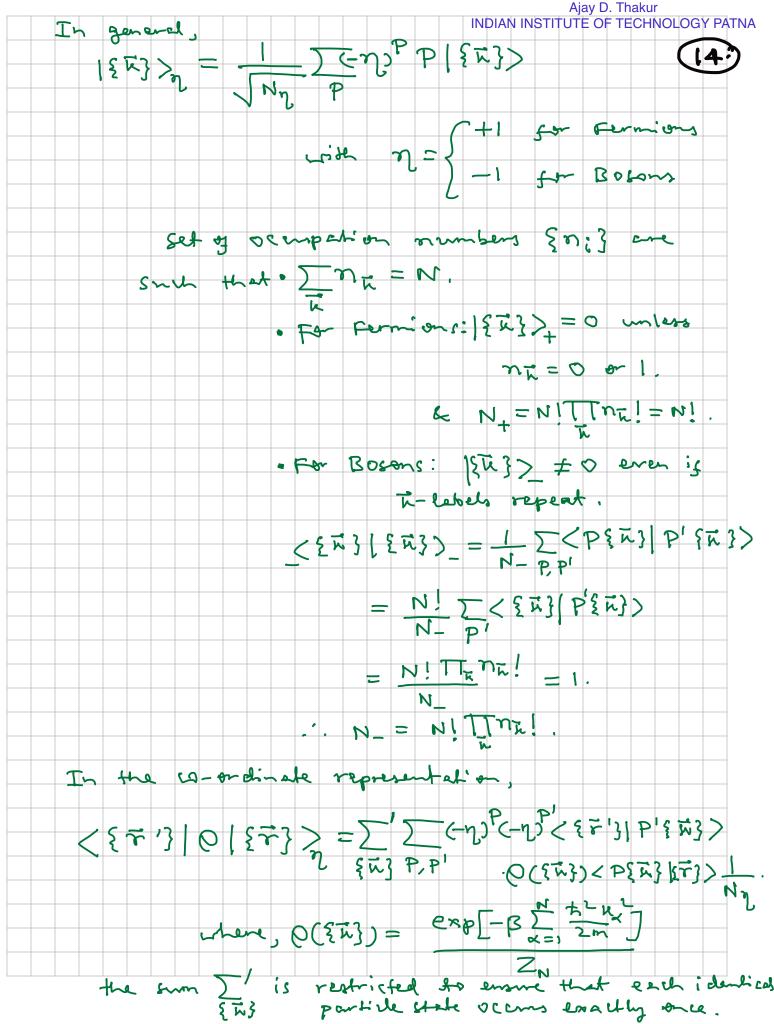
Statistical Physics
Ajay D. Thakur
INDIAN INSTITUTE OF TECHNOLOGY PATNA

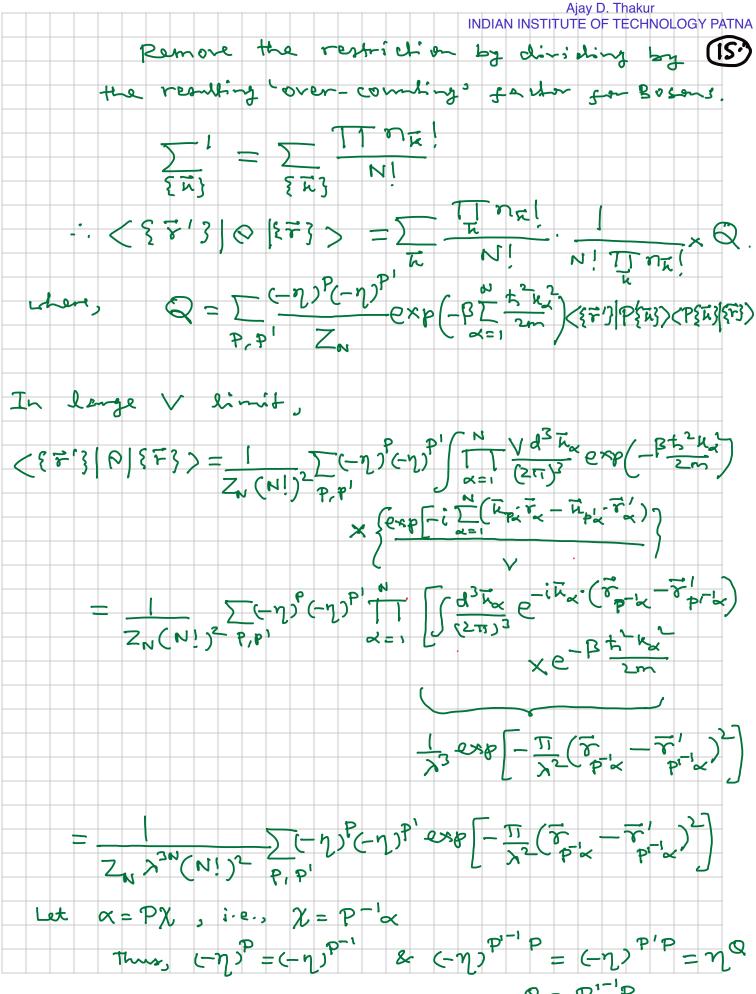

		A					(18)
Nor	1-rel	.atvistic	c Gas.				
		A 4					
	onsi	dering	a spin	dege	neracy	5200	m, g=2s+
for a	non-	-relativis	stic ga	+ in t	three din	encions,	
1							
			K = 1 1	K		u= l	TR1.
			~ 2m				
		5		<u> </u>	1 F.		
		T	(2	-423J			
50	~ J	that,					
5 5		1 2	= n 3 \ \frac{3}{(2)}	13 H ()		oxn (- Bt	34377
BPn	= 1	- m3n:	= 10 -	2ন্য) 3		S	-m-
nn =	= Nn	L = 95	(271)3 3-				*
V	V	J	(277)3 2-	-1exp(B	3 to 2 ~) +	- m	P(
					2m/		2
				2 9			
Un:	- Ur	n = g(d34 t	, , , , , , , , , , , , , , , , , , , ,	1 exp (Bt)		216
			(54),	5w 5-,	exp (Kh)	1 + n	
							۱ ۲
			2mk _B T	-			2
	لعا	t,	1 2m kg1	Jr			3
			1				11
		= dh	. = 177	x-1/2	dn.		
turs,			>				* * * * * * * * * * * * * * * * * * *
	- n g	4 17 3/2	dx x	1/2 (n ((+ nze	, -~)	3
3 Py =	1 'II, T	7 3					
			311		n u		
-	3	4	dr r		١٥/٢ (٤).		
	\rightarrow ³	3/17	2-1e-7			+++	
Υη =	<u></u>	. 2 (d	x 2 2 _	g n	して) しょ	(2) = <u> </u>	dx x
	73	117 2 2-1	e2+n=	λ ³ / λ ³ /	1 \	/ 111	2-1ex+n
Bun =	= 3 .	2 (d)		3 Pn.			
J	>3	JTT] 2-1	ex+n	2 ' '		Statistical P Ajay D. Th	

Ajay D. Thakur INDIAN INSTITUTE OF TECHNOLOGY PATNA

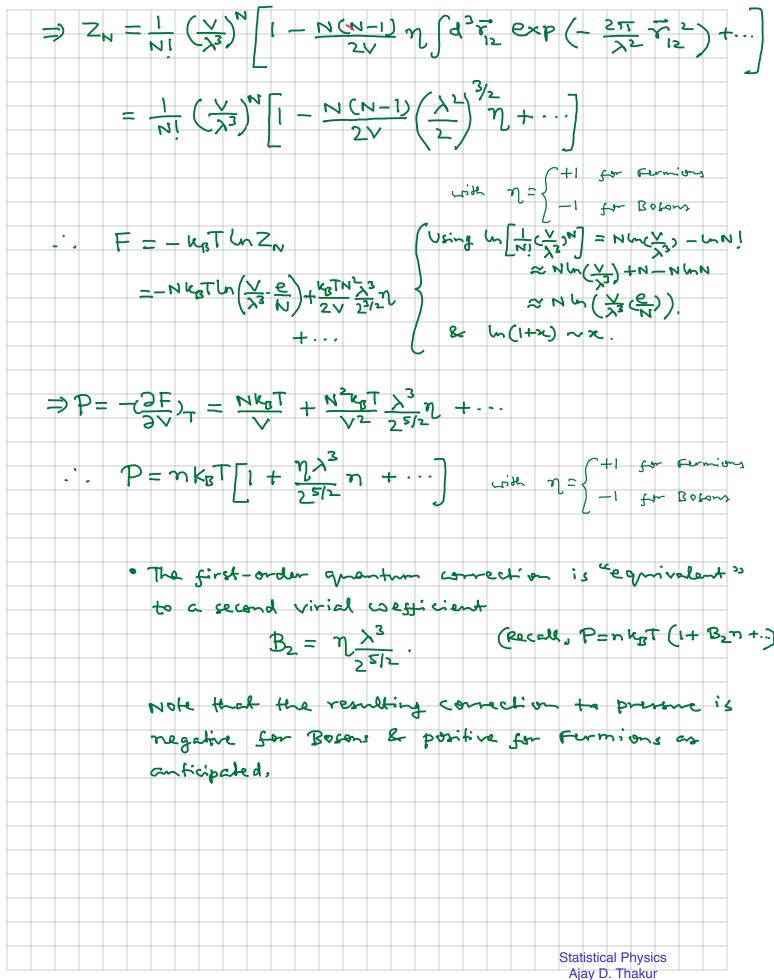

In the non-degenerate limit, 2 is small (high temper and density is low $h_{m}^{n}(z) = \frac{1}{(m-1)!} \int_{0}^{\infty} dx x^{m-1} = \frac{1}{(m-1)!} \int_{0}^{\infty} dx x^{m-1} (ze^{-x})(1+\eta ze^{-x})^{-1}$ $= \frac{1}{(m-1)!} \int_{0}^{\infty} dx x^{m-1} \int_{j=1}^{\infty} (2e^{-x})^{j} (-\eta)^{j+1}$ $=\frac{1}{(m-1)!}\int_{j=1}^{\infty}(-n)^{j+1}\frac{1}{2}\int_{-\infty}^{\infty}dx x^{m-1}e^{-jx}$ $=\sum_{j=1}^{\infty}(-n)^{j+1}\frac{2^{j}}{jm}$ $= 2 - \eta \frac{2^{1}}{2^{m}} + \frac{2^{3}}{3^{m}} - \eta \frac{2^{4}}{4^{m}} +$ nn x = h (2) = 2 - N 2¹ + 2³ - N 2⁴ + - $\beta + \gamma^{3} = h^{(2)} = 2 - \eta = 1 + \frac{2^{3}}{3^{5/2}} + \eta = 1 + \frac{2^{3}}{3^{5/2}} + \frac{1}{4^{5/2}} + \cdots$ $= \left(\frac{\eta_{\eta}}{\eta}\right)^{3} + \eta_{\frac{2}{3}(1)} \left(\frac{\eta_{\eta}}{\eta}\right)^{3}$ $= (\frac{n_1}{3})^3 + n_1 \frac{1}{2^{3/2}} (\frac{n_1}{3})^2 + (\frac{1}{4} - \frac{1}{3^{3/2}}) (\frac{n_1}{3})^3$ (Recursive trick!)

INDIAN INSTITUTE OF TECHNOLOGY PATNA

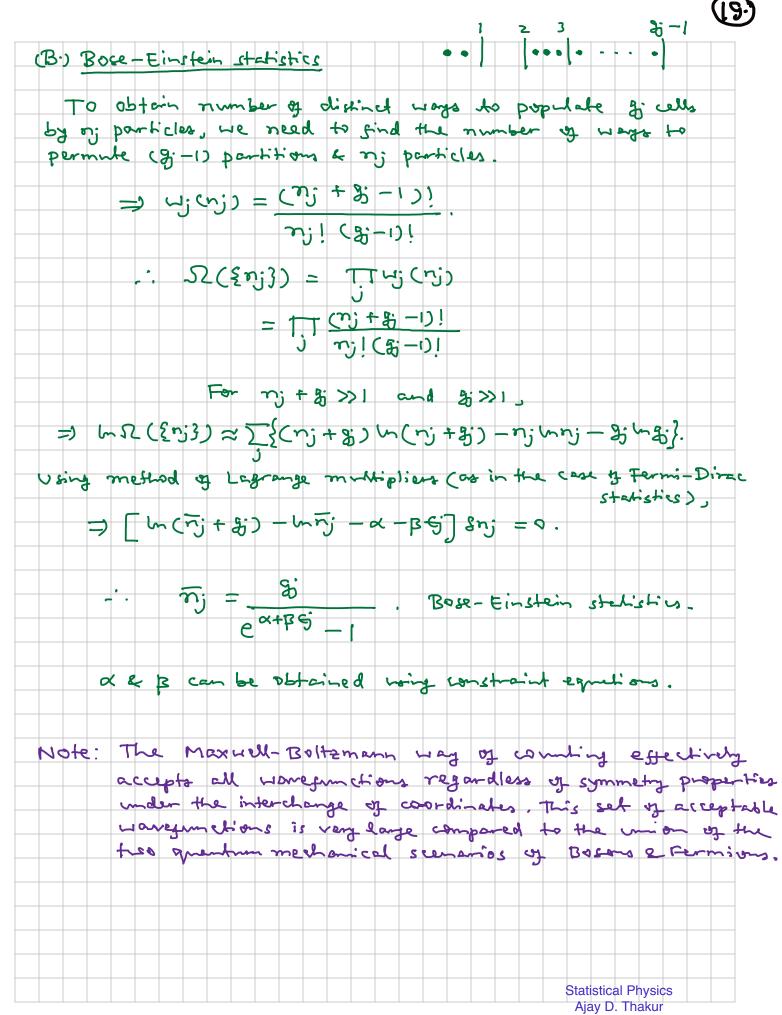




INDIAN INSTITUTE OF TECHNOLOGY PATNA



INDIAN INSTITUTE OF TECHNOLOGY PATNA



INDIAN INSTITUTE OF TECHNOLOGY PATNA Therefore, $\langle \vec{x}' ; | \rho | \{ \vec{r} \} \rangle = \frac{1}{Z_N \lambda^{3N} N!} \sum_{\alpha} (-\eta)^{\alpha} \exp \left[-\frac{1}{1} \sum_{\gamma=1}^{N} (\vec{r}_{\chi} - \vec{r}_{\alpha \gamma})^{\alpha} \right]$ Using normalization condition, Tr (0) = 1 =) 5 TT d3 7 < { 7 } | 0 | 2 7 } = 1. $\sum_{N} = \frac{1}{N \cdot 1} \frac{1}{\lambda^{3N}} \int_{N-1}^{N-1} d^{3}\vec{r} \sum_{N} \left(-\eta_{N}^{2} \exp \left(-\frac{\pi i}{\lambda^{2}}\right) \left(\vec{r}_{N} - \vec{r}_{N}^{2}\right)^{2}\right)$ Thus, Note · Zy involves sum over N! permutations · For no particle exchange, Q=1 and, ZN = (\frac{\frac{1}{3}}{3})\frac{1}{11} (classical limit). · Quantum corrections involves a product of factors 6xp[- 17 (2,-2)2) there of O in classical limit. · First order correction: Exchange of two particles 1 & 2 leads to a factor (n) exp - 275 (7, - 2,)4 For such pair wise exchanges there are N(N-1)/2 terms, $\frac{1}{N} = \frac{1}{N! \, \lambda^{3N}} \left\{ \frac{1}{\lambda^{2}} d^{3} \vec{r} \left\{ -\frac{N(N-1)}{2} \eta \exp \left[\frac{2\pi}{\lambda^{2}} (\vec{r}_{1} - \vec{r}_{2})^{2} + \dots \right] \right\}$

(II.) Micro-canonical ensemble approach
Distribute ni particles in gi states
(A:) Fermi-Dirac statistics
Number of ways $\omega_i(n_j) = \frac{g_j!}{n_i!(g_i - n_i)!}$
J; (d) ()
Number og microstelles, S2 ({n;}) = IT uj (nj).
95!
= 1 nj! (8j-nj)!
For gisnis >> 1 > (use Stirling approximation)
m 52 ({n;}) ≈ = g; mg; - g; -n; m; +n; -(g;-n;) m(g-n
$= \sum_{j} \{g_{j} \land g_{j} - n_{j} \land n_{j} - (g_{j} - n_{j}) \land (g_{j} - n_{j}) \}$
Also, $N = \sum n_j$. Constraints $\frac{\partial (n_j n_j)}{\partial n_j} = -1 - \ln n_j + 1 + \ln (n_j - n_j)$
& U = \(\subseteq \subseteq \in \)
J J J J J J J J J J J J J J J J J J J
te method of lagrange mustipliers, for the most
probable distribution { rij},
$S \left[\ln \Omega(\{n_j\}) - \alpha \sum_{i=1}^{n_j} - \beta \sum_{i=1}^{n_j} \sum_{j=1}^{n_j} \right] = 0$
$S \left[\ln \Omega \left(\{ n_j \} \right) - \alpha \sum_{j} n_j - \beta \sum_{j} \in j n_j \right] = 0.$
=) [- wnj + w(g; -nj) - x - B = j] snj = 0.
As Sn; are arbitrary & also are independent,
mj = gj Termi-Direc stelistics
extBEj +1
Statistical Physics

