A system S is in contact with a reservoir R
at temperature T such that the wall (3) converting
the two is : Dickterned
$$\rightarrow$$
 Exchange q heat
 \therefore Impermedial \rightarrow No work allowed
 \Rightarrow Impermedial \Rightarrow No work \Rightarrow No work allowed
 \Rightarrow Impermedial \Rightarrow No work \Rightarrow No work allowed
 \Rightarrow Impermedial \Rightarrow No work \Rightarrow

Ajay D. Thakur INDIAN INSTITUTE OF TECHNOLOGY PATNA

$$\sum_{i=1}^{\infty} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$$

Different notations $b_{j} = \frac{e \times p(-\beta E_{j})}{\sum_{j} e \times p(-\beta E_{j})}$ $p(p) = \frac{e \times p(-\beta \mathcal{H}(p))}{\sum e \times p(-\beta \mathcal{H}(p))}$ {p}: microstates. i microstate label For phase space point (9, p), the probability density is : $Q(q,p) = \frac{e \times p(-p \mathcal{H}(q,p))}{7}$ where, Z = (dqdp exp(-BH(q,p))

Degenerate case If I multiple energy levels with same energy value, $Z = \sum_{j} e^{p}(-\beta E_{j}) = \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{i}$ $= \sum_{E} e^{k_{B}} \left(\frac{k_{B}}{k_{B}} \ln \Sigma - \beta E \right) \qquad \begin{cases} \Sigma(E) \\ \ddagger \sigma_{F} microstole_{F} \\ with energy E \end{cases}$ $= \sum_{E} e^{E} \left[-\beta(E - TS) \right] \cdot \cdot \cdot S = k_{B} \ln S^{2}.$ $= \sum_{E} e \times p(-\beta F(E)).$ Maximum contribution to this sum is at the most probable value of E (= E*), \therefore F(E*) $\approx -k_{B}T \ln Z$. E* = $\langle E_{j} \rangle$.

"Essence" g entropy S.

$$F = -\frac{1}{B} \ln Z .$$

$$S = -(\frac{\partial F}{\partial T}) = -(\frac{\partial F}{\partial T})(\frac{\partial F}{\partial T}) .$$

$$= \frac{1}{k_{gT}} \cdot (\frac{\partial F}{\partial F}) = -\frac{1}{k_{gT}} \cdot \frac{\partial F}{\partial T} \cdot \frac{\partial F}{$$

Ajay D. Thakur INDIAN INSTITUTE OF TECHNOLOGY PATNA

INDIAN INSTITUTE OF TECHNOLOGY PATNA

Ŧ $Mean = -\frac{\Im \ln Z}{\partial B} = \langle E_j \rangle = U.$ $Voriance = \langle E_j^2 \rangle - \langle E_j \rangle^2 = \frac{\partial^2 \ln Z}{\partial B^2}$ $= \frac{\partial}{\partial \beta} \left(\frac{\partial \omega^2}{\partial \beta} \right) = -\frac{\partial U}{\partial \beta} .$ $= -\left(\frac{\partial U}{\partial T}\right) / \left(\frac{\partial F}{\partial T}\right) = K_{B}T^{2}C \ge 0.$ Υ → k_Bt^LC 6(E) CE;> F C : Heat capacity

$$\mathbb{E}$$

$$\mathbb{E} \text{Examples}$$

$$\mathbb{E} \text{Einstein folid}$$

$$\mathbb{C} \text{Einstein folid}$$

$$\mathbb{C} \text{Consider N localised and monistersching quantum one dimensional d$$

INDIAN INSTITUTE OF TECHNOLOGY PATNA

Note:

$$f(x) = \int_{X_{1}} \int_{X_{2}} \int_{X_{2}}$$

AJAY D. THAKUR INDIAN INSTITUTE OF TECHNOLOGY PATNA

