EULER'S EQUATION

 OFMOTION

- What is Euler's Equation about?
- Euler's equation derivation- A geometrical approach

What is Euler's equation about?

COMPLETE ANALYSIS FOR STABILITY OF A RIGID BODY IN MOTION

SOLUTION OF EULER'S EQUATION GIVES WHETHER MOTION OF RIGID BODY IS BOUND OR UNBOUND

$$
\begin{aligned}
\text { BOUND MOTION } & =\text { STABLE } \\
\text { UNBOUND MOTION } & =\text { UNSTABLE }
\end{aligned}
$$

A thought experiment! To understand and derive Euler equations

A GEOMETRICAL APPROACH.......

'ROTATION OF A CYLINDER'

Another thought experiment!

Initial Conditions...

$$
L_{1}=I_{1} \omega_{1} \quad L_{2}=I_{2} \omega_{2}
$$

$$
L_{3}=I_{3} \omega_{3}
$$

In the time interval Δt, the principal axes rotate away from the 1, 2,3 axes.

What are the changes in angular momentum in

$$
\begin{gathered}
1,2 \text { and } 3 \text { axis? } \\
\Delta \mathrm{L}_{1}, \Delta \mathrm{~L}_{2} \text { and } \Delta \mathrm{L}_{3} ?
\end{gathered}
$$

$\Delta \mathrm{L}_{1}$ due to rotation along ' 1 ' axis

$\Delta \mathrm{L}_{1}$ due to rotation along ' 2 ' axis

ΔL_{1} due to rotation along ' 2 ' axis

$$
\Delta L_{1}=I_{3} \omega_{3} \Delta \theta_{2}
$$

$\Delta \mathrm{L}_{1}$ due to rotation along ' 3 ' axis

ΔL_{1} due to rotation along ' 3 ' axis

$$
\Delta L_{1}=-I_{2} \omega_{2} \Delta \theta_{3}
$$

Equation of motion of a Rigid body: Euler's equation

$$
\Delta L_{1}=I_{1} \Delta \omega_{1}+I_{3} \omega_{3} \Delta \theta_{2}-I_{2} \omega_{2} \Delta \theta_{3}
$$

Dividing by Δt and taking the limit $\Delta t \rightarrow 0$

$$
\frac{d L_{1}}{d t}=I_{1} \frac{d \omega_{1}}{d t}+I_{3} \omega_{3} \frac{d \theta_{2}}{d t}-I_{2} \omega_{2} \frac{d \theta_{3}}{d t}
$$

$$
\frac{d L_{1}}{d t}=I_{1} \frac{d \omega_{1}}{d t}+\left(I_{3}-I_{2}\right) \omega_{3} \omega_{2}
$$

Equation of motion of a Rigid body: Euler's equation

$$
\frac{d L_{1}}{d t}=I_{1} \frac{d \omega_{1}}{d t}+\left(I_{3}-I_{2}\right) \omega_{3} \omega_{2}
$$

$$
\frac{d L_{2}}{d t}=I_{2} \frac{d \omega_{2}}{d t}+\left(I_{1}-I_{3}\right) \omega_{1} \omega_{3}
$$

$$
\frac{d L_{3}}{d t}=I_{3} \frac{d \omega_{3}}{d t}+\left(I_{2}-I_{1}\right) \omega_{2} \omega_{1}
$$

Equation of motion of a Rigid body: Euler's equation

$$
\tau_{1}=I_{1} \frac{d \omega_{1}}{d t}+\left(I_{3}-I_{2}\right) \omega_{3} \omega_{2}
$$

$$
\tau_{2}=I_{2} \frac{d \omega_{2}}{d t}+\left(I_{1}-I_{3}\right) \omega_{1} \omega_{3}
$$

$$
\tau_{3}=I_{3} \frac{d \omega_{3}}{d t}+\left(I_{2}-I_{1}\right) \omega_{2} \omega_{1}
$$

Euler's Equations of rigid body motion

APPLICATION

How Euler's equations are related to stability?

Will learn through some Examples.........

Example1

Stability of a book under rotation through its different axis

Book under rotation....

Book is rotated in one of its axis by applying a torque and quickly released. Lets say it has

$$
\text { Initially, } \omega_{1}=\text { Constant } ; \omega_{2}=0 ; \omega_{3}=0
$$

A small perturbation is given

$$
\omega_{1}=\text { Constant; } \omega_{2}, \omega_{3} \multimap \text { generated }
$$

Stability of motion is analyzed by Applying Euler's equation

Stability of Rotational motion

$I_{1} \frac{d \omega_{1}}{d t}+\left(I_{3}-I_{2}\right) \omega_{3} \omega_{2}=0$	$\mathbf{1}$
$I_{2} \frac{d \omega_{2}}{d t}+\left(I_{1}-I_{3}\right) \omega_{1} \omega_{3}=0$	$\mathbf{2}$
$I_{3} \frac{d \omega_{3}}{d t}-\left(I_{2}-I_{1}\right) \omega_{2} \omega_{1}=0$	$\mathbf{3}$

After Perturbation, $I_{1} \frac{d \omega_{1}}{d t}=0$ Tors small...... $\omega_{1}=$ Constant
Since equations 2 and 3 are coupled, we take second derivative of eqn 2 to get equation of motion

$$
I_{2} \frac{d^{2} \omega_{2}}{d t^{2}}+\left(I_{1}-I_{3}\right) \omega_{1} \frac{d \omega_{3}}{d t}=0
$$

$$
I_{2} \frac{d^{2} \omega_{2}}{d t^{2}}-\frac{\left(I_{1}-I_{3}\right)\left(I_{2}-I_{1}\right)}{I_{3}} \omega_{1}^{2} \omega_{2}=0
$$

Stability of Rotational motion

Stable

