Highlights of the course

Gyroscope

Thought Experiment!

Disk rotated by twist in outer space

Directions of Torque, Angular momentum and
Angular velocity?

Disk spinning in outer space

Disk (spin + twist) in outer space?

How will be the motion of Disk? Spin and Rotate?

Disk (spin + twist) in outer space?

For the disk to spin and rotate, there must be an external torque ($\mathrm{dL} / \mathrm{dt}$) always, which will change the spin angular momentum.

Spin and rotation will not happen simultaneously!

Counter Intuitive!

Disk (spin + twist) in outer space?

Disk orients in the direction of torque, whereas the force was applied in the y direction!

Counter Intuitive!

View along X-axis side

Disk (spin + twist) when continuous torque applied externally?

How will be the motion of Disk? Spin and Rotate?

Gyroscope

Gyroscope Precision

Gyroscope Precision

$$
\tau=l W
$$

TOP VIEW

Vector nature of angular velocity and angular momentum

Gyroscope Precision

$$
\vec{\tau}=l \hat{e}_{x} \times W\left(-\hat{e}_{y}\right)
$$

TOP VIEW

Gyroscope Precision

TOP VIEW

$$
\begin{aligned}
& l W=\Omega L_{s} \\
& l W=\Omega I_{0} \omega_{s} \\
& \Omega=\frac{l W}{I_{0} \omega_{s}}
\end{aligned}
$$

Gyroscope Precision

Consider a gyroscope in uniform precession with its axle at angle ϕ with vertical

The horizontal component of angular momentum is $L_{s} \sin \phi$

$$
\begin{gathered}
\left|\frac{d L_{s} \mid}{d t}\right|=\Omega L_{s} \sin \phi \\
l W \sin \phi=\Omega L_{s} \sin \phi \\
\Omega=\frac{l W}{I_{0} \omega_{s}}
\end{gathered}
$$

The precessional velocity is
independent of ϕ

