Chapter 4

RIGID BODY IN MOTION

Comparison with Square Laminar Problem

Mathematical approach

Given an Aribitary [I]

Step1: Find the axis of rotation where \mathbf{L} and ω are parallel. Impose the condition $[I][\vec{\omega}]=\lambda \vec{\omega}$
$[I][\vec{\omega}]-\lambda[\vec{\omega}]=0$

Find $\lambda_{1}, \lambda_{2}, \lambda_{3}$
For each λ, corresponding $[\omega]$'s can be found
[ω]'s also give the corresponding axis of rotations

Step2: By writing eigen values as diagonal elements chooses Moment of Inertia matrix corresponding to a co-ordinate axis as its rotation axis

MI (Principal axes)

Square Laminar Problem

$$
[I]=\left(\begin{array}{ccc}
M a^{2} / 3 & -M a^{2} / 4 & 0 \\
-M a^{2} / 4 & M a^{2} / 3 & 0 \\
0 & 0 & 2 M a^{2} / 3
\end{array}\right)
$$

For $\alpha=45^{\circ}$,

This is one of the λ
Other 2 axis of rotation's for which L and are ω are parallel are

$\lambda_{1}=\frac{2}{3} M a^{2}$
$\lambda_{2}=\frac{7}{12} M a^{2}$

MI (Principal axes) Will be discussed in Tutorials

Let us try one example

How to find the principal axis of a rigid body?

for some unknown

This Co-ordinate axis corresponds which the MI matrix given in the problem

Step 1: Find an axis for which \mathbf{L} is parallel to $\boldsymbol{\omega}$ for the given [I]

Finding an axis for which L is parallel to ω for the given [I]

$$
\begin{gathered}
\text { IMPosing the conolition }[I][\vec{\omega}]=\lambda \vec{\omega} \quad \text { Tothe given il } \\
I=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
\end{gathered}
$$

Finding an axis for which L is parallel to ω for the given [I]

$$
\begin{aligned}
& {[\boldsymbol{I}] \boldsymbol{\omega}-\lambda \boldsymbol{\omega}=\mathbf{0}} \\
& {\left[\begin{array}{cc}
2-\lambda & -1 \\
-1 & 2-\lambda
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y}
\end{array}\right]=0}
\end{aligned}
$$

Theorem: If $[A][x]=\mathbf{0}$, then $[A]$ is non-invertible. This implies A^{-1} does not exist
Hence, $|A|=0$.

$$
\lambda^{2}-4 \lambda+3=0
$$

Characteristic Equation

$$
\lambda_{1}=1, \lambda_{2}=3,
$$

Finding an axis for which L is parallel to ω for the given [I]

- λ_{1}, λ_{2} are called the Eigen values which satisfies the equation
- $[\omega]$'s are called the Eigen vectors.
- For each Eigen values, Eigen vector can be found.

Eigen vector corresponding to $\lambda_{1}=1$

$$
\left[\begin{array}{cc}
2-\lambda_{1} & -1 \\
-1 & 2-\lambda_{1}
\end{array}\right]\binom{\omega_{x}}{\omega_{y}}=0 \quad\left(\begin{array}{cc}
2-1 & -1 \\
-1 & 2-1
\end{array}\right)\binom{\omega_{x}}{\omega_{y}}=0 \quad \begin{aligned}
& \omega_{x}-\omega_{y}=0 \\
& -\omega_{x}+\omega_{y}=0
\end{aligned}
$$

$$
\omega_{x}=\omega_{y}=a
$$

$$
\left[\begin{array}{ll}
{[1][\bar{\omega}]} & =\lambda, \vec{a} \\
\hline
\end{array}\right.
$$

$$
\begin{aligned}
& {[I][\omega]=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
a \\
a
\end{array}\right]=1\left[\begin{array}{l}
a \\
a
\end{array}\right]} \\
& {\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=1\left[\begin{array}{l}
1 \\
1
\end{array}\right]}
\end{aligned}
$$

Eigen vector corresponding to $\lambda_{1}=1$ is

Eigen vector corresponding to $\lambda_{2}=3$

$$
\left[\begin{array}{cc}
2-\lambda_{2} & -1 \\
-1 & 2-\lambda_{2}
\end{array}\right]\binom{\omega_{x}}{\omega_{y}}=0 \quad\left(\begin{array}{cc}
2-3 & -1 \\
-1 & 2-3
\end{array}\right)\binom{\omega_{x}}{\omega_{y}}=0
$$

$$
\begin{gathered}
\omega_{x}=-\omega_{y} \\
\text { If } \omega_{x}=a, \omega_{y}=-a \\
{[I][\bar{\omega}]=\lambda_{2}[\stackrel{\omega}{\omega}]} \\
{[I][\omega]=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{c}
a \\
-a
\end{array}\right]=3\left[\begin{array}{c}
a \\
-a
\end{array}\right]} \\
{\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=3\left[\begin{array}{c}
1 \\
-1
\end{array}\right]}
\end{gathered}
$$

Eigen vector corresponding to $\lambda_{2}=3$

Physical meaning of eigenvectors

$[1][\bar{\omega}]=\lambda \bar{\omega}$
Eigenvector1

This Situation is similar to..........Rotation at 45 degrees

For $\alpha=45^{\circ}$,

\mathbf{L} and $\boldsymbol{\omega}$ are parallel!

BUT STILL MI [I] is not diagonal
FINDING THE PRINCIPAL AXIS BY DIAGONALIZATION OF [I]

Step2: Rotating Co-ordinates axis to the axis where L and ω are parallel

Diagonalization Theorem in mathematics rotates the axis to the axis where L and $\boldsymbol{\omega}$ are parallel

Diagonalization ensures the rotation axis is along the coordinate axis (Principal axis)

Such Matrix are obtained by writing Eigen Values as diagonal elements

$$
\mathrm{I}=\mathrm{D}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

Step2: Rotating Co-ordinates axis to the axis where L and ω are parallel

Moment of Inertia matrix for principal axis

Eigen Values in the principal axis are $\lambda_{1}=1, \lambda_{2}=3$,

$$
\begin{aligned}
& {[I][\vec{\omega}]=\lambda_{1} \vec{\omega}} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
a \\
0
\end{array}\right]=1\left[\begin{array}{l}
a \\
0
\end{array}\right]} \\
& {[I][\vec{\omega}]=\lambda_{2} \vec{\omega}}
\end{aligned}
$$

Eigen Vectors in the principal axis are $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$
Angular momentum equations are

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
a
\end{array}\right]=3\left[\begin{array}{l}
0 \\
a
\end{array}\right]
$$

$$
L=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=1\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad L=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=3\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Another example to find principal axes

For the case of a dumb-bell

A. Find the Moment of Inertia matrix

B. Find the principal axis corresponding to it

A. Moment of Inertia matrix

[1]	+z		vim			Izxt	
		$z^{2}+$	$\left(x^{2}\right)^{n}$				
	- 5 zum		ydm				

$$
\mathbf{I}=m\left[\begin{array}{ccc}
2 b^{2} & 2 b^{2} & 0 \\
2 b^{2} & 2 b^{2} & 0 \\
0 & 0 & 4 b^{2}
\end{array}\right]=2 b^{2} m\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Finding the Eigenvalues

$$
\left|\begin{array}{ccc}
I_{x x}-\lambda & I_{x y} & I_{x z} \\
I_{y x} & I_{y y}-\lambda & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}-\lambda
\end{array}\right|=0
$$

$\left|\begin{array}{ccc}2 m b^{2}-\lambda & 2 m b^{2} & 0 \\ 2 m b^{2} & 2 m b^{2}-\lambda & 0 \\ 0 & 0 & 4 m b^{2}-\lambda\end{array}\right|=0$

Eigenvalues
$\left|\begin{array}{ccc}2 m b^{2}-\lambda & 2 m b^{2} & 0 \\ 2 m b^{2} & 2 m b^{2}-\lambda & 0 \\ 0 & 0 & 4 m b^{2}-\lambda\end{array}\right|=0$
$\left(4 m b^{2}-\lambda\right)\left[\left(2 m b^{2}-\lambda\right)^{2}-\left(2 m b^{2}\right)^{2}\right]=0$

$$
\begin{gathered}
\left(4 m b^{2}-\lambda\right)\left[\lambda^{2}-4 m b^{2} \lambda\right]=0 \\
\left(4 m b^{2}-\lambda\right)(\lambda)\left(\lambda-4 m b^{2}\right)=0 \\
\lambda_{1}=\lambda_{2}=4 m b^{2}, \lambda_{3}=0
\end{gathered}
$$

Moment of Inertia matrix along principal axis

$$
\lambda_{1}=\lambda_{2}=4 m b^{2}, \lambda_{3}=0
$$

Eigen vector corresponding to $\lambda_{1}=\lambda_{2}=4 m b^{2}$

$$
\left(\begin{array}{ccc}
2 m b^{2}-\lambda_{1} & 2 m b^{2} & 0 \\
2 m b^{2} & 2 m b^{2}-\lambda_{1} & 0 \\
0 & 0 & 4 m b^{2}-\lambda_{1}
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)=0
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
-2 m b^{2} & 2 m b^{2} & 0 \\
2 m b^{2} & -2 m b^{2} & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)=0 \\
& -2 m b^{2} \omega_{x}+2 m b^{2} \omega_{y}=0 \\
& 2 m b^{2} \omega_{x}-2 m b^{2} \omega_{y}=0 \\
& \omega_{x}=\omega_{y} \\
& \omega_{z}=\text { Anything }=\alpha \quad \text { Eigen vector: }\left[\begin{array}{l}
1 \\
1 \\
\alpha
\end{array}\right]
\end{aligned}
$$

Eigenvectors corresponding $\lambda_{3}=0$

$$
\left(\begin{array}{ccc}
2 m b^{2}-\lambda_{3} & 2 m b^{2} & 0 \\
2 m b^{2} & 2 m b^{2}-\lambda_{3} & 0 \\
0 & 0 & 4 m b^{2}-\lambda_{3}
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)=0 \quad \text { for } \lambda_{3}=0
$$

$$
\begin{aligned}
& \omega_{x}=-\omega_{y} \\
& \omega_{z}=0
\end{aligned}
$$

Eigenvector corresponding to $\lambda_{3 \text { : }}$

When Moment of Inertia matrix becomes diagonal?

