
RIGID BODY IN MOTION

Chapter 4



Comparison with Square Laminar Problem

Step1: Find the axis of rotation where L and  are parallel.

Given an Aribitary [I]
Square Laminar Problem
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X


Y  

2

12

L I

Ma

 



= =

=

2

2

12 2
0

0

x

y

L
Ma

L





 
 
  
  

=   
    

 
 
 

   [ ] 0I   − =

0

xx xy xz x

yx yy yz y

zx zy zz z

I I I

I I I

I I I

 

 

 

 −  
  

− =  
  −   

0

xx xy xz

yx yy yz

zx zy zz

I I I

I I I

I I I







−

− =

−

Find 1, 2, 3

For each , corresponding []’s can be found

This is one of the 

[I]=

Other 2 axis of rotation’s for which L and  are  are parallel are
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[]’s  also give the corresponding axis of rotations

Step2: By writing eigen values as diagonal elements chooses Moment

of Inertia matrix corresponding to a co-ordinate axis as its rotation axis
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MI (Principal axes)

Mathematical approach

MI (Principal axes)
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Let us try one example



How to find the principal axis of a rigid 
body?

Given a moment of Inertia matrix                                         for some unknown
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Step 1: Find an axis for which L is parallel to ω for the given [I]

This Co-ordinate axis corresponds which the MI matrix  given in the problem 
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Finding an axis for which L is parallel to 
ω for the given [I]

IMPOSING THE CONDITION                                                     TO THE GIVEN [I]  I  =
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BY IMPOSING THIS CONDITION AND FINDING THE UNKNOWNS λ AND 
ω GIVE INFORMATION ABOUT THE AXIS FOR WHICH  L AND ω ARE 

PARALLEL FOR THE UNKNOWN RIGID BODY



Finding an axis for which L is parallel to ω for 
the given [I]

𝑰 𝝎 − 𝝀𝝎 = 𝟎

Theorem: If [A][x]=0, then [A] is non-invertible. This implies A-1 does not exist

Hence, |A|=0.
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Finding an axis for which L is parallel to ω for 
the given [I]

•1, 2 are called the Eigen values 
which satisfies the equation

• []’s are called the Eigen vectors.

• For each Eigen values, Eigen vector can 
be found.



Eigen vector corresponding to λ 1 =1
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Eigen vector corresponding to λ 1 =1 is 
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Eigen vector corresponding to λ 2 =3
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Eigen vector corresponding to λ 2 =3
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Physical meaning of eigenvectors
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x y =

Eigenvector1

  I  =

x y = −

Eigenvector2



Z

X

This Situation is similar 
to……….Rotation at 45 degrees

 L and  are parallel!

  L I  = =



BUT STILL MI [I] is not diagonal

FINDING THE PRINCIPAL AXIS 
BY DIAGONALIZATION OF [I]



Step2: Rotating Co-ordinates axis to the axis 
where L and ω are parallel

Diagonalization Theorem in mathematics rotates the axis to  the 

axis where L and ω are parallel 

Diagonalization ensures the 

rotation axis is along the 

coordinate axis (Principal axis) 

I = D = 
λ1 0
0 λ2

Such Matrix are obtained by 
writing Eigen Values
as diagonal elements



Step2: Rotating Co-ordinates axis to the 
axis where L and ω are parallel
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Moment of Inertia matrix for 
principal axis
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Eigen Values in the principal axis are

Moment of Inertia Matrix in the principal axes

Eigen Vectors in the principal axis are
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Another example to find principal axes

ROTATING DUMBBELL



For the case of a dumb-bell
A. Find the Moment of Inertia matrix

B. Find the principal axis corresponding to it
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A. Moment of Inertia matrix
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Finding the Eigenvalues
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Moment of Inertia matrix along principal axis
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Eigen vector corresponding to 2
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Eigenvectors corresponding
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When Moment of Inertia matrix becomes 
diagonal?
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