Highlights of the course

Chapter 4

RIGID BODY IN MOTION

Moment of Inertia Matrix

$$
[I]=\left(\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right) \quad I_{x x}=\sum m_{j}\left(y_{j}^{2}+z_{j}^{2}\right) \quad I_{x y}=-\sum m_{j} x_{j} y_{j}
$$

For a continuous medium,

$$
I_{x x}=\int\left(y^{2}+z^{2}\right) d m
$$

$$
[I]=\left(\begin{array}{ccc}
\int\left(y^{2}+z^{2}\right) d m & -\int x y d m & -\int z x d m \\
-\int x y d m & \int\left(z^{2}+x^{2}\right) d m & -\int y z d m \\
-\int z x d m & -\int y z d m & \int\left(x^{2}+y^{2}\right) d m
\end{array}\right)
$$

Problem 2

Consider no mass for the interconnecting rod between the two balls. Also consider these balls as point particles.
a. Find the Moment of Inertia Matrix
b. Angular momentum and torque matrix
c. Physically interpret the same for the current motion and if the system is rotated along z-axis
d. Find the net angular acceleration in this case also compare it, when the whole system is rotated in $x-z$ plane

$$
\begin{aligned}
& I_{x x}=\sum m_{j}\left(y_{j}^{2}+z_{j}^{2}\right)=m\left(1^{2}+0^{2}\right)+m\left(-1^{2}+0^{2}\right)=2 m \\
& I_{y y}=\sum m_{j}\left(x_{j}^{2}+z_{j}^{2}\right)=m\left(1^{2}+0^{2}\right)+m\left(-1^{2}+0^{2}\right)=2 m \\
& I_{z z}=\sum m_{j}\left(x_{j}^{2}+y_{j}^{2}\right)=m\left(1^{2}+1^{2}\right)+m\left(-1^{2}+1^{2}\right)=4 m \\
& I_{x y}=-\sum m_{j} x_{j} y_{j}=-m \times 1 \times 1-m \times(-1) \times-1=-2 m \\
& I_{y z}=-\sum m_{j} y_{j} z_{j}=-m \times 1 \times 0-m \times-1 \times 0=0 \\
& I_{x z}=-\sum m_{j} x_{j} z_{j}=-m \times 1 \times 0-m \times(-1) \times 0=0
\end{aligned}
$$

$[I]=\left(\begin{array}{ccc}2 m & -2 m & 0 \\ -2 m & 2 m & 0 \\ 0 & 0 & 4 m\end{array}\right)$

Angular momentum and Torque

$$
\left(\begin{array}{l}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=\left(\begin{array}{ccc}
2 m & -2 m & 0 \\
-2 m & 2 m & 0 \\
0 & 0 & 4 m
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
$$

$$
\left(\begin{array}{c}
\tau_{x} \\
\tau_{y} \\
\tau_{z}
\end{array}\right)=\left(\begin{array}{ccc}
2 m & -2 m & 0 \\
-2 m & 2 m & 0 \\
0 & 0 & 4 m
\end{array}\right)\left(\begin{array}{l}
\alpha_{x} \\
\alpha_{y} \\
\alpha_{z}
\end{array}\right) \quad \begin{aligned}
& \tau_{x}=2 m \alpha_{x}-2 m \alpha_{y} \\
& \tau_{y}=-2 m \alpha_{x}+2 m \alpha_{y} \\
& \tau_{z}=4 m \alpha_{z}
\end{aligned}
$$

Find the net angular acceleration in this case also compare it, when the whole system is rotated in $x-z$ plane

F_{z} in -z direction

$$
\tau_{y}=4 m \alpha_{y}
$$

$$
x F_{z}=4 m \alpha_{y}
$$

$$
\begin{aligned}
& \alpha_{y}=-\frac{F_{z} y}{4 m} \quad \alpha_{x}=\frac{F_{z} y}{4 m} \\
& \mathbf{y}=1 \quad|\alpha|=\frac{F_{z}}{2 \sqrt{2} m}
\end{aligned}
$$

$$
\alpha_{y}=\frac{x F_{z}}{4 m}
$$

$$
[I]=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 4 m & 0 \\
0 & 0 & 4 m
\end{array}\right)
$$

$$
x=\sqrt{2}
$$

$$
|\alpha|=\frac{F_{z}}{2 \sqrt{2} m}
$$

Find whether angular momentum and angular velocity are parallel in the below figure

Problem 2

$$
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
0
\end{array}\right)=\left(\begin{array}{ccc}
2 m & -2 m & 0 \\
-2 m & 2 m & 0 \\
0 & 0 & 4 m
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
0
\end{array}\right) \quad \begin{aligned}
& L_{x}=2 m \omega_{x}-2 m \omega_{y} \\
& L_{y}=-2 m \omega_{x}+2 m \omega_{y}
\end{aligned}
$$

$$
\begin{gathered}
\begin{array}{c}
L_{x}=2 m \omega_{x}-2 m \omega_{y} \\
L_{y}=-2 m \omega_{x}+2 m \omega_{y} \\
\vec{L}=\vec{L}_{x} i+\vec{L}_{y} j \\
\vec{L}=\left(2 m \omega_{x}-2 m \omega_{y}\right) i+\left(-2 m \omega_{x}+2 m \omega_{y}\right) j \\
\vec{\omega}=\omega_{x} i+\omega_{y} j
\end{array}
\end{gathered}
$$

What is the angle between $\overrightarrow{\mathrm{L}}$ and $\vec{\omega}$?

$$
\cos \theta=\frac{\vec{L} \cdot \vec{\omega}}{|\vec{L}||\vec{\omega}|}, \text { also we know } \omega_{\mathrm{x}}=-\omega_{\mathrm{y}}
$$

When $\omega_{\mathrm{x}}=-\omega_{\mathrm{y}}$

$$
\begin{gathered}
\vec{L}=-4 m \omega_{y} i+4 m \omega_{y} j \\
\vec{\omega}=-\omega_{y} i+\omega_{y} j
\end{gathered}
$$

$$
\cos \theta=\frac{\left(-4 m \omega_{y} i+4 m \omega_{y} j\right) \cdot\left(-\omega_{y} i+\omega_{y} j\right)}{\sqrt{32 m^{2} \omega_{y}^{2}} \sqrt{2 \omega_{y}^{2}}}=\frac{8 m \omega_{y}^{2}}{\sqrt{64 m^{2} \omega_{y}^{2}}}=1
$$

$$
\begin{aligned}
& \Longrightarrow \theta=0 \rightarrow \vec{L} \text { and } \vec{\omega} \text { are parallel } \\
& \longrightarrow \frac{L_{x}}{L_{y}}=\frac{\omega_{x}}{\omega_{y}} \text { Angular momentum and Angular velocity have same slopes }
\end{aligned}
$$

$$
\vec{L}=\left(-4 m \omega_{y}, 4 m \omega_{y}, 0\right) \text { and } \vec{\omega}=\left(-\omega_{y}, \omega_{y}, 0\right)
$$

In the matrix form we may write

$$
\begin{gathered}
\vec{L}=[I][\vec{\omega}] \\
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
0
\end{array}\right)=\left(\begin{array}{ccc}
2 m & -2 m & 0 \\
-2 m & 2 m & 0 \\
0 & 0 & 4 m
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
0
\end{array}\right) \\
\omega_{x}=-\omega_{y} \\
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
0
\end{array}\right)=\left(\begin{array}{ccc}
2 m & -2 m & 0 \\
-2 m & 2 m & 0 \\
0 & 0 & 4 m
\end{array}\right)\left(\begin{array}{c}
-\omega_{y} \\
\omega_{y} \\
0
\end{array}\right)
\end{gathered}
$$

$$
\begin{gathered}
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
0
\end{array}\right)=\left(\begin{array}{ccc}
2 m & -2 m & 0 \\
-2 m & 2 m & 0 \\
0 & 0 & 4 m
\end{array}\right)\left(\begin{array}{c}
-\omega_{y} \\
\omega_{y} \\
0
\end{array}\right) \\
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
0
\end{array}\right)=\left(\begin{array}{ccc}
2 m & -2 m & 0 \\
-2 m & 2 m & 0 \\
0 & 0 & 4 m
\end{array}\right)\left(\begin{array}{c}
-\omega_{y} \\
\omega_{y} \\
0
\end{array}\right)=\left[\begin{array}{c}
-4 m \omega_{y} \\
4 m \omega_{y} \\
0
\end{array}\right] \\
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
0
\end{array}\right)=4 m\left(\begin{array}{c}
-\omega_{y} \\
\omega_{y} \\
0
\end{array}\right) \\
\\
\Rightarrow \vec{L}=[I][\vec{\omega}]=4 m[\vec{\omega}]
\end{gathered}
$$

If \vec{L} and $\vec{\omega}$ are parallel, one can write $\vec{L}=[I][\vec{\omega}]=\lambda[\vec{\omega}]$

Problem 4

Rotation of a square plate

Consider rotation of a square plate of side a and mass M about an axis in the plane of the plate and making an angle α with the x -axis.
(a)Write the matrix for angular momentum \mathbf{L}
(b)For what angle \mathbf{L} and $\boldsymbol{\omega}$ becomes parallel?
(c) For square plate when the moment of inertia tensor becomes diagonal?

Also surface mass density is defined as $\sigma=\frac{M}{A}$.
M is the mass of the plate and A is the area

Rotation of a square plate

(a)angular momentum \mathbf{L}

$$
\begin{aligned}
& \vec{L}=[I][\vec{\omega}] \\
& M=\sigma A \rightarrow \sigma=\frac{M}{a^{2}} ; \\
& \Delta M=\sigma \Delta x \Delta y \\
& {[I]=\left(\begin{array}{ccc}
\int\left(y^{2}+z^{2}\right) d m & -\int x y d m & -\int z x d m \\
-\int x y d m & \int\left(z^{2}+x^{2}\right) d m & -\int y z d m \\
-\int z x d m & -\int y z d m & \int\left(x^{2}+y^{2}\right) d m
\end{array}\right)} \\
& \vec{\omega}=\left(\begin{array}{c}
\omega \cos \alpha \\
\omega \sin \alpha \\
0
\end{array}\right) \\
& I_{x x}=\iint_{a}\left(y^{2}+z^{2}\right) d m=\int_{0}^{a} \int_{0}^{a} \sigma\left(y^{2}+z^{2}\right) d x d y \\
& I_{x x}=\int_{x=0}^{a} \int_{y=0}^{a} \sigma y^{2} d x d y=\frac{1}{3} \sigma a^{4}:=\frac{1}{3} \times \frac{M}{a^{2}} \times a^{4}=\frac{1}{3} M a^{2} \\
& I_{y y}=\iint\left(z^{2}+x^{2}\right) d m=\int_{0}^{a} \int_{0}^{a} \sigma\left(x^{2}\right) d x d y=\frac{\sigma a^{4}}{3}=\frac{1}{3} M a^{2} \\
& I_{z z}=\iint\left(x^{2}+y^{2}\right) d m=\int_{0}^{a} \int_{0}^{a} \sigma\left(x^{2}+y^{2}\right) d x d y=\frac{2 \sigma a^{4}}{3}=\frac{2 M a^{2}}{3} \\
& I_{x y}=-\int_{x=0}^{a} \int_{y=0}^{a} \sigma x y d x d y=-\frac{1}{4} \sigma a^{4}=-\frac{1}{4} M a^{2}
\end{aligned}
$$

Rotation of a square plate

(a)angular moment L

$$
\begin{gathered}
\vec{L}=[I][\vec{\omega}] \\
\vec{\omega}=\left(\begin{array}{c}
\omega \cos \alpha \\
\omega \sin \alpha \\
0
\end{array}\right) \\
\vec{L}=\left(\begin{array}{ccc}
M a^{2} / 3 & -M a^{2} / 4 & 0 \\
-M a^{2} / 4 & M a^{2} / 3 & 0 \\
0 & 0 & 2 M a^{2} / 3
\end{array}\right)\left(\begin{array}{c}
\omega \cos \alpha \\
\omega \sin \alpha \\
0
\end{array}\right)=\left(\begin{array}{c}
M a^{2} \omega\left(\frac{1}{3} \cos \alpha-\frac{1}{4} \sin \alpha\right) \\
M a^{2} \omega\left(-\frac{1}{4} \cos \alpha+\frac{1}{3} \sin \alpha\right. \\
0
\end{array}\right)
\end{gathered}
$$

Is $\overrightarrow{\mathrm{L}}$ and $\vec{\omega}$ parallel?

$$
\vec{L}=\left(M a^{2} \omega\left(\frac{1}{3} \cos \alpha-\frac{1}{4} \sin \alpha\right), M a^{2} \omega\left(-\frac{1}{4} \cos \alpha+\frac{1}{3} \sin \alpha\right), 0\right) \text { and } \vec{\omega}=(\omega \cos \alpha, \omega \sin \alpha, 0)
$$

$$
\frac{L_{x}}{L_{y}} \neq \frac{\omega_{x}}{\omega_{y}}
$$

\vec{L} and $\vec{\omega}$ are not parallel

Rotation of a square plate

(b) For what angle L and ω becomes parallel?

For $\alpha=45^{\circ}$,

$$
\vec{L}=\left(\frac{1}{12 \sqrt{2}} M a^{2} \omega, \frac{1}{12 \sqrt{2}} M a^{2} \omega, 0\right) \text { and } \vec{\omega}=\left(\begin{array}{c}
\omega / \sqrt{2} \\
\omega / \sqrt{2} \\
0
\end{array}\right)
$$

$$
\frac{L_{x}}{L_{y}}=\frac{\omega_{x}}{\omega_{y}}
$$

Rotation of a square plate

(b) For what angle L and ω becomes parallel?

For $\alpha=45^{\circ}$,

$$
\vec{L}=\left(\frac{1}{12 \sqrt{2}} M a^{2} \omega, \frac{1}{12 \sqrt{2}} M a^{2} \omega, 0\right) \text { and } \vec{\omega}=\left(\begin{array}{c}
\omega / \sqrt{2} \\
\omega / \sqrt{2} \\
0
\end{array}\right)
$$

$$
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
0
\end{array}\right)=\frac{M a^{2}}{12}\left(\begin{array}{c}
\frac{\omega}{\sqrt{2}} \\
\frac{\omega}{\sqrt{2}} \\
0
\end{array}\right)
$$

$$
\begin{aligned}
\vec{L} & =[I][\vec{\omega}]=\lambda \vec{\omega} \\
\lambda & =\frac{M a^{2}}{12}
\end{aligned}
$$

Rotation of a square plate (Implications)

$$
[I]=\left(\begin{array}{ccc}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right)
$$

\mathbf{L} and $\boldsymbol{\omega}$ are parallel!
$\vec{L}=[I][\bar{\omega}]$

Use of symmetry will ensure diagonal Moment of Inertia tensor

$$
[I]=\left(\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right) \quad \begin{aligned}
& L_{x}=I_{x x} \omega_{x} \\
& \tau_{x}=I_{x x} \alpha_{x}
\end{aligned}
$$

Principal Axis

$[I]=\left(\begin{array}{lll}I_{x x} & I_{x y} & I_{x z} \\ I_{y x} & I_{y y} & I_{y z} \\ I_{z x} & I_{z y} & I_{z z}\end{array}\right)$

Cumbersome!

Principal axes are the orthogonal axes for Which [I] is diagonal

$$
[I]=\left(\begin{array}{ccc}
I_{x x} & 0 & 0 \\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right)
$$

$$
L_{x}=I_{x x} \omega_{x} \quad L_{y}=I_{y y} \omega_{y}
$$

$$
L_{z}=I_{z z} \omega_{z}
$$

Note!

Whenever ω is parallel to L, choosing the corresponding direction of rotation as co-ordinate axis will be the principal axes.

Let's recollect the problems we did.........

Whenever ω is parallel to L, choosing the corresponding direction of rotation as co-ordinate axis will be the principal axes

Whenever ω is parallel to L, choosing the corresponding direction of rotation as co-ordinate axis will be the principal axes

$$
[I]=\left(\begin{array}{ccc}
M a^{2} / 3 & -M a^{2} / 4 & 0 \\
-M a^{2} / 4 & M a^{2} / 3 & 0 \\
0 & 0 & 2 M a^{2} / 3
\end{array}\right)
$$

Quiz 2: $1^{\text {st }}$ May 2022

Mode: Descriptive, Online (Teams)
Time: 9.00 AM
Duration: 20 minutes
Syllabus: Chapter 3 (Work energy and conservation laws)

