PH 103: PHYSICS INTRODUCTION

Course Instructor

Dr. Jobin Jose Faculty in Physics Department of Physics Indian Institute of Technology Patna

G7, G8, G9

Tutors: Dixit M, Indranil Maity, Rohit Kumar, Samayun Saikh, Saumyashree Baral, Subhadeep Sarkar, Vivek Mehta

First Year TT, Batch of 2021, SEM 2, March 2022 - July 2022

Day	Day Lecture Slots		Lecture Slots	1PM - 2PM	Tut/Lab Slots Tut/Lab Slots		Tut/Lab Slots	
	<u> 10AM - 10:55A</u> M	11AM - 11:55AM	12PM - 12:55PM		2-3pm 3-4pm		4-5pm	
MONDAY	E/F	D	С	L	TA1	TB1	TC1	
TUESDAY	А	E/F	D	U	L-B1			
WEDNESDAY	В	A	E/F	N	L-D1			
THURSDAY	С	В	A	С	L-E1/L-F1			
FRIDAY	D	С	В	Н	TE1/TF1			

Course Syllabus

- Orthogonal coordinate systems and frames of reference, conservative and nonconservative forces, work-energy theorem, potential energy and concept of equilibrium; Rotation about fixed axis, translational-rotational motion, vector nature of angular velocity, rigid body rotation and its applications, Euler's equations; Gyroscopic motion and its application; Accelerated frame of reference, centrifugal and Coriolis forces.
- Harmonic oscillator, damped and forced oscillations, resonance, coupled oscillations, small oscillation, normal modes, longitudinal and transverse waves, wave equation, plane waves, phase velocity, superposition wave packets and group velocity, two and three dimensional waves.
- Failure of classical concepts, Black body radiation, photo-electric effect, Compton effect, Davison and Germer's experiment, Frank-Hertz experiment, Bohr's theory, Sommerfeld's model, correspondence principle, Planck hypothesis, De Broglie's hypothesis, Hilbert space, observables, Dirac notation, principle of superposition, wave packets, phase and group velocities, probability & continuity equation, eigenvalues and eigen-functions, orthonormality, expectation values, uncertainty principle, postulates of QM, Schrodinger equation & its applications to 1D potentials, field quantization, periodic potential wells: Kronig Penny model and origin of band gap.

Text Books and References

- Textbooks:
- D. Kleppner and R. J. Kolenkow, An introduction to Mechanics, Tata McGraw-Hill, New Delhi, 2000.
- David Morin, Introduction to Classical Mechanics, Cambridge University Press, NY, 2007
- Frank S. Crawford, Berkeley Physics Course Vol 3: Waves and Oscillations, McGraw Hill, 1966.
- Arthur Beiser, Concepts of Modern Physics, McGraw Hill, 2003
- Eyvind H. Wichmann, Berkeley Physics Course Vol 4: Quantum physics, McGraw Hill, 1971.
- P. C. Deshmukh, Foundations of Classical Mechanics, Cambridge University Press, 2019
- References:
- R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lecture in Physics, Vol I, Narosa Publishing House, New Delhi, 2009.
- R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lecture in Physics, Vol III, Narosa Publishing House, New Delhi, 2009.
- R. Eisberg and R. Resnick, Quantum Physics of atoms, molecules, solids, nuclei and particles, John Wiuley and Sons (Asia) Pvt. Ltd., Singapore, 2002.
- A. J. Dekker, Solid State Physics, Macmillan Pub. India Ltd., New Delhi, 2009
- David J. Griffith, Introduction to Quantum Mechanics, Pearson Education Ltd, New Delhi, 2009.
- B.H. Bransden & C.J. Joachain, Quantum Mechanics, Pearson Education Ltd, New Delhi, 2008.

How to find the course materials?

experiment. Currenny, the main research emphasis

josen@gm 🗙 🎯 Indian Insti	itute of Technology, 🗙 🕂 🕂				٥	
iitp.ac.in/index.php/en-us/pe	ople-phy-menu/faculty	⊵ ☆	<u>↓</u>	\ (
	Asst. Professor Email		Asst. Professor Email			
	akm		jobin.jose			
Dr. Ayash Kanto Mukherjee	Phone 8016	Dr. Jobin Jose	Phone 8618			
View Profile		Teaching	: <u>M. Sc.</u> Ph427: Numer Ph428: Compu PH421: Mather	ical Teo utationa matical	chnique al Physic I Physic:	5 25 5
	Asst. Professor Email		 PH420: Quantal PH608: Atomic Ph. D. PH701: Mather ecti PH103: Physic 	um Me c Collis matical s 1	chanics ion Phy I Physic:	I sics and Numerical Methods (1/2)
		Professional Experience	 Assistant Profe Karnataka 576 Postdoc: Depa 2012-March 2 Postdoc: Depa Pradhesh, 175 	essor: 1 6104 (A artment 015) artment 005 (S	Manipal pril 201 of Cher of Phys ept 201	Centre for Natural Sciences, Manipal University, Manipal, 5-Dec 2015) nistry, Texas A&M University, College Station, Texas 77840 (Ap ics, Indian Institute of Technology Mandi, Kamand, Himachal I-Feb 2012)
		Member of Professional bodies	: Life time meml Adjunct memb	ber: Inc er: Cer	dian soc nter for <i>i</i>	ety of atomic and molecular physics (ISAMP) tomic, Molecular and Optical Sciences & Technologies (CAMOS

Evaluation Scheme*

Evaluation pattern	Number of examination	Weightage (%)
Small weightage quizzes	4-6	30
Mid Semester Evaluation (A)		
(Real time quiz/any other mode to be decided by course instructor)	1	10
Mid Semester Evaluation (B)		
(Assignment based, one day time to be given for submitting the assignment)	1	15
End Semester Evaluation (A) Real time quiz/any other mode to be decided by course instructor	1	15
End Semester Evaluation (B) (Assignment based, one day time to be given for submitting the assignment)	1	20
Day to day performance and sincerity to be decided by the course instructor	On regular basis	10

Note: Both evaluation schemes [(A) and (B)] of mid and end semester supposed to be on the same day. Instructor can take evaluation scheme (A) first, followed by (B).

* Subjected to change

What have you learned so far?

- •Scalars and Vectors
- Motion in straight line
- Laws of Motion
- •Torque and Angular momentum
- •Harmonic Motion
- •Dual Nature of Matter and Radiation

Highlights of the course

Co-ordinate Systems

Introduction to Vector Operators

Integrated water vapor transport [IVT] (shaded, kg/m/s) (vectors, kg/m/s) Initialized: 1800 UTC 31 Jul 2019 | Forecast hour: 120 | Valid: 1800 UTC 5 Aug 2019

MakeAGIF.com

Work, Energy and Conservation laws

Rigid body in motion

Oscillations and Waves

Mechanical effects of sound

Classical physics in modern era

Limitations of Classical Physics

Quantum Physics

A boy and his atom (Quantum)

Thank you