Highlights of the course

Chapter-2: Introduction to Vector Operators Gradient, Divergence and Curl

Maxwell's Equations in Free Space

(in the absence of matter, $\rho = 0$, J = 0, P = 0, M = 0)

Equations	Differential/Point Form
Gauss' Law for Electricity	$\nabla \cdot \mathbf{E} = 0$
Gauss' Law for Magnetism	$\nabla \cdot \mathbf{H} = 0$
Ampere's Law	$\nabla \times \mathbf{H} = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$
Faraday's Law of Induction	$\nabla \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t}$

Navier-Stokes Equations

Continuity Equation

 $\nabla\cdot\vec{V}=0$

$$\nabla \times \nabla \times \mathbf{E} = -\nabla^{2} \mathbf{E} =$$

$$= -\mu \frac{\partial}{\partial t} (\nabla \times \mathbf{H}) \quad \text{(substitute in Ampere's Law)}$$

$$= -\mu \frac{\partial}{\partial t} \left(\frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} \right) \quad \text{(J is zero because source free region)}$$

$$= -\mu \varepsilon \frac{\partial}{\partial t} \left(\frac{\partial \mathbf{E}}{\partial t} \right) \qquad \text{www.maxwells-equations.com}$$

$$\Rightarrow \nabla^{2} \mathbf{E} = \mu \varepsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} \qquad \text{[The Vector Wave Equation]}$$

Many many more to learn in Science and Engineering

The Schrödinger equation

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V\right]\Psi = i\hbar\frac{\partial\Psi}{\partial t}$$

The operator $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is the Laplacian in Cartesian coordinates.

 Ψ is the wavefunction.

V is the potential.

 \hbar is the Planck constant divided by 2π .

The particle mass is represented by m.

Ordinary Derivatives

Ordinary Derivatives

$$df = \left(\frac{df(x)}{dx}\right) dx$$

RECOLLECT (By Taylor

Derivative of a function in 3D

Derivative is directional!

Scalar Field Function

- A function of space whose value at each point is a scalar quantity
- **Example: Temperature**

Gradient of a scalar function

Example

$$\hat{e}_r(\theta,\phi)$$

in spherical polar

Gradient of a function

$$df = \left(\frac{df(x)}{dx}\right) dx$$

$$dT = \frac{\partial T}{\partial x} dx + \frac{\partial T}{\partial y} dy + \frac{\partial T}{\partial z} dz$$

$$dT = \left(\frac{\partial T}{\partial x}\hat{e}_x + \frac{\partial T}{\partial y}\hat{e}_y + \frac{\partial T}{\partial z}\hat{e}_z\right) \bullet \left(dx\hat{e}_x + dy\hat{e}_y + dz\hat{e}_z\right)$$

$$dT = \overrightarrow{\nabla}T \bullet d\overrightarrow{l}$$

$$\vec{\nabla}T = \left(\frac{\partial T}{\partial x}\hat{e}_x + \frac{\partial T}{\partial y}\hat{e}_y + \frac{\partial T}{\partial z}\hat{e}_z\right) \quad \textbf{Gradient}$$

Gradient: Geometrical interpretation

dT is maximum when gradient $\vec{\nabla}T$ points in the direction of \vec{dl} .

Maximum increase in the temperature occurs when gradient and the dl are parallel to each other

An example

Variation of temperature in a region is given by the function $T(x, y) = x^2 + y^2$ Find whether the unit vector $\hat{l} = \frac{\hat{e}_x + \hat{e}_y}{\sqrt{2}}$ points in the direction of maximum

increase of temperature at location (1,1).

$$\vec{\nabla}T(x,y) = \hat{e}_x \frac{\partial T}{\partial x} + \hat{e}_y \frac{\partial T}{\partial y} = 2x\hat{e}_x + 2y\hat{e}_y$$

Given $\hat{l} = \frac{\hat{e}_x + \hat{e}_y}{\sqrt{2}}$
 $\cos\theta = \frac{\vec{\nabla}T(x,y)\hat{l}}{|\vec{\nabla}T(x,y)||\hat{l}|} = \frac{2x + 2y}{\sqrt{4x^2 + 4y^2} \times \sqrt{2}}$

Yes the given unit vector Points in the increasing Direction of temperature

At location(1,1)

$$\cos\theta = \frac{4}{\sqrt{16}} = 1$$

Another example

Find the gradient of $r = \sqrt{x^2 + y^2 + z^2}$

$$\vec{\nabla}f = \left(\frac{\partial f}{\partial x}\hat{e}_x + \frac{\partial f}{\partial y}\hat{e}_y + \frac{\partial f}{\partial z}\hat{e}_z\right) = \frac{\partial r}{\partial x}\hat{e}_x + \frac{\partial r}{\partial y}\hat{e}_y + \frac{\partial r}{\partial z}\hat{e}_z$$

$$= \frac{1}{2} \frac{2x}{\sqrt{x^2 + y^2 + z^2}} \hat{e}_x + \frac{1}{2} \frac{2y}{\sqrt{x^2 + y^2 + z^2}} \hat{e}_y + \frac{1}{2} \frac{2z}{\sqrt{x^2 + y^2 + z^2}} \hat{e}_z$$
$$= \frac{\vec{r}}{|r|} = \hat{r}$$

What would it mean for the gradient $\vec{\nabla}_f$ to vanish?

Stationary point of *f(x,y,z)*

$\overrightarrow{\nabla}$: Vector operator (The del operator)

$$\vec{\nabla} = \left(\hat{e}_x \frac{\partial}{\partial x} + \hat{e}_y \frac{\partial}{\partial y} + \hat{e}_z \frac{\partial}{\partial z}\right)$$

Three ways the operator $\overrightarrow{\nabla}$: can act:

 $\vec{\nabla} f$ (The gradient) $\vec{\nabla} \cdot \vec{V}$ (The divergence) $\vec{\nabla} \times \vec{V}$ (The curl)

The divergence and curl operates on a VECTOR FIELD .

Examples of vector fields are Velocity of fluid flow , Electric field, Magnetic field etc

- A vector field in the plane is an assignment of a vector to every point (x,y) in the plane.
- Algebraically a vector field is a function of (x, y) whose value is a vector
- i.e. **F(x, y)** is a vector field if

$$\vec{F}(x, y) = M(x, y)\hat{e}_x + N(x, y)\hat{e}_y$$

Lets see some examples.....

 $\vec{A} = 0.5 \hat{e}_x$

 $\vec{A} = 1\hat{e}_x + 1\hat{e}_y$:

 $\vec{A} = x\hat{e}_x + y\hat{e}_y$:

(4,0)

(4,4)

(0,4)

Announcement

First Quiz on 16th April (Saturday, 10:AM) Online Quiz, 50 minutes duration Maximum marks: 10 Nature: Descriptive