Highlights of the course

Chapter-3:Work, Energy and Conservation laws

Concept of equilibrium

 Duffing Oscillator (Georg Duffing, German engineer)$$
V(\theta) \frac{1}{2} \frac{1}{2} x^{2}+\frac{1}{4} \alpha x^{2}, \beta<0
$$

Plot V(x) v/s x

How to Plot the graph?

1. Find Maxima and Minima
2. Find the zero crossing points
3. Imagine the function for smaller and larger values of x

1. Maxima and Minima

Condition for maxima and minima of a function

A function $\mathrm{V}(\mathrm{x})$ is maximum when $\frac{d V(x)}{d x}=0$ and $\frac{d^{2} V(x)}{d x^{2}}<0$

A function $\mathrm{V}(\mathrm{x})$ is minimum when $\frac{d V(x)}{d x}=0$ and $\frac{d^{2} V(x)}{d x^{2}}>0$

1. Maxima and Minima

$$
V(x)=\frac{1}{2} \beta x^{2}+\frac{1}{4} \alpha x^{4}
$$

To find maxima and minima:

$$
\begin{gathered}
\frac{d V(x)}{d x}=0 \\
\beta x+\alpha x^{3}=0 \\
x\left(\beta+\alpha x^{2}\right)=0 \\
x=0 \text { and } x= \pm \sqrt{\frac{-\beta}{\alpha}}
\end{gathered}
$$

1. Maxima and Minima

$$
\frac{d^{2} V(x)}{d x^{2}}=\beta+3 \alpha x^{2}
$$

When $\mathrm{x}=0, \frac{d^{2} V(x)}{d x^{2}}=\beta<0 \Rightarrow$ Maxima
When $\mathrm{x}= \pm \sqrt{\frac{-\beta}{\alpha}}, \frac{d^{2} V(x)}{d x^{2}}=-2 \beta>0$
(since $\beta<0) \Rightarrow$ Minima

2. Zero crossing points

$$
\begin{aligned}
& V(x)=0 \\
& \frac{1}{2} \beta x^{2}+\frac{1}{4} \alpha x^{4}=0 \\
& x= \pm \sqrt{\frac{-2 \beta}{\alpha}} \text { and } x=0
\end{aligned}
$$

Plot for small and large values of x

1. Maxima at $x=0$

Minima at $-\sqrt{\frac{-\beta}{\alpha}}$

Plot for small and large values of x

$$
V(x)=\frac{1}{2} \beta x^{2}+\frac{1}{4} \alpha x^{4}
$$

For small values of $x, V(x)$ behaves as x^{2}
For large values of $x, V(x)$ behaves as x^{4}

0 crossing/maxima

Concept of equilibrium

Duffing Oscillator

$$
V(x)=\frac{1}{2} \beta x^{2}+\frac{1}{4} \alpha x^{4}, \quad \beta<0
$$

Concept of equilibrium

Duffing Oscillator

$V(x)=\frac{1}{2} \beta x^{2}+\frac{1}{4} \alpha x^{4}, \quad \beta<0$
Component of Force $\mathrm{F}(\mathrm{x})=-\frac{d V(x)}{d x}=-\beta x-\alpha x^{3}$

Velocity Vs. Position plot

$$
E=\frac{1}{2} \beta x^{2}+\frac{1}{4} \alpha x^{4}+\frac{1}{2} m v^{2}
$$

Physical Example of double well

Duffing Oscillator (Georg Duffing, German engineer)

Velocity Vs. Position plot (Summary)

Interatomic Potential: Lennard Jones Potential

Interatomic Potential: Lennard Jones Potential

Lennard Jones Potential
$U_{L J}(r)=\varepsilon\left[\left(\frac{\sigma}{r}\right)^{12}-2\left(\frac{\sigma}{r}\right)^{6}\right]$

Interatomic potential

Interatomic potential

Interatomic potential

Small Oscillations

Velocity Vs. Position plot

Practice Problems

Molecular vibrations

How to find the vibration frequency of diatomic molecule which is bound with very low energy such that their separation is almost close to equilibrium distance r_{0} ?

Equation of motion

Provided, r_{0} is the equilibrium distance,

$$
\begin{gathered}
m_{1} \ddot{r}_{1}=k\left(r-r_{0}\right) \\
m_{2} \ddot{r}_{2}=-k\left(r-r_{0}\right) \\
\ddot{r}_{2}-\ddot{r}_{1}=\ddot{r}=-k\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)\left(r-r_{0}\right)
\end{gathered}
$$

Equation of motion

$$
\ddot{r}_{2}-\ddot{r}_{1}=\ddot{r}=-k\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)\left(r-r_{0}\right)
$$

or

$$
\begin{gathered}
\ddot{r}=-\frac{k}{\mu}\left(r-r_{0}\right) \\
\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)
\end{gathered}
$$

By Comparing with Small Oscillations of Harmonic Oscillator. We get

$$
\begin{aligned}
\omega & =\sqrt{\frac{k}{\mu}} \\
& =\sqrt{\left.\frac{d^{2} U}{d r^{2}}\right|_{r u} \frac{1}{\mu}}
\end{aligned}
$$

Remember

$k=\omega^{2} m=\left.\frac{d^{2} U}{d r^{2}}\right|_{r_{0}}$

1. A commonly used potential energy function to describe the interaction between two atoms is the Morse potential

$$
V(r)=D\left[1-e^{-a\left(r-r_{0}\right)}\right]^{2}-D
$$

where r_{0} is the equilibrium distance, D is the well depth and a controls the width of the potential. For HCl molecule $r_{0}=1.275 \times 10^{-10} \mathrm{~m}, D$ $=4.618 \mathrm{eV}, a=1.869 \times 10^{10} \mathrm{~m}^{-1}$.
(a) Sketch the V(r) and Force.
(b) Find the frequency of small oscillations about equilibrium for HCl molecule? (AMU of Cl is 35)

Sketch the V(r) and Force.

$$
V(r)=D\left[1-e^{-a\left(r-r_{0}\right)}\right]^{2}-D \quad, e^{-a\left(r-r_{0}\right)}=\mathbf{0}
$$

Zero crossings: $\left[1-e^{-a(x)}\right]^{2}=1$

$$
e^{-a\left(r-r_{0}\right)}=2
$$

$$
r=\text { infinity, } r=r_{0}-\frac{1}{a} \ln 2
$$

Minima/Maxima:

$$
\begin{gathered}
\frac{d V}{d r}=2 D a\left[1-e^{-a\left(r-r_{0}\right)}\right] \times e^{-a\left(r-r_{0}\right)}=0 \\
r=r_{0} \\
\left.\frac{d^{2} V}{d r^{2}}\right|_{r=r_{0}}=2 D a^{2} \quad \text { Is Positive, Stable equilibrium } \\
\frac{d^{2} V}{d r^{2}}=2 D a\left[0+a e^{-a\left(r-r_{0}\right)}\right] e^{-a\left(r-r_{0}\right)}-2 D a^{2}\left[1-e^{-a\left(r-r_{0}\right)}\right] \times e^{-a\left(r-r_{0}\right)}
\end{gathered}
$$

Sketch the V(r)

$$
V(r)=D\left[1-e^{-a\left(r-r_{0}\right)}\right]^{2}-D
$$

Sketch the V(r) and Force.

$$
\begin{gathered}
F=-\frac{d V}{d r} \\
-\frac{d V}{d r}=-2 D a\left[1-e^{-a\left(r-r_{0}\right)}\right] \times e^{-a\left(r-r_{0}\right)} \\
=2 D a\left[e^{-2 a\left(r-r_{0}\right)}-e^{-a\left(r-r_{0}\right)}\right]
\end{gathered}
$$

(b) Find the frequency of small oscillations about equilibrium for HCl mulecule? (AMU of Cl is 35)

Potential $\mathrm{V}(\mathrm{r})$ is given, how to find the molecular vibrational frequency?

RECOLECT SMALL OSCILLATIONS (LOW ENERGY CASE)

(b) Find the frequency of small oscillations about equilibrium for HCl molecule? (AMU of Cl is 35)

$$
\begin{gathered}
V(r)=D\left[1-e^{-a\left(r-r_{0}\right)}\right]^{2}-D \\
\frac{d V}{d r}=2 D a\left[1-e^{-a\left(r-r_{0}\right)}\right] \times e^{-a\left(r-r_{0}\right)} \\
\frac{d^{2} V}{d r^{2}}=2 D a\left[0+a e^{-a\left(r-r_{0}\right)}\right] e^{-a\left(r-r_{0}\right)}-2 D a^{2}\left[1-e^{-a\left(r-r_{0}\right)}\right] \times e^{-a\left(r-r_{0}\right)} \\
\left.\frac{d^{2} V}{d r^{2}}\right|_{r=r_{0}}=2 D a^{2}
\end{gathered}
$$

(b) Find the frequency of small oscillations about equilibrium for HCl molecule? (AMU of Cl is 35)
$\omega=\sqrt{\frac{\left.\frac{d^{2} V}{d r^{2}}\right|_{r=r_{0}}}{\mu}}=\sqrt{\frac{2 D a^{2}}{\mu}} \approx 5.37 \times 10^{14} \mathrm{radians} / \mathrm{s}$.
Conversion factors are $1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$

$$
1 a m u=1.66 \times 10^{-27} \mathrm{Kg}
$$

