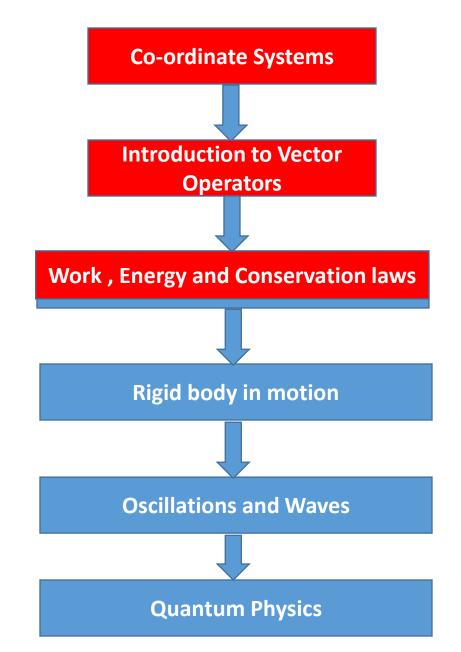
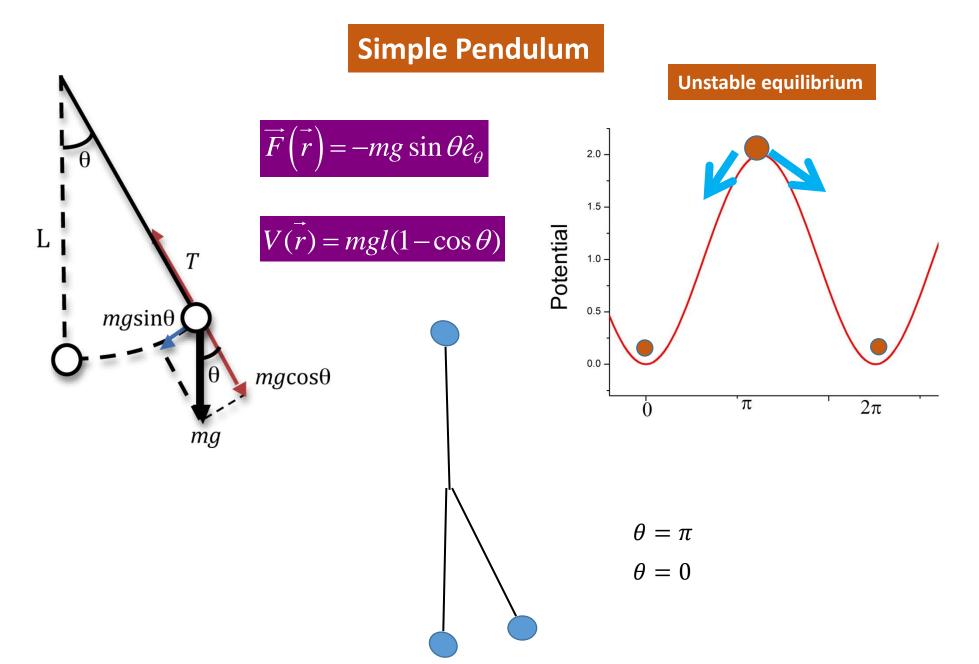
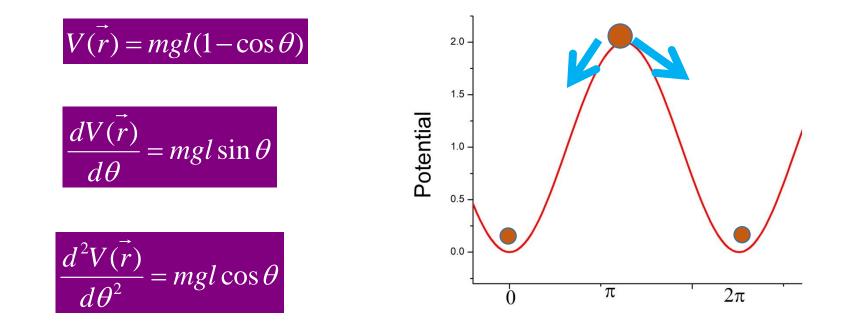
Highlights of the course



Chapter-3:Work , Energy and Conservation laws

Concept of equilibrium





$$\frac{d^2 V(\vec{r})}{d\theta^2} = mgl(\theta = 0)$$

$$\frac{d^2 V(\vec{r})}{d\theta^2} = -mgl(\theta = \pi)$$

$$\frac{u}{d\theta^2} = -mgl(\theta = \pi)$$

$$\frac{u}{d\theta^2} = -mgl(\theta = \pi)$$

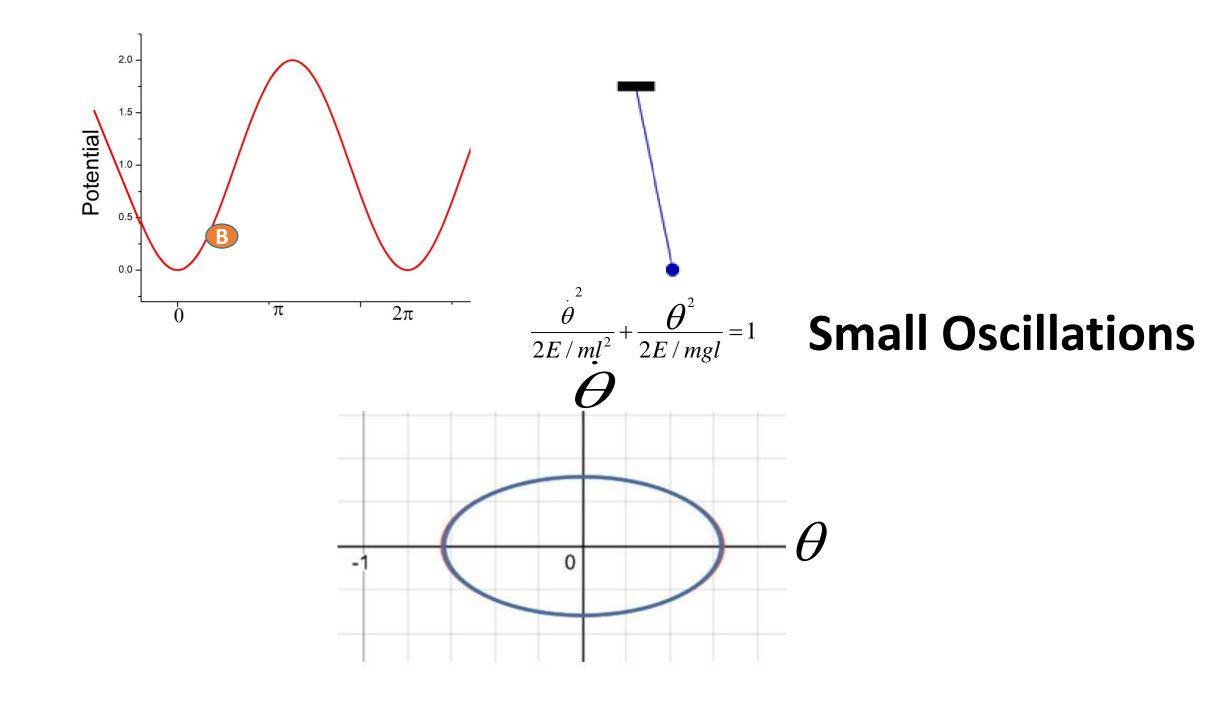
$$\frac{d^2 U}{dx^2} = -mgl(\theta = \pi)$$

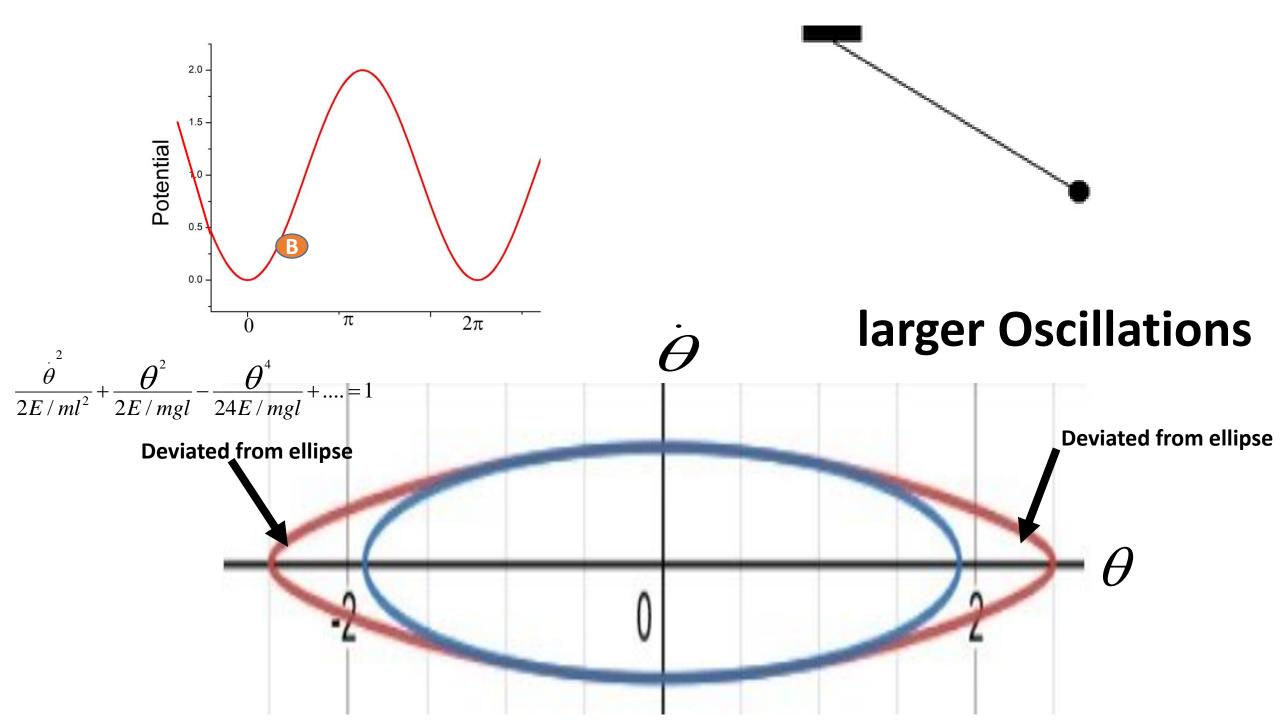
Plot $\theta v/s \theta$? $E = \frac{1}{2}ml^{2}\dot{\theta}^{2} + mgl(1 - \cos\theta)$ $E = \frac{1}{2}ml^{2}\dot{\theta}^{2} + mgl(1 - (1 - \frac{\theta^{2}}{2!} +))$ $E = \frac{1}{2}ml^2\dot{\theta}^2 + mgl\frac{\theta^2}{2!}$ $\frac{\dot{\theta}^2}{2E/ml^2} + \frac{\theta^2}{2E/mgl} = 1$

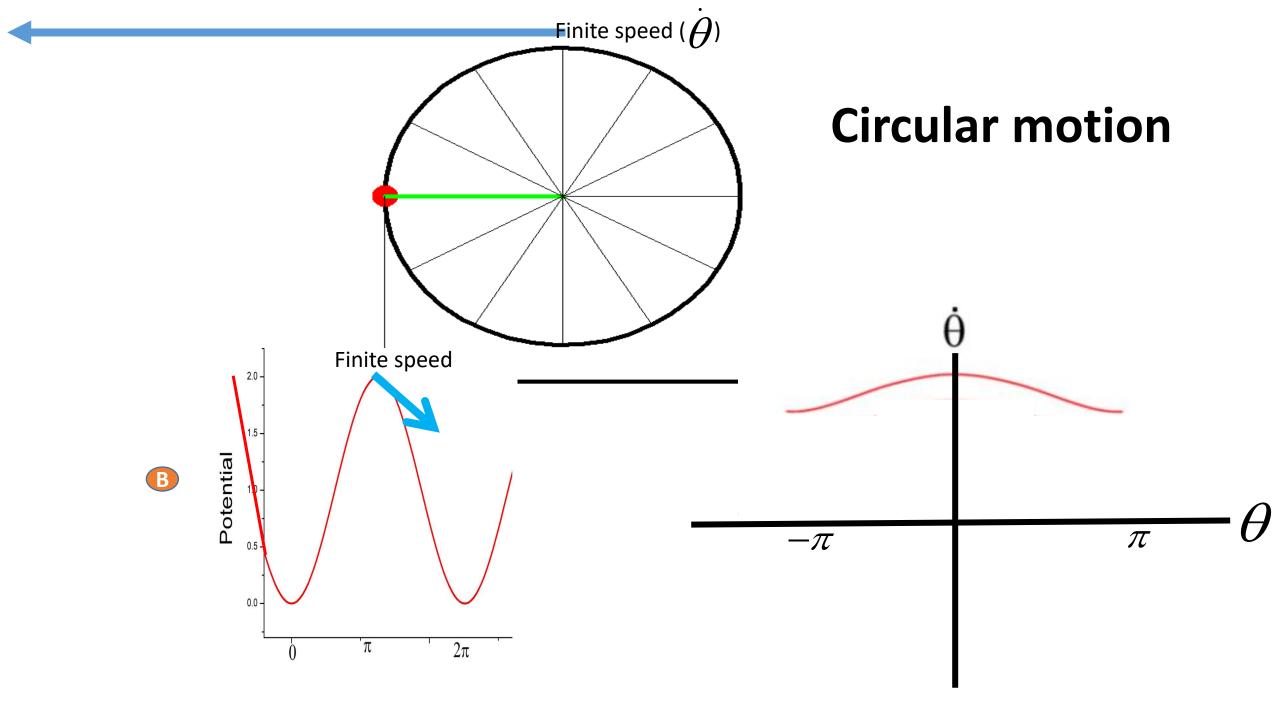
Equation of ellipse

For small values of Θ the equation is of ellipse. But as Θ becomes larger it Deviates from an ellipse

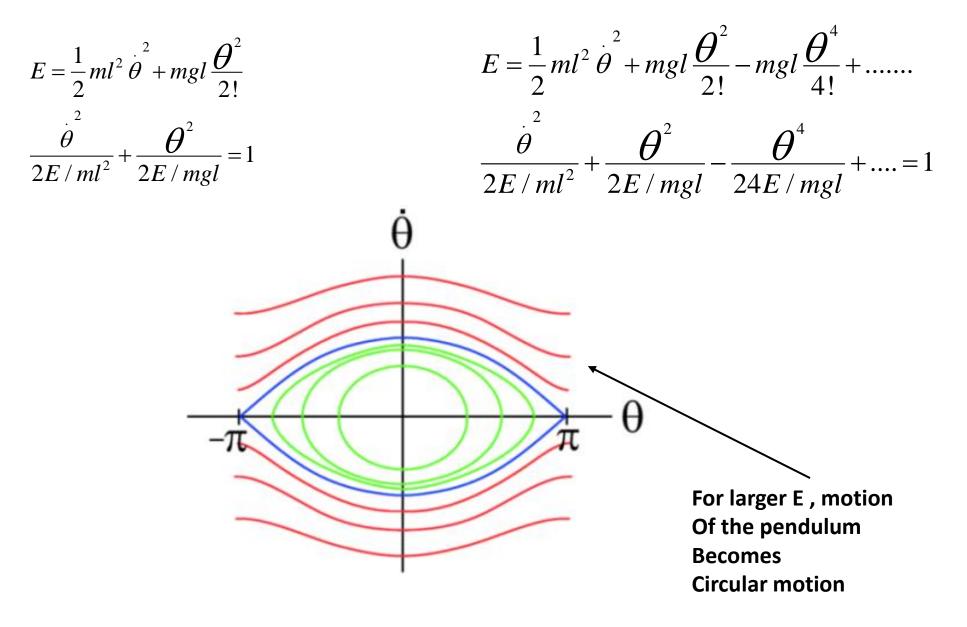
$$E = \frac{1}{2}ml^{2}\dot{\theta}^{2} + mgl\frac{\theta^{2}}{2!} - mgl\frac{\theta^{4}}{4!} + \dots$$
$$\frac{\dot{\theta}^{2}}{2E/ml^{2}} + \frac{\theta^{2}}{2E/mgl} - \frac{\theta^{4}}{24E/mgl} + \dots = 1$$







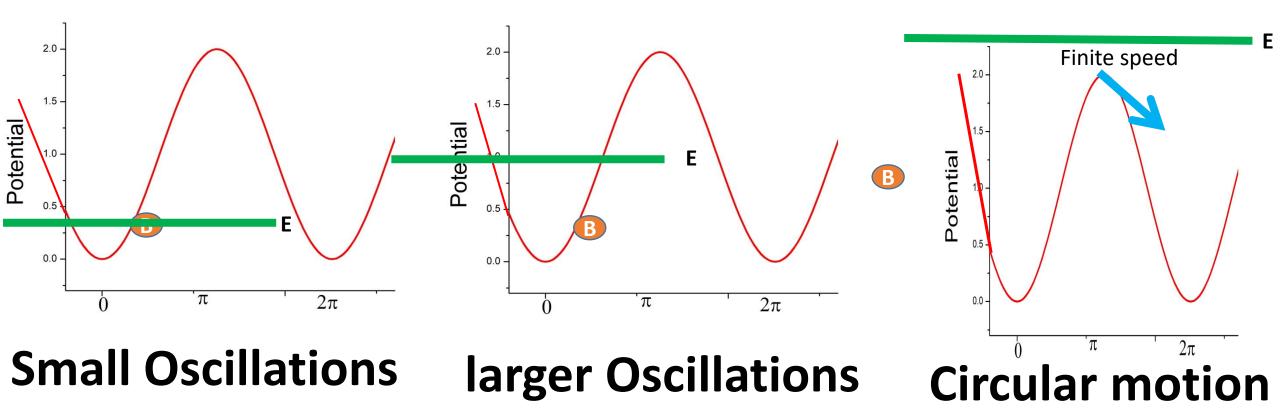
Plot $\dot{\theta}$ v/s θ



Simple Pendulum

Bounded motion

Unbounded motion



Concept of equilibrium Duffing Oscillator (Georg Duffing, German engineer)

 $V(x) = \frac{1}{2}\beta x^{2} + \frac{1}{4}\alpha x^{4}, \ \beta < 0$

Plot V(x) v/s x

How to Plot the graph?

- **1. Find Maxima and Minima**
- 2. Find the zero crossing points
- 3. Imagine the function for smaller and larger values of x

1. Maxima and Minima

Condition for maxima and minima of a function

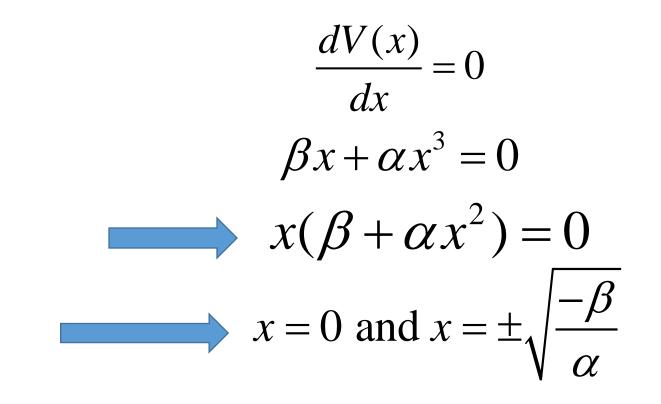
A function V(x) is maximum when $\frac{dV(x)}{dx} = 0$ and $\frac{d^2V(x)}{dx^2} < 0$

A function V(x) is minimum when $\frac{dV(x)}{dx} = 0$ and $\frac{d^2V(x)}{dx^2} > 0$

1. Maxima and Minima

$$V(x) = \frac{1}{2}\beta x^2 + \frac{1}{4}\alpha x^4$$

To find maxima and minima:



1. Maxima and Minima

$$\frac{d^2 V(x)}{dx^2} = \beta + 3\alpha x^2$$

When x=0,
$$\frac{d^2 V(x)}{dx^2} = \beta < 0 \Rightarrow$$
 Maxima

When
$$x = \pm \sqrt{\frac{-\beta}{\alpha}}, \ \frac{d^2 V(x)}{dx^2} = -2\beta > 0$$

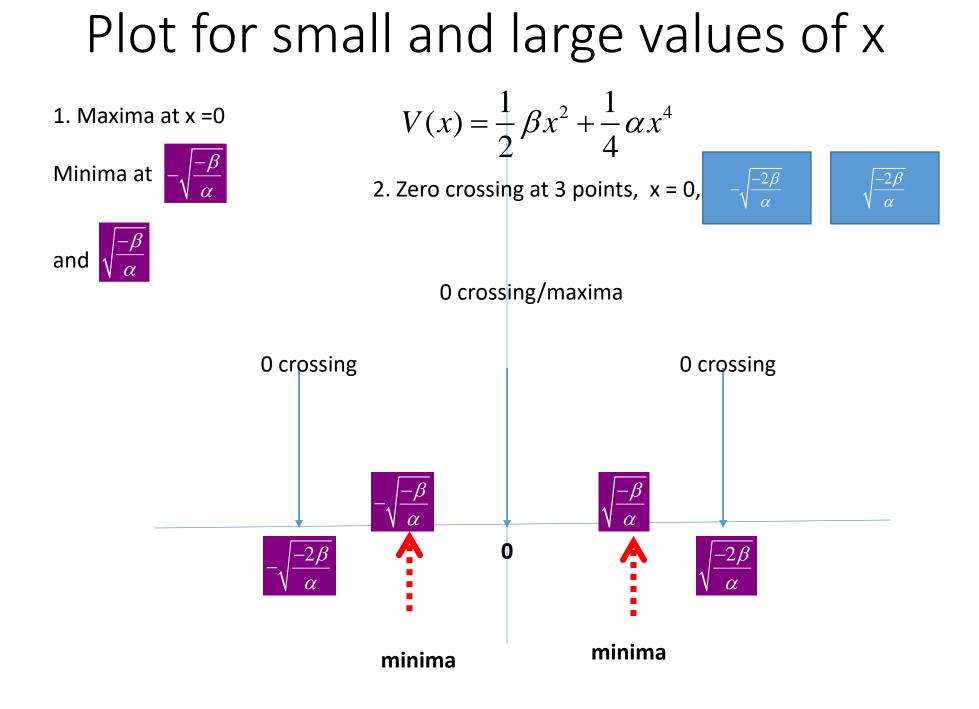
 $(\operatorname{since}\beta < 0) \Rightarrow \operatorname{Minima}$

2. Zero crossing points

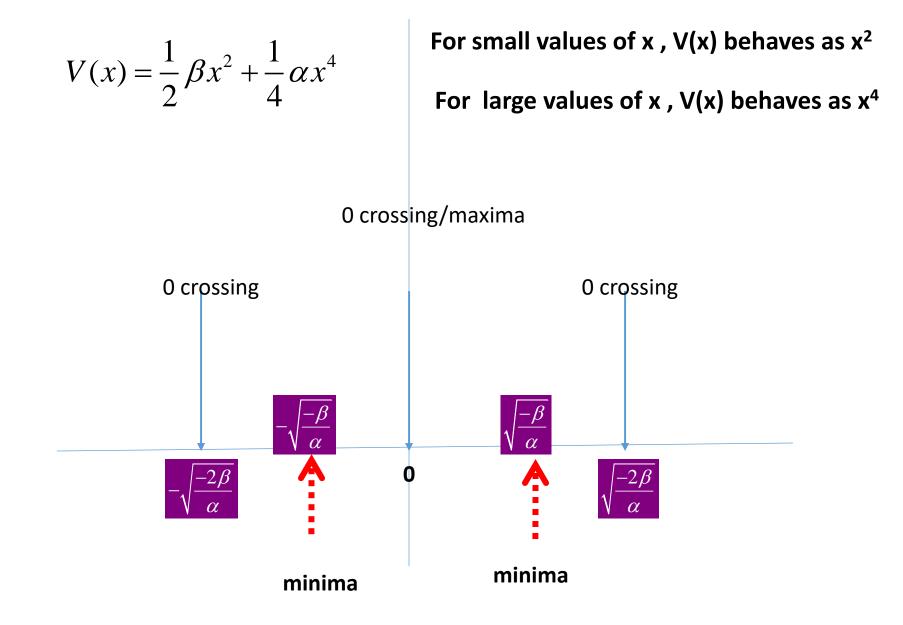
$$V(x) = 0$$

$$\frac{1}{2}\beta x^{2} + \frac{1}{4}\alpha x^{4} = 0$$

$$x = \pm \sqrt{\frac{-2\beta}{\alpha}}$$
 and $x=0$



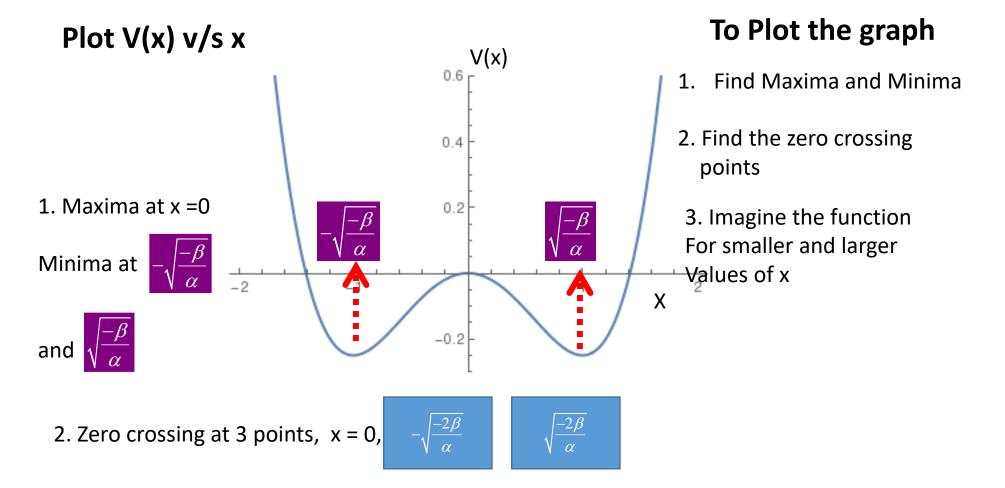
Plot for small and large values of x



Concept of equilibrium

Duffing Oscillator

$$V(x) = \frac{1}{2}\beta x^2 + \frac{1}{4}\alpha x^4, \ \beta < 0$$

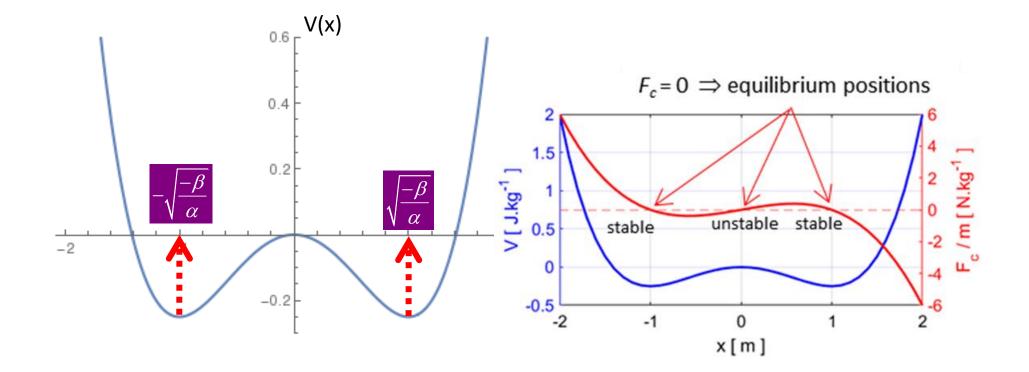


Concept of equilibrium

Duffing Oscillator

$$V(x) = \frac{1}{2}\beta x^{2} + \frac{1}{4}\alpha x^{4}, \quad \beta < 0$$

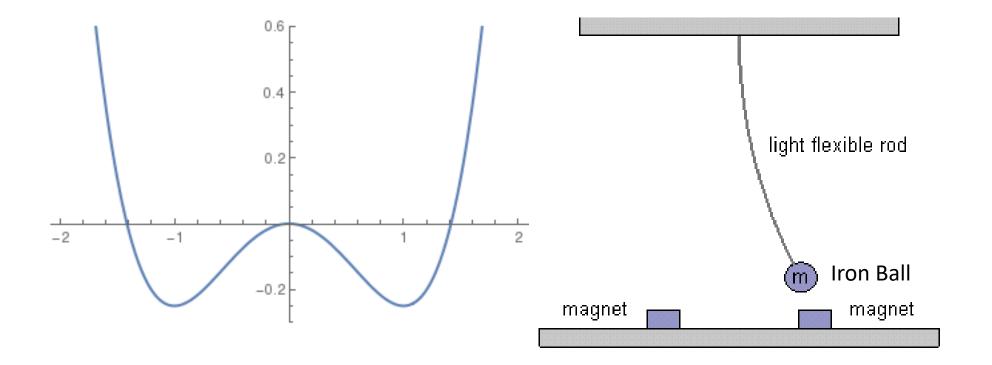
Component of Force F(x) =
$$-\frac{dV(x)}{dx} = -\beta x - \alpha x^3$$



Velocity Vs. Position plot



Physical Example of double well



Duffing Oscillator (Georg Duffing, German engineer)

