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Recap 
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Feedforward Network and 
Backpropagation 
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Backpropagation algorithm 

n  Fully connected feed forward network 
n  Pure FF network (no jumping of 

connections over layers) 

Hidden layers 

Input layer            
(n i/p neurons) 

Output layer    
(m o/p 
neurons) 
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General Backpropagation Rule 
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•  General weight updating rule: 

•  Where  

for outermost layer 

for hidden layers 
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Recurrent Neural Network 
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Sequence processing m/c 
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E.g. POS Tagging 
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Purchased Videocon machine 

VBD NNP NN 
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Decision on a piece of text 

E.g. Sentiment Analysis 
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Positive  
sentiment 
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Notation: input and state 
n  xt : input at time step t 
n  st : hidden state at time step t. It is the 

“memory” of the network. 
n  st= f(U.xt+Wst-1) U and W matrices are 

learnt 

n  f is Usually tanh or ReLU (approximated by 
softplus) 
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Tanh, ReLU (rectifier linear 
unit) and Softplus 
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Notation: output 
n  ot is the output at step t 

n  For example, if we wanted to predict 
the next word in a sentence it would be 
a vector of probabilities across our 
vocabulary 

n  ot=softmax(V.st) 
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Backpropagation through time 
(BPTT algorithm) 

n  The forward pass at each time step. 
n    
n  The backward pass computes the error 

derivatives at each time step.  

n  After the backward pass we add 
together the derivatives at all the 
different times for each weight. 
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A recurrent net for binary 
addition 
•  Two input units and one output 

unit. 
•  Given two input digits at each 

time step. 
•  The desired output at each time 

step is the output for the column 
that was provided as input two 
time steps ago. 
–  It takes one time step to 

update the hidden units 
based on the two input 
digits. 

–  It takes another time step for 
the hidden units to cause the 
output. 

 

0 0 1 1 0 1 0 0 

0 1 0 0 1 1 0 1 

1 0 0 0 0 0 0 1 

time 
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The connectivity of the 
network 

•  The input units have 
feed forward 
connections 

•  Allow them to vote 
for the next hidden 
activity pattern. 

3 fully interconnected hidden 
units 
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What the network learns 
n  Learns four distinct patterns of activity for the 

3 hidden units.  

n  Patterns correspond to the nodes in the finite 
state automaton 

n  Nodes in FSM are like activity vectors 

n  The automaton is restricted to be in exactly 
one state at each time 

n  The hidden units are restricted to have exactly 
one vector of activity at each time. 
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Recall: Backpropagation Rule 
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•  General weight updating rule: 

•  Where  

for outermost layer 

for hidden layers 
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The problem of exploding or 
vanishing gradients 

–  If the weights are  small, the gradients shrink 
exponentially 

–  If the weights are big the gradients grow 
exponentially. 

•  Typical feed-forward neural nets can cope with 
these exponential effects because they only 
have a few hidden layers. 
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LSTM 

(Ack: Lecture notes of Taylor 
Arnold, Yale and 

http://colah.github.io/posts/
2015-08-Understanding-LSTMs/)  
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LSTM: a variation of vanilla 
RNN 
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Vanilla RNN 



LSTM: complexity within the 
block 
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Central idea 

n  Memory cell maintains its state over 
time 

n  Non-linear gating units regulate the 
information flow into and out of the cell 
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A simple line diagram for 
LSTM 
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Stepping through Constituents 
of LSTM 
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Again: Example of Refrigerator 
complaint 

n  Visiting service person is becoming 
rarer and rarer,  
  (ambiguous! ‘visit to service person’ OR ‘visit by service 

 person’?) 
 … 

n  and I am regretting/appreciating 
my decision to have bought the 
refrigerator from this company 
  (appreciating à ‘to’; regretting à ‘by’) 
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Possibilities 
n  ‘Visiting’: ‘visit to’ or ‘visit 

by’ (ambiguity, syntactic opacity) 

n  Problem: solved or unsolved (not 
known, semantic opacity) 

n  ‘Appreciating’/’Regretting’: transparent; 
available on the surface 
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4 possibilities (states) 
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Clue-1 Clue-2 Problem Sentiment 

Visit to service 
person 

Appreciating solved Positive 

Visit to service 
person 

Appreciating Not solved Not making 
sense! 
Incoherent 

Visit to service 
person 

Regretting solved May be reverse 
sarcasm 

Visit to service 
person 

Regretting Not solved Negative  



4 possibilities (states) 
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Clue-1 Clue-2 Problem Sentiment 

Visit by service 
person 

Appreciating solved Positive 

Visit by service 
person 

Appreciating Not solved May be sarcastic 

Visit by service 
person 

Regretting solved May be reverse 
sarcasm 

Visit by service 
person 

Regretting Not solved Negative  



LSTM constituents: Cell State 
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The first and foremost component- the controller of flow of information 



LSTM constituents- Forget 
Gate 
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Helps forget irrelevant information. Sigmoid function. Output is between  
0 and 1. Because of product, close to 1 will be full pass, close to 0 no pass 



LSTM constituents: Input gate 
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tanh produces a cell state vector; multiplied with input gate which again  
0-1 controls what and how much input goes FOWARD   



Cell state operation 
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Finally 
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Better picture (the one we 
started with) 
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Another picture 
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LSTM schematic greff et al. LSTM a Space 
Odyssey, arxiv 2015 
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Legend 
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Required mathematics 
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Training of LSTM 
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Many layers and gates 

n  Though complex, in principle possible to 
train 

n  Gates are also sigmoid or tanh networks 

n  Remember the FUNDAMENTAL 
backpropagation rule 
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General Backpropagation Rule 
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•  General weight updating rule: 

•  Where  

for outermost layer 

for hidden layers 
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LSTM tools 

n  Tensorflow, Ocropus, RNNlib etc. 

n  Tools do everything internally 

n  Still insights and concepts are inevitable 
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LSTM applications 
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Many applications 
n  Language modeling (The tensorflow tutorial on PTB is a good 

place to start Recurrent Neural Networks) character and word 
level LSTM’s are used 

n  Machine Translation also known as sequence to sequence 
learning (https://arxiv.org/pdf/1409.3215.pdf) 

n  Image captioning (with and without attention, 
https://arxiv.org/pdf/1411.4555v...) 

n  Hand writing generation (http://arxiv.org/pdf/1308.0850v5...) 
n  Image generation using attention models - my favorite (

https://arxiv.org/pdf/1502.04623...) 
n  Question answering (http://www.aclweb.org/anthology/...) 
n  Video to text (https://arxiv.org/pdf/1505.00487...) 
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Deep Learning Based Seq2Seq 
Models and POS Tagging 

Acknowledgement: Anoop Kunchukuttan, PhD Scholar, IIT Bombay 
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So far we are seen POS tagging as a sequence labelling task 

For every element, predict the tag/label (using 
function f ) 

I read the book 

f f f f

PRP VB DT NN 

●  Length of output 
sequence is same as 
input sequence 
●  Prediction of tag at 

time t can use only the 
words seen till time t 
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I read the book 

PRP VB DT NN 

F 

We can also look at POS tagging as a sequence to sequence transformation 
problem 

Read the entire sequence and predict the output sequence (using 
function F) 

●  Length of output 
sequence need not be 
the same as input 
sequence 
●  Prediction at any time 

step t has access to the 
entire input 
●  A more general 

framework than 
sequence labelling 
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Sequence to Sequence transformation is a more general framework than 
sequence labelling 

  
●  Many other problems can be expressed as sequence to sequence 

transformation 

○  e.g. machine translation, summarization, question answering, dialog 

●  Adds more capabilities which can be useful for problems like MT:  

○  many → many mappings: insertion/deletion to words, one-one 

mappings  

○  non-monotone mappings: reordering of words  

●  For POS tagging, these capabilites are not required 
 

How does a sequence to sequence model work? Let’s see two paradigms 

15 jun, 2017 53 lgsoft:nlp:lstm:pushpak 



Encode - Decode Paradigm 

Use two RNN networks: the encoder and 
the decoder 

PRP DT VB NN 

I read the book 

s1 s1 s3 s0 

s4 

h0 h1 h2 h3 

(1) Encoder 
processes one 
sequences at a 

time 

(4) Decoder 
generates one 
element at a 

time 

(2) A representation 
of the sentence is 

generated 

(3) This is used 
to initialize the 
decoder state 

Encoding 

Decodin
g 

<EO
S> 

h4 

(5)… continue till 
end of sequence 
tag is generated 
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This approach reduces the entire sentence representation to a 
single vector 

Two problems with this design choice:  

●  This is not sufficient to represent to capture all the syntactic and 
semantic complexities of a sentence 
○  Solution: Use a richer representation for the sentences 

●  Problem of capturing long term dependencies: The decoder RNN will 
not be able to able to make use of source sentence representation after 
a few time steps 
○  Solution: Make source sentence information when making the next 

prediction 
○  Even better, make RELEVANT source sentence information 

available  

These solutions motivate the next paradigm 
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Encode - Attend - Decode Paradigm 

I read the book 

s1 s2 s3 s0 

s4 

Annotation 
vectors 

Represent the source 
sentence by the set of 
output vectors from the 
encoder 
 
Each output vector at time t 
is a contextual 
representation of the input 
at time t 
 
Note: in the encoder-
decode paradigm, we 
ignore the encoder outputs 
 
Let’s call these encoder 
output vectors annotation 
vectors 
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How should the decoder use the set of annotation vectors while predicting 
the next character? 

Key Insight:  
(1) Not all annotation vectors are equally important for prediction of the next 

element 
(2) The annotation vector to use next depends on what has been generated so 

far by the decoder 
 
eg. To generate the 3rd POS tag, the 3rd annotation vector (hence 3rd word) is 
most important 
 
One way to achieve this:  
Take a weighted average of the annotation vectors, with more weight to 
annotation vectors which need more focus or attention 
 
This averaged context vector is an input to the decoder  
 
 
 

For generation of ith output character:  
ci : context vector  
aij : annotation weight for the jth annotation 
vector 
oj: jth annotation vector  
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PRP 

h0 h1 

o1 o2 o3 o4 

c1 

a11  a12 a13 

a14 

Let’s see an example of how the attention 
mechanism works  
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PRP 

h0 h1 

o1 o2 o3 o4 

c2 

a21  a22 
a23 

a24 

VB 

h2 
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PRP 

h0 h1 

o1 o2 o3 o4 

c3 

a31  a32 a33 

a34 

VB DT 

h3 
h2 
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PRP 

h0 h1 

o1 o2 o3 o4 

c4 

a41  

a42 
a43 

a44 

VB DT 

h3 h2 

NN 

h4 
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PRP 

h0 h1 

o1 o2 o3 o4 

c5 

a51  

a52 
a53 

a54 

VB DT 

h3 h2 

NN <EOS
> 

h4 h5 
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But we do not know the attention weights?  
How do we find them? 

Let the training data help you decide!! 

Idea: Pick the attention weights that maximize the POS 
tagging accuracy 

  (more precisely, decrease training data 
loss) Have an attention function that predicts the attention weights:  

 
aij = A(oj,hi;o) 

 
A could be implemented as a feedforward network which is a component of the 
overall network 
 
Then training the attention network with the rest of the network ensures that 
the attention weights are learnt to minimize the translation loss 
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OK, but do the attention weights actually show focus on 
certain parts? 

Here is an example of how attention weights represent a soft alignment for 
machine translation 
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Let’s go back to the encoder. What type of encoder cell should we use there? 

●  Basic RNN: models sequence history by maintaining state information 
○  But, cannot model long range dependencies 

●  LSTM: can model history and is better at handling long range dependencies 
 
The RNN units model only the sequence seen so far, cannot see the sequence 
ahead 
●  Can use a bidirectional RNN/LSTM 
●  This is just 2 LSTM encoders run from opposite ends of the sequence and 

resulting output vectors are composed 
 
Both types of RNN units process the sequence sequentially, hence parallelism is 
limited 
 
Alternatively, we can use a CNN 
 
●  Can operate on a sequence in parallel 
●  However, cannot model entire sequence history 
●  Model only a short local context. This may be sufficient for some 

applications or deep CNN layers can overcome the problem 
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Convolutional Neural Network 
(CNN) 
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CNN= feedforward + 
recurrent! 
n  Whatever we learnt so far in FF-BP is useful 

to understand CNN 
n  So also is the case with RNN (and LSTM) 
n  Input divided into regions and fed forward 
n  Window slides over the input: input changes, 

but ‘filter’ parameters remain same 
n  That is RNN 
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Remember Neocognitron 
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Convolution 

15 jun, 2017 lgsoft:nlp:lstm:pushpak 70 

3 

2 

4 

3 

2 

4 

3 4 

§  Matrix on the left represents an 
black and white image.  

§  Each entry corresponds to one 
pixel, 0 for black and 1 for white 
(typically it’s between 0 and 255 
for grayscale images).  

§  The sliding window is called 
a kernel, filter, or feature detector.  

§  Here we use a 3×3 filter, multiply 
its values element-wise with the 
original matrix, then sum them up.  

§  To get the full convolution we do 
this for each element by sliding the 
filter over the whole matrix. 



CNN architecture 

n  Several layers of convolution with tanh or ReLU 
applied to the results 

n  In a traditional feedforward neural network we 
connect each input neuron to each output neuron in 
the next layer. That’s also called a fully connected 
layer, or affine layer.  

n  In CNNs we use convolutions over the input layer to 
compute the output.  

n  This results in local connections, where each region 
of the input is connected to a neuron in the output 
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Learning in CNN 
n  Automatically learns the values of 

its filters 
n  For example, in Image Classification 

learn to  
n  detect edges from raw pixels in the first layer,  
n  then use the edges to detect simple shapes in the 

second layer,  
n  and then use these shapes to deter higher-level 

features, such as facial shapes in higher layers.  
n  The last layer is then a classifier that uses 

these high-level features. 
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Remember Neocognitron 
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What about NLP and CNN? 

n  Natural Match! 

n  NLP happens in 
layers 
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NLP: multilayered, 
multidimensional 

Morphology 

POS tagging 

Chunking 

Parsing 

Semantics 

Discourse and Coreference 

Increased 
Complexity  
Of 
Processing 

Algorithm 

Problem 

Language 
Hindi 

Marathi 

English 

French 
Morph 
Analysis 

Part of Speech 
Tagging 

Parsing 

Semantics 

CRF 

HMM 

MEMM 

NLP 
Trinity 
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NLP layers and CNN 

n  Morph layer à 
n  POS layer à 
n  Parse layer à 
n  Semantics layer 
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http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 



Pooling 

n  Gives invariance in translation, rotation 
and scaling 

n  Important for image recognition 

n  Role in NLP? 
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Input matrix for CNN: NLP 
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§ “image” for NLP ßà word 
vectors  
§ in the rows 

§ For a 10 word sentence using a  
100-dimensional Embedding,  

§ we would have a 10×100 matrix  
as our input 
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Credit:  Denny Britz 
 
CNN for NLP 
 



CNN Hyper parameters 

n  Narrow width vs. wide width 
n  Stride size 
n  Pooling layers 
n  Channels 
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Abhijit Mishra, Kuntal Dey and Pushpak Bhattacharyya, 
Learning Cognitive Features from Gaze Data for Sentiment and Sarcasm 
Classification Using Convolutional Neural Network, ACL 2017, Vancouver, Canada, 
July 30-August 4, 2017. 
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Learning Cognitive Features from Gaze 
Data for Sentiment and Sarcasm 
Classification 

n  In complex classification tasks like 
sentiment analysis and sarcasm 
detection, even the extraction and 
choice of features should be delegated 
to the learning system 

n  CNN  learns  features  from both gaze 
and text and uses them to classify the 
input text 
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