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Crux of NLP-ML 

n  Object A: extract parts and features 

n  Object B which is in correspondence 
with A: extract parts and features 

n  LEARN mappings of these features and 
parts 

n  Use in NEW situations: called 
DECODING 
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Thought Reader! 
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“I am hungry 
now” 



Method changes, philosophy 
does not! 

n  Classical, Statistical, DL: method 
changes NOT the fundamental principle 

n  NLP-ML works on the principle of 
establishing CORRESPONENCES 

n  Correspondence of parts 
n  Correspondence of features 
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CNN for Sentiment Analysis of 
Short Texts 

Santos, C. N. dos, & Gatti, M. (2014). Deep 
Convolutional Neural Networks for Sentiment Analysis 
of Short Texts. In COLING-2014 (pp. 69–78) 
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Directly hitting the approach… 

n  Character to Sentence Convolutional 
Neural Network (CharSCNN) 

n  Uses two convolutional layers to extract 
relevant features from words and 
sentences of any size 
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Approach cntd. 

n  The network extracts features from the 
character-level up to the sentence-level   

n  Two convolutional layers 
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Initial representations (1/2) 
n  First layer transforms words into real-

valued feature vectors (embeddings) 
n  capture morphological, syntactic and 

semantic information 

n  Fixed size word vocabulary Vwrd  
n  Fixed-sized character vocabulary Vchr    
n  Given a sentence consisting of N words 

{ w1, w2, ..., wN} , every word wn is 
converted into a vector un= [rwrd; rwch] 
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Initial representations (2/2) 
n  Two sub-vectors:  

n  Word-level embedding rwrd and character-
level embedding rwch 

n  While word-level embeddings are meant 
to capture syntactic and semantic 
information, character-level embeddings 
capture morphological and shape 
information. 
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Data set: SSTb 

n  Movie reviews and Twitter posts 

n  Stanford Sentiment Treebank (SSTb) 
(Socher et al., 2013b) 

n  Fine grained sentiment labels for 
215,154 phrases in the parsetrees of 
11,855 sentences 
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Data set: STS 
n  Introduced by Go et al. (2009) 
n  Original training set contains 1.6 million 

tweets 
n  Sample of the training data consisting 

of 80K (5%) randomly selected tweets.  
n  Development set of randomly selecting 

16K 
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Data set particulars 
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Word embeddings used 
n  Word2vec: continuous bag-of-words and skip-gram 

(Mikolov et al., 2013) 
n  December 2013 snapshot of the English Wikipedia 

corpus 
n  Word must occur at least 10 times in order to be 

included in the vocabulary, which resulted in a 
vocabulary of 870,214 entries.  

n  Used word2vec’s skip-gram method with a context 
window of size 9.  

n  Training time: 1h10min using 12 threads in a Intelr 
Xeonr E5-2643 3.30GHz machine 
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Pre-processing for word 
embedding 
n  Removal of paragraphs that are not in English 
n  Substitution of non-western characters for a special 

character 
n  Tokenization of the text using the tokenizer available 

with the Stanford POS Tagger (Manning, 2011) 
n  Removal of sentences that are less than 20 

characters long (including white spaces) or have less 
than 5 tokens 

n  Lowercase all words and substitute each numerical 
digit by a 0 (e.g., 1967 becomes 0000) 

n  Resulting clean corpus contains about 1.75 billion 
tokens. 
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Character embedding 

n  Pre-training of character-level  embeddings, 
which are initialized by randomly sampling 
each value from an uniform distribution: U 
( − r, r)= 

n  94 different characters in the SSTb corpus 
and 453 different characters in the STS 
corpus 

n  Raw (not lowercased) words are used to 
construct the character vocabularies, which 
allows the network to capture relevant 
information about capitalization 
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Character level convolutional 
feature extraction 
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Neural network hyper 
parameters 
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Results on SSTb corpus (5-
classes and binary) 
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STS: binary (positive-
negative) 
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Recap 
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Feedforward Network and 
Backpropagation 
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Backpropagation algorithm 

n  Fully connected feed forward network 
n  Pure FF network (no jumping of 

connections over layers) 

Hidden layers 

Input layer            
(n i/p neurons) 

Output layer    
(m o/p 
neurons) 

j

i
wji 

…. 

…. 

…. 

…. 
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General Backpropagation Rule 

ijj
k

kkj ooow )1()(
layernext 

−= ∑
∈

δ

)1()( jjjjj ooot −−=δ

iji jow ηδ=Δ
•  General weight updating rule: 

•  Where  

for outermost layer 

for hidden layers 
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Recurrent Neural Network 
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Sequence processing m/c 
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E.g. POS Tagging 
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Purchased Videocon machine 

VBD NNP NN 



LSTM 

(Ack: Lecture notes of Taylor 
Arnold, Yale and 

http://colah.github.io/posts/
2015-08-Understanding-LSTMs/)  
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LSTM: a variation of vanilla 
RNN 
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Vanilla RNN 



LSTM: complexity within the 
block 
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Central idea 

n  Memory cell maintains its state over 
time 

n  Non-linear gating units regulate the 
information flow into and out of the cell 
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A simple line diagram for 
LSTM 
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Example of Refrigerator 
complaint 

n  Visiting service person is becoming 
rarer and rarer,  
  (ambiguous! ‘visit to service person’ OR ‘visit by service 

 person’?) 
 … 

n  and I am regretting/appreciating 
my decision to have bought the 
refrigerator from this company 
  (appreciating à ‘to’; regretting à ‘by’) 
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Possibilities 
n  ‘Visiting’: ‘visit to’ or ‘visit 

by’ (ambiguity, syntactic opacity) 

n  Problem: solved or unsolved (not 
known, semantic opacity) 

n  ‘Appreciating’/’Regretting’: transparent; 
available on the surface 
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4 possibilities (states) 
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Clue-1 Clue-2 Problem Sentiment 

Visit to service 
person 

Appreciating solved Positive 

Visit to service 
person 

Appreciating Not solved Not making 
sense! 
Incoherent 

Visit to service 
person 

Regretting solved May be reverse 
sarcasm 

Visit to service 
person 

Regretting Not solved Negative  



4 possibilities (states) 
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Clue-1 Clue-2 Problem Sentiment 

Visit by service 
person 

Appreciating solved Positive 

Visit by service 
person 

Appreciating Not solved May be sarcastic 

Visit by service 
person 

Regretting solved May be reverse 
sarcasm 

Visit by service 
person 

Regretting Not solved Negative  



LSTM constituents: Cell State 
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The first and foremost component- the controller of flow of information 



LSTM constituents- Forget 
Gate 
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Helps forget irrelevant information. Sigmoid function. Output is between  
0 and 1. Because of product, close to 1 will be full pass, close to 0 no pass 



LSTM constituents: Input gate 
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tanh produces a cell state vector; multiplied with input gate which again  
0-1 controls what and how much input goes FOWARD   



Cell state operation 

16 jun, 2017 lgsoft:nlp:ending:pushpak 39 



16 jun, 2017 lgsoft:nlp:ending:pushpak 40 



Finally 
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Better picture (the one we 
started with) 
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Another picture 
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Training of LSTM 
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Many layers and gates 

n  Though complex, in principle possible to 
train 

n  Gates are also sigmoid or tanh networks 

n  Remember the FUNDAMENTAL 
backpropagation rule 
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General Backpropagation Rule 

ijj
k

kkj ooow )1()(
layernext 

−= ∑
∈

δ

)1()( jjjjj ooot −−=δ

iji jow ηδ=Δ
•  General weight updating rule: 

•  Where  

for outermost layer 

for hidden layers 
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LSTM tools 

n  Tensorflow, Ocropus, RNNlib etc. 

n  Tools do everything internally 

n  Still insights and concepts are inevitable 
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LSTM applications 
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Many applications 
n  Language modeling (The tensorflow tutorial on PTB is a good 

place to start Recurrent Neural Networks) character and word 
level LSTM’s are used 

n  Machine Translation also known as sequence to sequence 
learning (https://arxiv.org/pdf/1409.3215.pdf) 

n  Image captioning (with and without attention, 
https://arxiv.org/pdf/1411.4555v...) 

n  Hand writing generation (http://arxiv.org/pdf/1308.0850v5...) 
n  Image generation using attention models (

https://arxiv.org/pdf/1502.04623...) 
n  Question answering (http://www.aclweb.org/anthology/...) 
n  Video to text (https://arxiv.org/pdf/1505.00487...) 
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Convolutional Neural Network 
(CNN) 
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CNN= feedforward + 
recurrent! 
n  Whatever we learnt so far in FF-BP is useful 

to understand CNN 
n  So also is the case with RNN (and LSTM) 
n  Input divided into regions and fed forward 
n  Window slides over the input: input changes, 

but ‘filter’ parameters remain same 
n  That is RNN 
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Remember Neocognitron 
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Convolution 
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§  Matrix on the left represents an 
black and white image.  

§  Each entry corresponds to one 
pixel, 0 for black and 1 for white 
(typically it’s between 0 and 255 
for grayscale images).  

§  The sliding window is called 
a kernel, filter, or feature detector.  

§  Here we use a 3×3 filter, multiply 
its values element-wise with the 
original matrix, then sum them up.  

§  To get the full convolution we do 
this for each element by sliding the 
filter over the whole matrix. 



CNN architecture 

n  Several layers of convolution with tanh or ReLU 
applied to the results 

n  In a traditional feedforward neural network we 
connect each input neuron to each output neuron in 
the next layer. That’s also called a fully connected 
layer, or affine layer.  

n  In CNNs we use convolutions over the input layer to 
compute the output.  

n  This results in local connections, where each region 
of the input is connected to a neuron in the output 
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Learning in CNN 
n  Automatically learns the values of 

its filters 
n  For example, in Image Classification 

learn to  
n  detect edges from raw pixels in the first layer,  
n  then use the edges to detect simple shapes in the 

second layer,  
n  and then use these shapes to deter higher-level 

features, such as facial shapes in higher layers.  
n  The last layer is then a classifier that uses 

these high-level features. 
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Remember Neocognitron 
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What about NLP and CNN? 

n  Natural Match! 

n  NLP happens in 
layers 
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NLP: multilayered, 
multidimensional 

Morphology 

POS tagging 

Chunking 

Parsing 

Semantics 

Discourse and Coreference 

Increased 
Complexity  
Of 
Processing 

Algorithm 

Problem 

Language 
Hindi 

Marathi 

English 

French 
Morph 
Analysis 

Part of Speech 
Tagging 

Parsing 

Semantics 

CRF 

HMM 

MEMM 

NLP 
Trinity 
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NLP layers and CNN 

n  Morph layer à 
n  POS layer à 
n  Parse layer à 
n  Semantics layer 
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http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 



Pooling 

n  Gives invariance in translation, rotation 
and scaling 

n  Important for image recognition 

n  Role in NLP? 
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Input matrix for CNN: NLP 
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§ “image” for NLP ßà word 
vectors  
§ in the rows 

§ For a 10 word sentence using a  
100-dimensional Embedding,  

§ we would have a 10×100 matrix  
as our input 

3 

2 

4 

3 

2 

4 

3 4 
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Credit:  Denny Britz 
 
CNN for NLP 
 



CNN Hyper parameters 

n  Narrow width vs. wide width 
n  Stride size 
n  Pooling layers 
n  Channels 
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Abhijit Mishra, Kuntal Dey and Pushpak Bhattacharyya, 
Learning Cognitive Features from Gaze Data for Sentiment and Sarcasm 
Classification Using Convolutional Neural Network, ACL 2017, Vancouver, Canada, 
July 30-August 4, 2017. 
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Learning Cognitive Features from Gaze 
Data for Sentiment and Sarcasm 
Classification 

n  In complex classification tasks like 
sentiment analysis and sarcasm 
detection, even the extraction and 
choice of features should be delegated 
to the learning system 

n  CNN  learns  features  from both gaze 
and text and uses them to classify the 
input text 
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Illustration of attention: DL-POS 
Acknowledgement: Anoop Kunchukuttan, PhD Scholar, IIT Bombay 
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So far we are seen POS tagging as a sequence labelling task 

For every element, predict the tag/label (using 
function f ) 

I read the book 

f f f f

PRP VB DT NN 

●  Length of output 
sequence is same as 
input sequence 
●  Prediction of tag at 

time t can use only the 
words seen till time t 
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I read the book 

PRP VB DT NN 

F 

We can also look at POS tagging as a sequence to sequence transformation 
problem 

Read the entire sequence and predict the output sequence (using 
function F) 

●  Length of output 
sequence need not be 
the same as input 
sequence 
●  Prediction at any time 

step t has access to the 
entire input 
●  A more general 

framework than 
sequence labelling 
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Sequence to Sequence transformation is a more general framework than 
sequence labelling 

  
●  Many other problems can be expressed as sequence to sequence 

transformation 

○  e.g. machine translation, summarization, question answering, dialog 

●  Adds more capabilities which can be useful for problems like MT:  

○  many → many mappings: insertion/deletion to words, one-one 

mappings  

○  non-monotone mappings: reordering of words  

●  For POS tagging, these capabilites are not required 
 

How does a sequence to sequence model work? Let’s see two paradigms 
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Encode - Decode Paradigm 

Use two RNN networks: the encoder and 
the decoder 

PRP DT VB NN 

I read the book 

s1 s1 s3 s0 

s4 

h0 h1 h2 h3 

(1) Encoder 
processes one 
sequences at a 

time 

(4) Decoder 
generates one 
element at a 

time 

(2) A representation 
of the sentence is 

generated 

(3) This is used 
to initialize the 
decoder state 

Encoding 

Decodin
g 

<EO
S> 

h4 

(5)… continue till 
end of sequence 
tag is generated 
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This approach reduces the entire sentence representation to a 
single vector 

Two problems with this design choice:  

●  This is not sufficient to represent to capture all the syntactic and 
semantic complexities of a sentence 
○  Solution: Use a richer representation for the sentences 

●  Problem of capturing long term dependencies: The decoder RNN will 
not be able to able to make use of source sentence representation after 
a few time steps 
○  Solution: Make source sentence information when making the next 

prediction 
○  Even better, make RELEVANT source sentence information 

available  

These solutions motivate the next paradigm 
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Encode - Attend - Decode Paradigm 

I read the book 

s1 

s2 

s3 s0 

s4 

Annotation 
vectors 

Represent the source 
sentence by the set of 
output vectors from the 
encoder 
 
Each output vector at time t 
is a contextual 
representation of the input 
at time t 
 
Let’s call these encoder 
output vectors annotation 
vectors 
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How should the decoder use the set of annotation vectors while predicting 
the next character? 

Key Insight:  
(1) Not all annotation vectors are equally important for prediction of the next 

element 
(2) The annotation vector to use next depends on what has been generated so 

far by the decoder 
 
eg. To generate the 3rd POS tag, the 3rd annotation vector (hence 3rd word) is 
most important 
 
One way to achieve this:  
Take a weighted average of the annotation vectors, with more weight to 
annotation vectors which need more focus or attention 
 
This averaged context vector is an input to the decoder  
 
 
 

For generation of ith output character:  
ci : context vector  
aij : annotation weight for the jth annotation 
vector 
oj: jth annotation vector  
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PRP 

h0 h1 

o1 o2 o3 o4 

c1 

a11  a12 a13 

a14 

Let’s see an example of how the attention 
mechanism works  
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PRP 

h0 h1 

o1 o2 o3 o4 

c2 

a21  a22 
a23 

a24 

VB 

h2 
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PRP 

h0 h1 

o1 o2 o3 o4 

c3 

a31  a32 a33 

a34 

VB DT 

h3 
h2 
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PRP 

h0 h1 

o1 o2 o3 o4 

c4 

a41  

a42 
a43 

a44 

VB DT 

h3 h2 

NN 

h4 
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PRP 

h0 h1 

o1 o2 o3 o4 

c5 

a51  

a52 
a53 

a54 

VB DT 

h3 h2 

NN <EOS
> 

h4 h5 
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But we do not know the attention weights?  
How do we find them? 

Let the training data help you decide!! 

Idea: Pick the attention weights that maximize the POS 
tagging accuracy 
 
(more precisely, decrease training data loss) 

Have an attention function that predicts the attention weights:  
 

aij = A(oj,hi;o) 
 
A could be implemented as a feedforward network which is a component of the 
overall network 
 
Then training the attention network with the rest of the network ensures that 
the attention weights are learnt to minimize the translation loss 
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OK, but do the attention weights actually show focus on 
certain parts? 

Here is an example of how attention weights represent a soft alignment for 
machine translation 
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Let’s go back to the encoder. What type of encoder cell should we use there? 

●  Basic RNN: models sequence history by maintaining state information 
○  But, cannot model long range dependencies 

●  LSTM: can model history and is better at handling long range dependencies 
 
The RNN units model only the sequence seen so far, cannot see the sequence 
ahead 
●  Can use a bidirectional RNN/LSTM 
●  This is just 2 LSTM encoders run from opposite ends of the sequence and 

resulting output vectors are composed 
 
Both types of RNN units process the sequence sequentially, hence parallelism is 
limited 
 
Alternatively, we can use a CNN 
 
●  Can operate on a sequence in parallel 
●  However, cannot model entire sequence history 
●  Model only a short local context. This may be sufficient for some 

applications or deep CNN layers can overcome the problem 
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Other applications of Attention 
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Teaching Machines to Read and Comprehend 
Karl Moritz Hermann, Tomáš Kočiský, 
Edward Grefenstette, Lasse Espeholt, Will Kay, 
Mustafa Suleyman, Phil Blunsom, arxiv, 2015 

16 jun, 2017 lgsoft:nlp:ending:pushpak 86 

Used RNN to read a 
text, read a 
(synthetically 
generated) question, 
and then produce an 
answer.  
 
By visualizing the 
attention matrix we 
can see where the 
networks “looks” 
while it tries to find 
the answer to the 
question 



Show, Attend and Tell: Neural Image Caption Generation 
with Visual Attention 
Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, 
Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio 
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Use a Convolutional Neural 
Network to “encode” the 
image, and a Recurrent 
Neural Network with 
attention mechanisms to 
generate a description.  
 
By visualizing the attention 
weights, we interpret what 
the model is looking at 
while generating a word 



Hands-on sessions that were 
done, 12-16 June, 2017 
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DL Sessions @ LG 

Prof. Pushpak Bhattacharyya 
Dr. Asif Iqbal, Dr. Sriparna 
Rudramurthy, Kevin Patel 
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Outline 

n  Day 1 

n  Day 2 

n  Day 3 

n  Day 4 
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Day 1 (Theory) 

n  Theory: Review of feed forward neural 
networks and beginning of recurrent 
neural networks 
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Day 1 (Practical) 

n  SVMs on artificially generated datasets 
n  Classifying linearly separable data with linear SVM 
n  Failure to classify non-linear data (concentric 

circles) with linear SVM 
n  Using polynomial kernel for successful classification 

n  Visualizing support vectors 
n  Effect of regularization parameter on number of 

support vectors 
n  Tensorflow basics 

n  Along with basics of Tensorboard 
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Day 2 (Theory) 

n  Recurrent Neural Network continued 
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Day 2 (Practical) 

n  Binary addition using Feed Forward Network 
n  Coded by LG Team 
n  Experienced the inability of FFNs to handle 

arbitrary length sequences 
n  Binary addition using Recurrent Neural Network 

n  Understanding the RNN API in tensorflow 
n  Sentiment Analysis Example 

n  Showing shortcomings of FFNs 
n  Hinting how RNNs and CNNs may help 
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Day 3 (Theory) 

n  A discussion on word embeddings  
n  Focus on intuition, usage and evaluation 

n  A discussion on CNNs  
n  Focus on their ability to extract features 

and achieve positional invariance 
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Day 3 (Practical) 

n  Word2vec trained on SMS corpus 
n  Nearest neighbors of wife 

n  Unbearable 
n  Torture 
n  BP (Blood Pressure) 

n  Dimensions - (20, 100, 500) – did not 
change the ranking 
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Day 3 (Practical) (contd.) 

n  Sentiment Analysis Example using CNN 
n  Given examples of the form ‘the movie was 

very good’, ‘the movie was very awful’, the 
network learned ‘very good’ and ‘very 
awful’ to be important features 

n  Was able to correctly classify ‘very good 
was the movie’ 

n  FFNs failed to do so 
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Day 3 (Practical) (contd.) 

n  SMS Classification using CNN 
n  LG team asked to compute list of features - 

like ‘very good’ in the previous case – for 
different classes in their dataset 

n  Program taking too long on CPUs. To be 
resumed the next day 

16 jun, 2017 98 lgsoft:nlp:ending:pushpak 



Day 4 (Theory) 

n  LSTMs motivated by example 
n  Working of LSTMs covered 

16 jun, 2017 99 lgsoft:nlp:ending:pushpak 



Day 4 (Practical) 

n  Previous day’s CNN runs at LG 
incomplete 
n  Crashed / far away from completion 
n  Lack of GPUs are a limitation 

n  Analysis on model trained by Rudra 
n  My wife is beautiful -> Emergency/Police 
n  His wife is beautiful -> Emergency/Health 
n  Someone’s wife is beautiful -> TODO 
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Day 4 (Practical) (contd.) 
n  Analysis revealed shortcomings of data 

n  Wife’s occurrence more than 40% in Police category 
n  0 times in General category 
n  Wrong priors thus introduced in the model 
n  Need more data for General category to address this 

n  Suggested multi-step classification 
n  First, classify whether the SMS belongs to general 

category or not 
n  If not general, then classify into subclasses such as 

Police, Fire, etc. 
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Day 4 (Practical) (contd.) 

n  Suggested gathering dummy data for 
General category 
n  Clean current SMS corpus 
n  POS tag the data 
n  Form a vocab of content words 
n  For each word in vocab, extract K 

sentences from Wikipedia. Consider these 
sentences as General category sms 
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Day 4 (Practical) (contd.) 

n  Results of Rudra’s models 

Model Accuracy 

CNN 60% 

RNN 65% 

RNN + Max Pooling 66% 
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Thank You 
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