
Natural Language Processing

Pushpak Bhattacharyya
CSE Dept,

IIT Patna and Bombay

CNN, Attention, Summing Up

16 jun, 2017 lgsoft:nlp:ending:pushpak 1

Crux of NLP-ML

n  Object A: extract parts and features

n  Object B which is in correspondence
with A: extract parts and features

n  LEARN mappings of these features and
parts

n  Use in NEW situations: called
DECODING

16 jun, 2017 lgsoft:nlp:ending:pushpak 2

Thought Reader!

16 jun, 2017 lgsoft:nlp:ending:pushpak 3

“I am hungry
now”

Method changes, philosophy
does not!

n  Classical, Statistical, DL: method
changes NOT the fundamental principle

n  NLP-ML works on the principle of
establishing CORRESPONENCES

n  Correspondence of parts
n  Correspondence of features

16 jun, 2017 lgsoft:nlp:ending:pushpak 4

CNN for Sentiment Analysis of
Short Texts

Santos, C. N. dos, & Gatti, M. (2014). Deep
Convolutional Neural Networks for Sentiment Analysis
of Short Texts. In COLING-2014 (pp. 69–78)

16 jun, 2017 lgsoft:nlp:ending:pushpak 5

Directly hitting the approach…

n  Character to Sentence Convolutional
Neural Network (CharSCNN)

n  Uses two convolutional layers to extract
relevant features from words and
sentences of any size

16 jun, 2017 lgsoft:nlp:ending:pushpak 6

Approach cntd.

n  The network extracts features from the
character-level up to the sentence-level

n  Two convolutional layers

16 jun, 2017 lgsoft:nlp:ending:pushpak 7

Initial representations (1/2)
n  First layer transforms words into real-

valued feature vectors (embeddings)
n  capture morphological, syntactic and

semantic information

n  Fixed size word vocabulary Vwrd
n  Fixed-sized character vocabulary Vchr
n  Given a sentence consisting of N words

{ w1, w2, ..., wN} , every word wn is
converted into a vector un= [rwrd; rwch]

16 jun, 2017 lgsoft:nlp:ending:pushpak 8

Initial representations (2/2)
n  Two sub-vectors:

n  Word-level embedding rwrd and character-
level embedding rwch

n  While word-level embeddings are meant
to capture syntactic and semantic
information, character-level embeddings
capture morphological and shape
information.

16 jun, 2017 lgsoft:nlp:ending:pushpak 9

Data set: SSTb

n  Movie reviews and Twitter posts

n  Stanford Sentiment Treebank (SSTb)
(Socher et al., 2013b)

n  Fine grained sentiment labels for
215,154 phrases in the parsetrees of
11,855 sentences

16 jun, 2017 lgsoft:nlp:ending:pushpak 10

Data set: STS
n  Introduced by Go et al. (2009)
n  Original training set contains 1.6 million

tweets
n  Sample of the training data consisting

of 80K (5%) randomly selected tweets.
n  Development set of randomly selecting

16K

16 jun, 2017 lgsoft:nlp:ending:pushpak 11

Data set particulars

16 jun, 2017 lgsoft:nlp:ending:pushpak 12

Word embeddings used
n  Word2vec: continuous bag-of-words and skip-gram

(Mikolov et al., 2013)
n  December 2013 snapshot of the English Wikipedia

corpus
n  Word must occur at least 10 times in order to be

included in the vocabulary, which resulted in a
vocabulary of 870,214 entries.

n  Used word2vec’s skip-gram method with a context
window of size 9.

n  Training time: 1h10min using 12 threads in a Intelr
Xeonr E5-2643 3.30GHz machine

16 jun, 2017 lgsoft:nlp:ending:pushpak 13

Pre-processing for word
embedding
n  Removal of paragraphs that are not in English
n  Substitution of non-western characters for a special

character
n  Tokenization of the text using the tokenizer available

with the Stanford POS Tagger (Manning, 2011)
n  Removal of sentences that are less than 20

characters long (including white spaces) or have less
than 5 tokens

n  Lowercase all words and substitute each numerical
digit by a 0 (e.g., 1967 becomes 0000)

n  Resulting clean corpus contains about 1.75 billion
tokens.

16 jun, 2017 lgsoft:nlp:ending:pushpak 14

Character embedding

n  Pre-training of character-level embeddings,
which are initialized by randomly sampling
each value from an uniform distribution: U
(− r, r)=

n  94 different characters in the SSTb corpus
and 453 different characters in the STS
corpus

n  Raw (not lowercased) words are used to
construct the character vocabularies, which
allows the network to capture relevant
information about capitalization

16 jun, 2017 lgsoft:nlp:ending:pushpak 15

Character level convolutional
feature extraction

16 jun, 2017 lgsoft:nlp:ending:pushpak 16

Neural network hyper
parameters

16 jun, 2017 lgsoft:nlp:ending:pushpak 17

Results on SSTb corpus (5-
classes and binary)

16 jun, 2017 lgsoft:nlp:ending:pushpak 18

STS: binary (positive-
negative)

16 jun, 2017 lgsoft:nlp:ending:pushpak 19

Recap

16 jun, 2017 lgsoft:nlp:ending:pushpak 20

Feedforward Network and
Backpropagation

16 jun, 2017 21 lgsoft:nlp:ending:pushpak

Backpropagation algorithm

n  Fully connected feed forward network
n  Pure FF network (no jumping of

connections over layers)

Hidden layers

Input layer
(n i/p neurons)

Output layer
(m o/p
neurons)

j

i
wji

….

….

….

….

16 jun, 2017 22 lgsoft:nlp:ending:pushpak

General Backpropagation Rule

ijj
k

kkj ooow)1()(
layernext

−= ∑
∈

δ

)1()(jjjjj ooot −−=δ

iji jow ηδ=Δ
•  General weight updating rule:

•  Where

for outermost layer

for hidden layers

16 jun, 2017 23 lgsoft:nlp:ending:pushpak

Recurrent Neural Network

16 jun, 2017 lgsoft:nlp:ending:pushpak 24

Sequence processing m/c

16 jun, 2017 lgsoft:nlp:ending:pushpak 25

E.g. POS Tagging

16 jun, 2017 lgsoft:nlp:ending:pushpak 26

Purchased Videocon machine

VBD NNP NN

LSTM

(Ack: Lecture notes of Taylor
Arnold, Yale and

http://colah.github.io/posts/
2015-08-Understanding-LSTMs/)

16 jun, 2017 lgsoft:nlp:ending:pushpak 27

LSTM: a variation of vanilla
RNN

16 jun, 2017 lgsoft:nlp:ending:pushpak 28

Vanilla RNN

LSTM: complexity within the
block

16 jun, 2017 lgsoft:nlp:ending:pushpak 29

Central idea

n  Memory cell maintains its state over
time

n  Non-linear gating units regulate the
information flow into and out of the cell

16 jun, 2017 lgsoft:nlp:ending:pushpak 30

A simple line diagram for
LSTM

16 jun, 2017 lgsoft:nlp:ending:pushpak 31

Example of Refrigerator
complaint

n  Visiting service person is becoming
rarer and rarer,
 (ambiguous! ‘visit to service person’ OR ‘visit by service

 person’?)
 …

n  and I am regretting/appreciating
my decision to have bought the
refrigerator from this company
 (appreciating à ‘to’; regretting à ‘by’)

16 jun, 2017 lgsoft:nlp:ending:pushpak 32

Possibilities
n  ‘Visiting’: ‘visit to’ or ‘visit

by’ (ambiguity, syntactic opacity)

n  Problem: solved or unsolved (not
known, semantic opacity)

n  ‘Appreciating’/’Regretting’: transparent;
available on the surface

16 jun, 2017 lgsoft:nlp:ending:pushpak 33

4 possibilities (states)

16 jun, 2017 lgsoft:nlp:ending:pushpak 34

Clue-1 Clue-2 Problem Sentiment

Visit to service
person

Appreciating solved Positive

Visit to service
person

Appreciating Not solved Not making
sense!
Incoherent

Visit to service
person

Regretting solved May be reverse
sarcasm

Visit to service
person

Regretting Not solved Negative

4 possibilities (states)

16 jun, 2017 lgsoft:nlp:ending:pushpak 35

Clue-1 Clue-2 Problem Sentiment

Visit by service
person

Appreciating solved Positive

Visit by service
person

Appreciating Not solved May be sarcastic

Visit by service
person

Regretting solved May be reverse
sarcasm

Visit by service
person

Regretting Not solved Negative

LSTM constituents: Cell State

16 jun, 2017 lgsoft:nlp:ending:pushpak 36

The first and foremost component- the controller of flow of information

LSTM constituents- Forget
Gate

16 jun, 2017 lgsoft:nlp:ending:pushpak 37

Helps forget irrelevant information. Sigmoid function. Output is between
0 and 1. Because of product, close to 1 will be full pass, close to 0 no pass

LSTM constituents: Input gate

16 jun, 2017 lgsoft:nlp:ending:pushpak 38

tanh produces a cell state vector; multiplied with input gate which again
0-1 controls what and how much input goes FOWARD

Cell state operation

16 jun, 2017 lgsoft:nlp:ending:pushpak 39

16 jun, 2017 lgsoft:nlp:ending:pushpak 40

Finally

16 jun, 2017 lgsoft:nlp:ending:pushpak 41

Better picture (the one we
started with)

16 jun, 2017 lgsoft:nlp:ending:pushpak 42

Another picture

16 jun, 2017 lgsoft:nlp:ending:pushpak 43

Training of LSTM

16 jun, 2017 lgsoft:nlp:ending:pushpak 44

Many layers and gates

n  Though complex, in principle possible to
train

n  Gates are also sigmoid or tanh networks

n  Remember the FUNDAMENTAL
backpropagation rule

16 jun, 2017 lgsoft:nlp:ending:pushpak 45

General Backpropagation Rule

ijj
k

kkj ooow)1()(
layernext

−= ∑
∈

δ

)1()(jjjjj ooot −−=δ

iji jow ηδ=Δ
•  General weight updating rule:

•  Where

for outermost layer

for hidden layers

16 jun, 2017 46 lgsoft:nlp:ending:pushpak

LSTM tools

n  Tensorflow, Ocropus, RNNlib etc.

n  Tools do everything internally

n  Still insights and concepts are inevitable

16 jun, 2017 lgsoft:nlp:ending:pushpak 47

LSTM applications

16 jun, 2017 lgsoft:nlp:ending:pushpak 48

Many applications
n  Language modeling (The tensorflow tutorial on PTB is a good

place to start Recurrent Neural Networks) character and word
level LSTM’s are used

n  Machine Translation also known as sequence to sequence
learning (https://arxiv.org/pdf/1409.3215.pdf)

n  Image captioning (with and without attention,
https://arxiv.org/pdf/1411.4555v...)

n  Hand writing generation (http://arxiv.org/pdf/1308.0850v5...)
n  Image generation using attention models (

https://arxiv.org/pdf/1502.04623...)
n  Question answering (http://www.aclweb.org/anthology/...)
n  Video to text (https://arxiv.org/pdf/1505.00487...)

16 jun, 2017 lgsoft:nlp:ending:pushpak 49

Convolutional Neural Network
(CNN)

16 jun, 2017 lgsoft:nlp:ending:pushpak 50

CNN= feedforward +
recurrent!
n  Whatever we learnt so far in FF-BP is useful

to understand CNN
n  So also is the case with RNN (and LSTM)
n  Input divided into regions and fed forward
n  Window slides over the input: input changes,

but ‘filter’ parameters remain same
n  That is RNN

16 jun, 2017 lgsoft:nlp:ending:pushpak 51

Remember Neocognitron

16 jun, 2017 52 lgsoft:nlp:ending:pushpak

Convolution

16 jun, 2017 lgsoft:nlp:ending:pushpak 53

3

2

4

3

2

4

3 4

§  Matrix on the left represents an
black and white image.

§  Each entry corresponds to one
pixel, 0 for black and 1 for white
(typically it’s between 0 and 255
for grayscale images).

§  The sliding window is called
a kernel, filter, or feature detector.

§  Here we use a 3×3 filter, multiply
its values element-wise with the
original matrix, then sum them up.

§  To get the full convolution we do
this for each element by sliding the
filter over the whole matrix.

CNN architecture

n  Several layers of convolution with tanh or ReLU
applied to the results

n  In a traditional feedforward neural network we
connect each input neuron to each output neuron in
the next layer. That’s also called a fully connected
layer, or affine layer.

n  In CNNs we use convolutions over the input layer to
compute the output.

n  This results in local connections, where each region
of the input is connected to a neuron in the output

16 jun, 2017 lgsoft:nlp:ending:pushpak 54

Learning in CNN
n  Automatically learns the values of

its filters
n  For example, in Image Classification

learn to
n  detect edges from raw pixels in the first layer,
n  then use the edges to detect simple shapes in the

second layer,
n  and then use these shapes to deter higher-level

features, such as facial shapes in higher layers.
n  The last layer is then a classifier that uses

these high-level features.

16 jun, 2017 lgsoft:nlp:ending:pushpak 55

Remember Neocognitron

16 jun, 2017 56 lgsoft:nlp:ending:pushpak

16 jun, 2017 57 lgsoft:nlp:ending:pushpak

What about NLP and CNN?

n  Natural Match!

n  NLP happens in
layers

16 jun, 2017 lgsoft:nlp:ending:pushpak 58

NLP: multilayered,
multidimensional

Morphology

POS tagging

Chunking

Parsing

Semantics

Discourse and Coreference

Increased
Complexity
Of
Processing

Algorithm

Problem

Language
Hindi

Marathi

English

French
Morph
Analysis

Part of Speech
Tagging

Parsing

Semantics

CRF

HMM

MEMM

NLP
Trinity

16 jun, 2017 lgsoft:nlp:ending:pushpak 59

NLP layers and CNN

n  Morph layer à
n  POS layer à
n  Parse layer à
n  Semantics layer

16 jun, 2017 lgsoft:nlp:ending:pushpak 60

16 jun, 2017 61 lgsoft:nlp:ending:pushpak

16 jun, 2017 lgsoft:nlp:ending:pushpak 62

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

Pooling

n  Gives invariance in translation, rotation
and scaling

n  Important for image recognition

n  Role in NLP?

16 jun, 2017 lgsoft:nlp:ending:pushpak 63

Input matrix for CNN: NLP

16 jun, 2017 lgsoft:nlp:ending:pushpak 64

§ “image” for NLP ßà word
vectors
§ in the rows

§ For a 10 word sentence using a
100-dimensional Embedding,

§ we would have a 10×100 matrix
as our input

3

2

4

3

2

4

3 4

16 jun, 2017 lgsoft:nlp:ending:pushpak 65

Credit: Denny Britz

CNN for NLP

CNN Hyper parameters

n  Narrow width vs. wide width
n  Stride size
n  Pooling layers
n  Channels

16 jun, 2017 lgsoft:nlp:ending:pushpak 66

Abhijit Mishra, Kuntal Dey and Pushpak Bhattacharyya,
Learning Cognitive Features from Gaze Data for Sentiment and Sarcasm
Classification Using Convolutional Neural Network, ACL 2017, Vancouver, Canada,
July 30-August 4, 2017.

16 jun, 2017 lgsoft:nlp:ending:pushpak 67

Learning Cognitive Features from Gaze
Data for Sentiment and Sarcasm
Classification

n  In complex classification tasks like
sentiment analysis and sarcasm
detection, even the extraction and
choice of features should be delegated
to the learning system

n  CNN learns features from both gaze
and text and uses them to classify the
input text

16 jun, 2017 lgsoft:nlp:ending:pushpak 68

Illustration of attention: DL-POS
Acknowledgement: Anoop Kunchukuttan, PhD Scholar, IIT Bombay

16 jun, 2017 69 lgsoft:nlp:ending:pushpak

So far we are seen POS tagging as a sequence labelling task

For every element, predict the tag/label (using
function f)

I read the book

f f f f

PRP VB DT NN

●  Length of output
sequence is same as
input sequence
●  Prediction of tag at

time t can use only the
words seen till time t

16 jun, 2017 70 lgsoft:nlp:ending:pushpak

I read the book

PRP VB DT NN

F

We can also look at POS tagging as a sequence to sequence transformation
problem

Read the entire sequence and predict the output sequence (using
function F)

●  Length of output
sequence need not be
the same as input
sequence
●  Prediction at any time

step t has access to the
entire input
●  A more general

framework than
sequence labelling

16 jun, 2017 71 lgsoft:nlp:ending:pushpak

Sequence to Sequence transformation is a more general framework than
sequence labelling

●  Many other problems can be expressed as sequence to sequence

transformation

○  e.g. machine translation, summarization, question answering, dialog

●  Adds more capabilities which can be useful for problems like MT:

○  many → many mappings: insertion/deletion to words, one-one

mappings

○  non-monotone mappings: reordering of words

●  For POS tagging, these capabilites are not required

How does a sequence to sequence model work? Let’s see two paradigms

16 jun, 2017 72 lgsoft:nlp:ending:pushpak

Encode - Decode Paradigm

Use two RNN networks: the encoder and
the decoder

PRP DT VB NN

I read the book

s1 s1 s3 s0

s4

h0 h1 h2 h3

(1) Encoder
processes one
sequences at a

time

(4) Decoder
generates one
element at a

time

(2) A representation
of the sentence is

generated

(3) This is used
to initialize the
decoder state

Encoding

Decodin
g

<EO
S>

h4

(5)… continue till
end of sequence
tag is generated

16 jun, 2017 73 lgsoft:nlp:ending:pushpak

This approach reduces the entire sentence representation to a
single vector

Two problems with this design choice:

●  This is not sufficient to represent to capture all the syntactic and
semantic complexities of a sentence
○  Solution: Use a richer representation for the sentences

●  Problem of capturing long term dependencies: The decoder RNN will
not be able to able to make use of source sentence representation after
a few time steps
○  Solution: Make source sentence information when making the next

prediction
○  Even better, make RELEVANT source sentence information

available

These solutions motivate the next paradigm
16 jun, 2017 74 lgsoft:nlp:ending:pushpak

Encode - Attend - Decode Paradigm

I read the book

s1

s2

s3 s0

s4

Annotation
vectors

Represent the source
sentence by the set of
output vectors from the
encoder

Each output vector at time t
is a contextual
representation of the input
at time t

Let’s call these encoder
output vectors annotation
vectors

16 jun, 2017 75 lgsoft:nlp:ending:pushpak

How should the decoder use the set of annotation vectors while predicting
the next character?

Key Insight:
(1) Not all annotation vectors are equally important for prediction of the next

element
(2) The annotation vector to use next depends on what has been generated so

far by the decoder

eg. To generate the 3rd POS tag, the 3rd annotation vector (hence 3rd word) is
most important

One way to achieve this:
Take a weighted average of the annotation vectors, with more weight to
annotation vectors which need more focus or attention

This averaged context vector is an input to the decoder

For generation of ith output character:
ci : context vector
aij : annotation weight for the jth annotation
vector
oj: jth annotation vector

16 jun, 2017 76 lgsoft:nlp:ending:pushpak

PRP

h0 h1

o1 o2 o3 o4

c1

a11 a12 a13

a14

Let’s see an example of how the attention
mechanism works

16 jun, 2017 77 lgsoft:nlp:ending:pushpak

PRP

h0 h1

o1 o2 o3 o4

c2

a21 a22
a23

a24

VB

h2

16 jun, 2017 78 lgsoft:nlp:ending:pushpak

PRP

h0 h1

o1 o2 o3 o4

c3

a31 a32 a33

a34

VB DT

h3
h2

16 jun, 2017 79 lgsoft:nlp:ending:pushpak

PRP

h0 h1

o1 o2 o3 o4

c4

a41

a42
a43

a44

VB DT

h3 h2

NN

h4

16 jun, 2017 80 lgsoft:nlp:ending:pushpak

PRP

h0 h1

o1 o2 o3 o4

c5

a51

a52
a53

a54

VB DT

h3 h2

NN <EOS
>

h4 h5

16 jun, 2017 81 lgsoft:nlp:ending:pushpak

But we do not know the attention weights?
How do we find them?

Let the training data help you decide!!

Idea: Pick the attention weights that maximize the POS
tagging accuracy

(more precisely, decrease training data loss)

Have an attention function that predicts the attention weights:

aij = A(oj,hi;o)

A could be implemented as a feedforward network which is a component of the
overall network

Then training the attention network with the rest of the network ensures that
the attention weights are learnt to minimize the translation loss

16 jun, 2017 82 lgsoft:nlp:ending:pushpak

OK, but do the attention weights actually show focus on
certain parts?

Here is an example of how attention weights represent a soft alignment for
machine translation

16 jun, 2017 83 lgsoft:nlp:ending:pushpak

Let’s go back to the encoder. What type of encoder cell should we use there?

●  Basic RNN: models sequence history by maintaining state information
○  But, cannot model long range dependencies

●  LSTM: can model history and is better at handling long range dependencies

The RNN units model only the sequence seen so far, cannot see the sequence
ahead
●  Can use a bidirectional RNN/LSTM
●  This is just 2 LSTM encoders run from opposite ends of the sequence and

resulting output vectors are composed

Both types of RNN units process the sequence sequentially, hence parallelism is
limited

Alternatively, we can use a CNN

●  Can operate on a sequence in parallel
●  However, cannot model entire sequence history
●  Model only a short local context. This may be sufficient for some

applications or deep CNN layers can overcome the problem

16 jun, 2017 84 lgsoft:nlp:ending:pushpak

Other applications of Attention

16 jun, 2017 lgsoft:nlp:ending:pushpak 85

Teaching Machines to Read and Comprehend
Karl Moritz Hermann, Tomáš Kočiský,
Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, Phil Blunsom, arxiv, 2015

16 jun, 2017 lgsoft:nlp:ending:pushpak 86

Used RNN to read a
text, read a
(synthetically
generated) question,
and then produce an
answer.

By visualizing the
attention matrix we
can see where the
networks “looks”
while it tries to find
the answer to the
question

Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention
Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,
Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio

16 jun, 2017 lgsoft:nlp:ending:pushpak 87

Use a Convolutional Neural
Network to “encode” the
image, and a Recurrent
Neural Network with
attention mechanisms to
generate a description.

By visualizing the attention
weights, we interpret what
the model is looking at
while generating a word

Hands-on sessions that were
done, 12-16 June, 2017

16 jun, 2017 lgsoft:nlp:ending:pushpak 88

DL Sessions @ LG

Prof. Pushpak Bhattacharyya
Dr. Asif Iqbal, Dr. Sriparna
Rudramurthy, Kevin Patel

16 jun, 2017 89 lgsoft:nlp:ending:pushpak

Outline

n  Day 1

n  Day 2

n  Day 3

n  Day 4

16 jun, 2017 90 lgsoft:nlp:ending:pushpak

Day 1 (Theory)

n  Theory: Review of feed forward neural
networks and beginning of recurrent
neural networks

16 jun, 2017 91 lgsoft:nlp:ending:pushpak

Day 1 (Practical)

n  SVMs on artificially generated datasets
n  Classifying linearly separable data with linear SVM
n  Failure to classify non-linear data (concentric

circles) with linear SVM
n  Using polynomial kernel for successful classification

n  Visualizing support vectors
n  Effect of regularization parameter on number of

support vectors
n  Tensorflow basics

n  Along with basics of Tensorboard

16 jun, 2017 92 lgsoft:nlp:ending:pushpak

Day 2 (Theory)

n  Recurrent Neural Network continued

16 jun, 2017 93 lgsoft:nlp:ending:pushpak

Day 2 (Practical)

n  Binary addition using Feed Forward Network
n  Coded by LG Team
n  Experienced the inability of FFNs to handle

arbitrary length sequences
n  Binary addition using Recurrent Neural Network

n  Understanding the RNN API in tensorflow
n  Sentiment Analysis Example

n  Showing shortcomings of FFNs
n  Hinting how RNNs and CNNs may help

16 jun, 2017 94 lgsoft:nlp:ending:pushpak

Day 3 (Theory)

n  A discussion on word embeddings
n  Focus on intuition, usage and evaluation

n  A discussion on CNNs
n  Focus on their ability to extract features

and achieve positional invariance

16 jun, 2017 95 lgsoft:nlp:ending:pushpak

Day 3 (Practical)

n  Word2vec trained on SMS corpus
n  Nearest neighbors of wife

n  Unbearable
n  Torture
n  BP (Blood Pressure)

n  Dimensions - (20, 100, 500) – did not
change the ranking

16 jun, 2017 96 lgsoft:nlp:ending:pushpak

Day 3 (Practical) (contd.)

n  Sentiment Analysis Example using CNN
n  Given examples of the form ‘the movie was

very good’, ‘the movie was very awful’, the
network learned ‘very good’ and ‘very
awful’ to be important features

n  Was able to correctly classify ‘very good
was the movie’

n  FFNs failed to do so

16 jun, 2017 97 lgsoft:nlp:ending:pushpak

Day 3 (Practical) (contd.)

n  SMS Classification using CNN
n  LG team asked to compute list of features -

like ‘very good’ in the previous case – for
different classes in their dataset

n  Program taking too long on CPUs. To be
resumed the next day

16 jun, 2017 98 lgsoft:nlp:ending:pushpak

Day 4 (Theory)

n  LSTMs motivated by example
n  Working of LSTMs covered

16 jun, 2017 99 lgsoft:nlp:ending:pushpak

Day 4 (Practical)

n  Previous day’s CNN runs at LG
incomplete
n  Crashed / far away from completion
n  Lack of GPUs are a limitation

n  Analysis on model trained by Rudra
n  My wife is beautiful -> Emergency/Police
n  His wife is beautiful -> Emergency/Health
n  Someone’s wife is beautiful -> TODO

16 jun, 2017 100 lgsoft:nlp:ending:pushpak

Day 4 (Practical) (contd.)
n  Analysis revealed shortcomings of data

n  Wife’s occurrence more than 40% in Police category
n  0 times in General category
n  Wrong priors thus introduced in the model
n  Need more data for General category to address this

n  Suggested multi-step classification
n  First, classify whether the SMS belongs to general

category or not
n  If not general, then classify into subclasses such as

Police, Fire, etc.

16 jun, 2017 101 lgsoft:nlp:ending:pushpak

Day 4 (Practical) (contd.)

n  Suggested gathering dummy data for
General category
n  Clean current SMS corpus
n  POS tag the data
n  Form a vocab of content words
n  For each word in vocab, extract K

sentences from Wikipedia. Consider these
sentences as General category sms

16 jun, 2017 102 lgsoft:nlp:ending:pushpak

Day 4 (Practical) (contd.)

n  Results of Rudra’s models

Model Accuracy

CNN 60%

RNN 65%

RNN + Max Pooling 66%

16 jun, 2017 103 lgsoft:nlp:ending:pushpak

Thank You

16 jun, 2017 104 lgsoft:nlp:ending:pushpak

