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Outline
● Deep Learning
● AutoEncoder
● Convolutional Neural Network (CNN)
● Recurrent Neural Network (RNN)
● Long Short Term Memory (LSTM)
● Gated Recurrent Unit (GRU)
● Attention Mechanism
● Few NLP Applications
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Few key terms to start with
● Neurons
● Layers

○ Input, Output and Hidden 
● Activation functions

○  Sigmoid, Tanh, Relu
● Softmax
● Weight matrices 

○ Input → Hidden, Hidden → Hidden, Hidden → Output 
● Backpropagation

○ Optimizers
■ Gradient Descent (GD), Stochastic Gradient Descent (SGD), Adam etc.

○ Error (Loss) functions 
■ Mean-Squared Error, Cross-Entropy etc.  

○ Gradient of error
○ Passes: Forward pass and Backward pass
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History of Neural Network and Deep learning
● Neural Network and Perceptron learning algorithm: [McCulloch and Pitts 

(1943), Rosenblatt (1957)]
● Backpropagation: Rumelhart, Hinton and Williams, 1986

○ Theoretically, a neural network can have any number of hidden layers.
○ But, in practice, it rarely had more than one layer hidden layers.

■ Computational issue: Limited computing power
■ Algorithmical issues: Vanishing gradient and Exploding gradient.

● Beginning of Deep learning: Late 1990’s and early 2000’s
○ Solutions:

■ Computational issue: Advance computing powers such as GPUs, TPUs
■ Algorithmical issues

● Pre-training (e.g., AutoEncoder, RBM)
● Better architectures (e.g., LSTM)
● Better activation functions (e.g., Relu) 4



Deep Learning vs Machine Learning Paradigm
● The main advantage of deep learning based approaches is the trainable 

features, i.e., it extracts relevant features, on its own, during training.
● Requires minimal human intervention.
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Why Deep Learning?
● Recall, artificial neural network tries to 

mimic the functionality of a brain.
● In brain, computations happen in layers.

● View of representation
○ As we go up in the network, we get high-level 

representations ⇒ Assists in performing more 
complex tasks. 
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Why Deep Architectures were hard to train?
● General weight-updation rule

● For lower-layers in deep architecture
○ δj  will vanish, if it is less than 1
○ δj  will explode, if it is more than 1 
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Layer-wise pre-training
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AutoEncoder
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AutoEncoder: Layer 1
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AutoEncoder: Layer 2
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AutoEncoder: Layer 3
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AutoEncoder: Pre-trained network 
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Deep Learning Architectures
● Convolutional neural network (CNN)

○ Aims to extract the local spatial features

● Recurrent neural network (RNN)
○ Exploits the sequential information of a sentence (sentence is a sequence of words).
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Convolutional Neural Network
LeCunn and Bengio (1995)
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Convolutional Neural Networks (CNN) 
● A CNN consists of a series (≥ 1) of convolution layer and pooling layer.
● Convolutional operation extracts the feature representations from the input 

data.
○ Shares the convolution filters over different spatial locations, in a quest of extracting 

location-invariant features in the input.
○ Shape and weights of the convolution filter determine the features to be extracted from the 

input data.
○ In general, multiple filters of different shapes are used to ensure the diversity in the extracted 

features.

● Pooling operation extracts the most relevant features from the convoluted 
features. Similar to downsampling in image-processing. 
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CNN
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Recurrent Neural Network (RNN) 
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Recurrent Neural Network (RNN)
● A neural network with feedback connections
● Enable networks to do temporal processing
● Good at learning sequences
● Acts as memory unit
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RNN - Example 1
Part-of-speech tagging: 
● Given a sentence X, tag each word its corresponding grammatical class.
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RNN - Example 2
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Training of RNNs
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How to train RNNs?
● Typical FFN 

○ Backpropagation algorithm

● RNNs
○ A variant of backpropagation algorithm namely Back-Propagation Through Time (BPTT).  
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BackPropagation Through Time (BPTT)

Error for an instance = Sum of errors at each time step of the instance

Gradient of error
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BackPropagation Through Time (BPTT)
For V

For  W  (Similarly for U)
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Visualization of RNN through 
Feed-Forward Neural Network
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Problem, Data and Network Architecture
● Problem:

○ I/p sequence (X) : X0, X1, …, XT 
○ O/p sequence (O) : O0, O1, …, OT

● Representation of data:
○ I/p dimension : 4

■ X0 → 0 1 1 0
○ O/p dimension : 3

■ O0 → 0 0 1

● Network Architecture
○ Number of neurons at I/p layer : 4
○ Number of neurons at O/p layer : 3
○ Do we need hidden layers?

■ If yes, number of neurons at each hidden layers
27
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When to use RNNs
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Usage
● Depends on the problems that we aim to solve.
● Typically good for sequence processings.
● Some sort of memorization is required.
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Bit reverse problem
● Problem definition:

○ Problem 1: Reverse a binary digit. 
■ 0 → 1   and    1 → 0

○ Problem 2: Reverse a sequence of binary digits.
■ 0 1 0 1 0 0 1    →     1 0 1 0 1 1 0 
■ Sequence: Fixed or Variable length 

○ Problem 3: Reverse a sequence of bits over time.
■ 0 1 0 1 0 0 1    →     1 0 1 0 1 1 0

○ Problem 4: Reverse a bit if the current i/p and previous o/p are same.

Input sequence 1 1 0 0 1 0 0 0 1 1

Output sequence 1 0 1 0 1 0 1 0 1 0 39



Data
Let 

● Problem 1 
○ I/p dimension: 1 bit O/p dimension: 1 bit

● Problem 2
○ Fixed

■ I/p dimension: 10 bit O/p dimension: 10 bit
○ Variable: Pad each sequence upto max sequence length: 10

■ Padding value: -1
■ I/p dimension: 10 bit O/p dimension: 10 bit

● Problem 3 & 4
○ Dimension of each element of I/p (X) : 1 bit
○ Dimension of each element of O/p (O) : 1 bit
○ Sequence length : 10
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Network Architecture
Problem 1:

● I/p neurons = 1
● O/p neurons = 1
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Different configurations of RNNs

Image 
Captioning

Sentiment 
Analysis

Machine 
Translation

Language 
modelling 42



Problems with RNNs
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Language modelling: Example - 1 

•
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Language modelling: Example - 2 

•
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● Cue word for the prediction
○ Example 1: sky → clouds  [3 units apart]
○ Example 2: hindi → India  [9 units apart]

● As the sequence length increases, it becomes hard for RNNs to learn 
“long-term dependencies.”

○ Vanishing gradients: If weights are small, gradient shrinks exponentially. Network stops 
learning.

○ Exploding gradients: If weights are large, gradient grows exponentially. Weights fluctuate 
and become unstable. 

Vanishing/Exploding gradients
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RNN extensions
● Bi-directional RNN
● Deep (Bi-directional) RNN
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Long Short Term Memory (LSTM)
 Hochreiter & Schmidhuber (1997)
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http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf


LSTM
● A variant of simple RNN (Vanilla RNN)
● Capable of learning long dependencies. 
● Regulates information flow from recurrent units.

49



Vanilla RNN vs LSTM
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An LSTM cell
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● Cell state ct (blue arrow), hidden state ht (green arrow) and input xt (red arrow)
● Three gates

○ Forget (Red-dotted box)

○ Input (Green-dotted box)

○ Output (Blue-dotted box)



Gated Recurrent Units (GRU)
 Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi 

Bougares, Holger Schwenk, Yoshua Bengio (2014)
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Gated Recurrent Unit (GRU) [Cho et al. (2014)]

● A variant of simple RNN (Vanilla RNN)
● Similar to LSTM

○ Whatever LSTM can do GRU can also do.

● Differences
○ Cell state and hidden are merged together
○ Two gates

■ Reset gate - similar to forget
■ Update gate - similar to input gate

○ No output gate
○ Cell/Hidden state is completely exposed to subsequent units.

● GRU needs fewer parameters to learn and is relatively efficient w.r.t. 
computation.
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A GRU cell
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Application of DL methods for NLP tasks
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NLP hierarchy
● Like deep learning, NLP happens in layers!
● Each task receives features from its previous (lower-level) task, and process 

them to produce its own output and so on.
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NLP problems

Problems Paradigm

POS Tagging
Sequence Labelling

Named Entity Recognition

Sentiment Analysis Classification

Machine Translation

Sequence TransformationQuestion Answering

Summarization
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Sequence Labelling
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RNN/LSTM/GRU for Sequence Labelling
Part-of-speech tagging: 
● Given a sentence X, tag each word its corresponding grammatical class.
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● Sentence matrix

● Pad sentence to ensure the 
sequence length

○ Pad length = filter_size - 1

○ Evenly distribute padding at the 
start and end of the sequence. 

● Apply Convolution filters

● Classification

CNN for Sequence Labelling
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Classification
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RNN/LSTM/GRU for Sentence Classification
Sentiment Classification: 
● Given a sentence X, identify the expressed sentiment.
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Zhang, Y., Wallace, B. ; A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence Classification; In Proceedings of the 8th International Joint 
Conference on Natural Language Processing (IJCNLP-2017); pages 253-263; Taipie, Taiwan; 2017.

1. Sentence matrix
a. embeddings of words

2. Convolution filters
a. Total 6 filters; Two each of size 

2, 3 & 4.
b. 1 feature maps for each filter

3. Pooling
a. 1-max pooling

4. Concatenate the max-pooled vector

5. Classification
a. Softmax 

CNN for Sentence Classification

63



Sequence to sequence transformation
with

Attention Mechanism
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Decoder

Encoder

Sequence labeling v/s Sequence transformation

PRP VBZ NNP

I love mangoesI love mangoes

PRP VBZ NNP

•

Sentence embeddings 65



Why sequence transformation is required?
● For many application length of I/p and O/p are not necessarily same. E.g. 

Machine Translation, Summarization, Question Answering etc.

● For many application length of O/p is not known.

● Non-monotone mapping: Reordering of words.

● Applications for which sequence transformation is not require 
○ PoS tagging, 
○ Named Entity Recognition
○ .... 
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Encode-Decode paradigm

Decoder

Encoder

Ram eats mango

राम आम खाता

<eos>

है <eos>

● English-Hindi Machine Translation
○ Source sentence: 3 words
○ Target sentence: 4 words
○ Second word of the source sentence maps to 3rd & 4th words of the target sentence.
○ Third word of the source sentence maps to 2nd word of the target sentence
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Problems with Encode-Decode paradigm
● Encoding transforms the entire sentence into a single vector.
● Decoding process uses this sentence representation for predicting the output.

○ Quality of prediction depends upon the quality of sentence embeddings.

● After few time steps decoding process may not properly use the sentence 
representation due to long-term dependency.
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Solutions
● To improve the quality of predictions we can

○ Improve the quality of sentence embeddings ‘OR’
○ Present the source sentence representation for prediction at each time step. ‘OR’
○ Present the RELEVANT source sentence representation for prediction at each time step.

■ Encode - Attend - Decode (Attention mechanism)
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Attention Mechanism
● Represent the source sentence by the set of output vectors from the 

encoder.
● Each output vector (OV) at time t is a contextual representation of the input 

at time t.

Ram eats mango <eos>

OV1 OV2 OV3 OV4
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Attention Mechanism
● Each of these output vectors (OVs) may not be equally relevant during 

decoding process at time t.
● Weighted average of the output vectors can resolve the relevancy.

○ Assign  more weights to an output vector that needs more attention during decoding at time t.

● The weighted average context vector (CV) will be the input to decoder along 
with the sentence representation.

○ CVi = ∑j    aij . OVj

where aij is the attn-wt of the jth OV

Ram eats mango <eos>
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Attention Mechanism

Ram eats mango <eos>

Attention
Decoder

Encoder

CV

at1 at2 at3
at4

Decoder takes two inputs:
● Sentence vector
● Attention vector
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Attention Mechanism
राम

Ram eats mango <eos>

CV

at1 at2 at3
at4

t=1
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Attention Mechanism
राम आम

Ram eats mango <eos>

CV

at1 at2 at3
at4

t=2
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Attention Mechanism
राम आम खाता

Ram eats mango <eos>

CV

at1 at2 at3
at4

t=3
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Attention Mechanism
राम आम खाता है

Ram eats mango <eos>

CV

at1 at2 at3
at4

t=4
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Attention Mechanism

Ram eats mango <eos>

राम आम खाता है <eos>

Ram eats mango <eos>

CV

at1 at2 at3
at4

t=5
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Attention Mechanism
1. Bi-RNN Encoder
2. Attention
3. RNN Decoder
4. Output Embeddings
5. Output probabilities

78[Garc´ıa-Mart´ınez et al., 2016]



Attention - Types
Given an input sequence (x1 , x2 , … , xN) and an output sequence (y1 , y2 , … , yM)

● Encoder-Decoder Attention
○ yj | x1 , x2 , … , xN

● Decoder Attention
○ yj | y1 , y2 , … , yj-1

● Encoder Attention (Self)
○ xi | x1 , x2 , … , xN
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Word Representation
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• Word2vec [Mikolov et al., 2013]
– Contextual model
– Two variants

• Skip-gram
• Continuous Bag-of-word

• GloVe [Pennington et al., 2014]
– Co-occurrence matrix
– Matrix Factorization

• FastText [Bojanowski et al., 2016]
– Similar to word2vec
– Works on sub-word level

• Bidirectional Encoder Representations from Transformers (BERT) [Devlin et al., 2018]
– Based on Transformer model

• Embeddings from Language Models (ELMo) [Peters et al., 2018]
– Contextual

• The representation for each word depends on the entire context in which it is used.



Few good reads..
● Denny Britz; Recurrent Neural Networks Tutorial, Part 1-4

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introducti
on-to-rnns/

● Andrej Karpathy; The Unreasonable Effectiveness of Recurrent Neural Networks
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

● Chris Olah; Understanding LSTM Networks
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Question!
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Workshop on 
AI for Computational Social Systems (ACSS)

Sunday, 9th Feb 2020
(http://lcs2.iiitd.edu.in/acss2020/)

Organizer
Laboratory for Computational Social Systems (LCS2) @ IIIT Delhi.
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Registration Fee
Rs. 200/-

http://lcs2.iiitd.edu.in/acss2020/
http://lcs2.iiitd.edu.in/
http://iiitd.ac.in/


Thank You!
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