Multiphase Flow and Heat Transfer

- INTRODUCTION -

-Sudheer Siddapureddy
sudheer@iitp.ac.in
Prerequisites

Heat and Mass Transfer

Course

Mon: 10 AM to 11 AM, Room – 105
Wed: 4 AM to 5 PM, Room – 105
Thu: 11 AM to 12 PM, Room – 105

Weblinks

www.iitp.ac.in/~sudheer/ME546/

Phase:

Macroscopic state of matter which is homogeneous in chemical composition and physical structure. Gas, Liquid & solid

Gas-Liquid

Steam and water; Air and water

Liquid-Solid

Plasma and platelets (Blood)

Liquid-Liquid

Oil and water
Daily examples

• Dust storms
• Rain, Clouds, snow
• Ocean waves
• Geysers, boiling water
• Inkjets
• Tire splash
• Sloshing
Industrial applications

• Steam generators and condensers
• Steam turbines (power plants)
• Coal fired furnaces
• Refrigeration
• Liquid sprays
• Cryogenics
• Material processing - Quenching
• Process plants – Chemical/petroleum
• Electronic component cooling
• Medical applications
Spray cooling
Emergency shut down of nuclear power plant

Steam power plant
Phase change

Melting and Solidification ➔ No motion

- Static
 - Solid-Liquid phase change
 - Liquid-Vapor phase change

Continuous, also energy equation

- Boiling
- Condensation
Thermodynamics

When the temperature of a liquid at a specified pressure is raised to the saturation temperature T_{sat} at that pressure, **Boiling** occurs. Liquid-Vapor transformation: $T_s > T_{sat}$ at a given pressure

When the temperature of a vapor is lowered to T_{sat}, **Condensation** occurs. Vapor-Liquid transformation: $T_s < T_{sat}$ at a given pressure
Typical values of convection heat transfer coefficient

<table>
<thead>
<tr>
<th>Process</th>
<th>h (W/m2.K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free convection</td>
<td></td>
</tr>
<tr>
<td>Gases</td>
<td>2-25</td>
</tr>
<tr>
<td>Liquids</td>
<td>50-1000</td>
</tr>
<tr>
<td>Forced convection</td>
<td></td>
</tr>
<tr>
<td>Gases</td>
<td>25-250</td>
</tr>
<tr>
<td>Liquids</td>
<td>50-20,000</td>
</tr>
<tr>
<td>Convection with phase change</td>
<td></td>
</tr>
<tr>
<td>Boiling and Condensation</td>
<td>2500-100,000</td>
</tr>
</tbody>
</table>

Convection during phase change depends on

Latent heat of vaporization of the fluid, h_{fg}
Surface tension, σ, at the liquid–vapor interface
Properties of the fluid in each phase
Examples

a) Transient two-phase flow.

b) Separated two-phase flow.

c) Dispersed two-phase flow.
Multiphase Flow and Heat Transfer

- Boiling Introduction -

-Sudheer Siddapureddy
sudheer@iitp.ac.in
Boiling

\[Q_{\text{boiling}} = h (T_s - T_{\text{sat}}) \text{ W/m}^2 \]

Free and Forced convection depends on density, specific heat, viscosity and thermal conductivity of the fluid.

Boiling Heat Transfer depends on density, specific heat, viscosity and thermal conductivity of liquid.

Latent heat of vaporization

Surface tension at the liquid-vapor interface
Boiling

The process of addition of heat to a liquid such a way that generation of vapor occurs.

Solid-liquid interface

Characterized by the rapid formation of vapor bubbles

Evaporation

Liquid-vapor interface

\[P_v < P_{sat} \] of the liquid at a given temp

No bubble formation or bubble motion
Boiling occurs at a solid-liquid interface.

Boiling occurs when a liquid is brought into contact with a surface at a temperature above the saturation temperature of the liquid.
The boiling processes in practice do not occur under equilibrium conditions.

Bubbles exist because of the surface tension at the liquid vapor interface due to the attraction force on molecules at the interface toward the liquid phase.

The temperature and pressure of the vapor in a bubble are usually different than those of the liquid.

Surface tension $\downarrow \uparrow$ Temperature

Surface tension $= 0$ at critical temperature

No bubbles at supercritical pressures and temperatures
Classification - Boiling

- **Pool Boiling**
 - The fluid is stationary
 - Motion of the fluid is due to natural convection currents
 - Motion of the bubbles under the influence of buoyancy.

- **Flow Boiling**
 - (Forced Convection Boiling)
Flow Boiling

Fluid is forced to move in a heated pipe or surface by external means such as pump. Flow boiling is always accompanied by other convection effects.
Classification - Boiling

Subcooled Boiling

\[T_{\text{bulk of liquid}} < T_{\text{sat}} \]

Saturated Boiling

\[T_{\text{bulk of liquid}} = T_{\text{sat}} \]

(P = 1 atm)

Subcooled water 80°C

Heating

Bubble

Saturated water 100°C

Heating

Bubble
Boiling Regimes – Nukiyama, 1934

Nukiyama – 1934, Boiling Regimes

- **Natural convection boiling**
- **Nucleate boiling**
- **Transition boiling**
- **Film boiling**
Nukiyama’s boiling curve for saturated water at atmospheric pressure

- **Natural convection boiling**
- **Nucleate boiling**
- **Transition boiling**
- **Film boiling**

- **Bubbles collapse in the liquid**
- **Maximum (critical) heat flux, \(\dot{q}_{\text{max}} \)**
- **Leidenfrost point, \(\dot{q}_{\text{min}} \)**

\[\Delta T_{\text{excess}} = T_s - T_{\text{sat}}, ^\circ C \]
Boiling regimes – Methanol on horizontal 1 cm steam-heated copper tube

1. Natural convection
2. Individual bubble regime
3. Regime of slugs and bubbles
4. Transition film boiling
5. Stable film boiling
Boiling regimes – Methanol on horizontal 1 cm steam-heated copper tube

Nucleate boiling

Flow boiling

Film boiling
Natural convection Boiling

- Governed by natural convection currents.
- Heat transfer from the heating surface to the fluid is by natural convection.

Nucleate Boiling

- The stirring and agitation caused by the entrainment of the liquid to the heater surface is primarily responsible for the increased heat transfer coefficient and heat flux in the region of nucleate boiling.
- High heat transfer rates are achieved in nucleate boiling.
Transition Boiling (Unstable film boiling)

- Heat flux decreases because of larger fraction of heater surface is covered by a vapor film which acts as a insulation because of the low thermal conductivity of the vapor relative to the liquid.

Film Boiling

- The presence of a vapor film between the heater surface and the liquid is responsible for the low heat transfer rates

- Heat transfer rate increases with increasing excess temperature as a result of heat transfer from the heated surface to the liquid through the vapor film by radiation.
The process of bubble formation is called **Nucleation**.

- The cracks and crevices do not constitute nucleation sites for the bubbles. Must contain pockets of gas/air trapped.
- It is from these pockets of trapped air that the vapor bubbles begin to grow during nucleate boiling.
- These cavities are the sites at which bubble nucleation occurs.
When a liquid contacts the surface, surface tension forces prevent the liquid from entering the smaller cavities in which air or other gases are trapped.

- r radius of the bubble
- σ surface tension
- P_B pressure inside the bubble
- P_∞ pressure in the liquid or the ambient pressure

For static equilibrium, the surface tension force balances the net pressure force:

$$2\pi r \sigma = (P_B - P_\infty)\pi r^2$$

$$P_B = P_\infty + \frac{2\sigma}{r}$$

Young-Laplace equation
P_B is maximum when $r = R$ (the cavity radius)

The wall temperature T_w must be high enough to vaporize the liquid at a pressure of P_B

For the bubble to grow, the required condition:

$$T_w > T_{sat} + \frac{dT}{dp} \left(P_B - P_\infty \right)$$

Vapor pressure curve: superheat required for nucleation

Slope of the vapor pressure curve found from the Clausius-Clapeyron eq.

$$\frac{dp}{dT} = \frac{h_{lv}}{(v_v - v_l)T_{sat}}$$

h_{fv}: latent heat of vaporization

T_{sat}: saturation temperature

v_v: specific volume of the gas

v_l: specific volume of the liquid
Then, if $v_v >> v_l$ and, since $v_v = 1/\rho_v$

\[
\frac{dp}{dT} = \frac{h_{lv}}{\left(v_v - v_l\right) T_{sat}} \Rightarrow \frac{dT}{dP} = \frac{T_{sat}}{\rho_v h_{lv}}
\]

\[
T_w > T_{sat} + \frac{dT}{dp} \left(P_B - P_\infty\right) \Rightarrow T_w > T_{sat} + \frac{T_{sat}}{\rho_v h_{lv}} \frac{2\sigma}{R}
\]

If ΔT_{sat} is the value of $(T_w - T_{sat})$ at which nucleation starts, then the cavity radius is given by

\[
R = \frac{2\sigma T_{sat}}{\rho_v h_{lv} \Delta T_{sat}}
\]

For water at 1 bar

\[
T_{sat} = 373 \text{ K} \\
\sigma = 0.059 \text{ N/m} \\
h_{fv} = 2.256 \times 10^6 \text{ J/kg} \\
\rho_v = 0.598 \text{ kg/m}^3
\]
Critical radius for Nucleation

For water at 1 bar, is commonly about 5 K so, given

\[T_{sat} = 373 \text{ K}; \quad \sigma = 0.059 \text{ N/m}; \quad h_{lv} = 2.256 \times 10^6 \text{ J/kg}; \quad \rho_v = 0.598 \text{ kg/m}^3 \]

\(R \) is found to be about 6.5 \(\mu \text{m} \), and typically cavity sizes are in the micron range. If the cavity size is known, then clearly the wall superheat required to start nucleate boiling can be calculated.

Real surfaces, of course, can contain a range of cavity sizes. As the wall superheat is increased, cavities of smaller and smaller radius are able to become active and initiate nucleation.

Minimum size of active nucleation sites on smooth metallic surfaces;

- Water \(\sim 5 \mu \text{m} \)
- Organics and refrigerants \(\sim 0.5 \mu \text{m} \)
- Cryogenic fluids on aluminum or copper \(\sim 0.1-0.3\mu \text{m} \)
Rohsenow postulated:

• Heat flows from the surface first to the adjacent liquid, as in any single-phase convection process.
• The high heat transfer coefficient associated with nucleate boiling is a result of local agitation due to liquid flowing behind the wake of departing bubbles.

Thus, it may be possible to adapt a single-phase forced convection heat transfer correlation to nucleate pool boiling, if we could specify the appropriate length and velocity scales associated with the convection process.
Heat Transfer in Nucleate Boiling

\[Nu = f (Re, Pr) \]

\[Nu = \frac{hL_b}{k_l} ; \quad Re = \frac{\rho_v u_b L_b}{\mu_l} ; \quad Pr = \frac{\mu_l C_{pl}}{k_l} \]

Velocity is taken as the liquid velocity in towards the surface which is to supply the vapor which is being produced, so:

\[u_b \sim \frac{q''}{h_{lv} \rho_v} \]

Length scale is taken to be,

\[L_b \sim \left[\frac{\sigma}{g(\rho_l - \rho_v)} \right]^{1/2} \]
Heat Transfer in Nucleate Boiling

\[Nu = \frac{h L_b}{k_l} = \frac{h}{k_l} \left[\frac{\sigma}{g(\rho_l - \rho_v)} \right]^{\frac{1}{2}} \]

\[Pr = \frac{\mu_l C_{pl}}{k_l} \]

\[Re = \frac{\rho_v u_b L_b}{\mu_l} = \frac{\rho_v}{\mu_l h_{lv} \rho_v} \left[\frac{\sigma}{g(\rho_l - \rho_v)} \right]^{\frac{1}{2}} \]

\[Nu = \frac{1}{C_{sf}} \frac{Re^{1-m} Pr^{-n}}{h} = \frac{q''}{T_w - T_{sat}} \]
Rohsenow Correlation

\[
\frac{C_{pl} (T_w - T_{sat})}{h_{lv}} = C_{sf} \left[\frac{q''}{\mu_l h_{lv} \sqrt{g (\rho_l - \rho_v)}} \right]^m \left[\frac{C_{pl} \mu_l}{k_l} \right]^{1+n}
\]

\[
\frac{q''}{\mu_l h_{lv} \sqrt{g (\rho_l - \rho_v)}} = \left(\frac{1}{C_{sf}} \right)^m \left[\frac{C_{pl} (T_w - T_{sat})}{h_{lv} \text{Pr}} \right]^1 \left[\frac{C_{pl} \mu_l}{k_l} \right]^{-\frac{n}{m}}
\]

\(m = 0.33 \) and \(1 + n = 1 \) for water and \(1.7 \) for other fluids

\(C_{st} \) is the surface-fluid constant. Depends on both the surface and the fluid. Typical range: \(0.0025 \) and \(0.015 \)

For a given \(\Delta T_{sat} \), the heat flux is proportional to \((C_{st})^{-3} \). Since \(C_{st} \) can vary by a factor of 10, the heat flux can vary by a factor of 1000.

Applicable only for clean surfaces
Correlation of pool boiling heat transfer data for Platinum wire-water by the method of Rohsenow

\[
\frac{q''}{\mu_f h_{fg}} \sqrt{\frac{\sigma}{g (\rho_f - \rho_g)}}
\]

Correlation of pool boiling heat transfer data for Platinum wire-water by the method of Rohsenow

\[
\frac{C_{pf} (T_w - T_{sat})}{h_{fg} \text{ Pr}}
\]
The most important variables affecting C_{sf} are

- Surface roughness of the heater which determines the number of nucleation sites at a given temperature.
- Angle of contact between the bubble and heating surface is a measure of wettability of a surface with a particular fluid.

Surface is **hydrophilic** (Wetted), if $\theta < 90^\circ$

Surface is **hydrophobic** (Not wetted), if $\theta > 90^\circ$

Effect of surface Wettability on the bubble contact angle, θ
For contaminated surfaces, the exponent of Prandtl number of liquid is found to vary between 0.8 and 2.0.

Contamination also affects the other exponent in the equation and C_{sf}

If no data is available, then consider, $C_{sf} = 0.013$
Another frequently quoted Forster-Zuber correlation

\[q'' = 0.00122 \left(\frac{k_f^{0.79} C_{pf}^{0.45} \rho_f^{0.49}}{\sigma^{0.5} \mu_f^{0.29} h_{fg}^{0.24} \rho_g^{0.24}} \right) [T_w - T_{sat}(P_f)]^{1.24} \Delta P_{sat}^{0.75} \]

\(\Delta P_{sat} \) is the difference in saturation pressure corresponding to a difference in saturation temperature equal to the wall superheat \(T_w - T_{sat}(P_f) \)

\[\begin{align*}
 k_f & \quad - \text{kW/m.°C} \\
 C_{pf} & \quad - \text{kJ/kg.°C} \\
 \rho & \quad - \text{kg/m}^3 \\
 P & \quad - \text{Pa} \\
 \sigma & \quad - \text{N/m} \\
 \mu & \quad - \text{Ns/m}^3 \\
 h_{fg} & \quad - \text{kJ/kg} \\
 q'' & \quad - \text{kW/m}^2
\end{align*} \]
Heat Transfer in Nucleate Boiling

Nucleate Pool Boiling Curves for Water at Atmospheric Pressure

q'' (kW/m2)

$T_w - T_{sat}$ (°C)

- Rohsenow Correlation
- Forster-Zuber Correlation
- Stephan-Abdelsalam Correlation
- Borishansky Correlation
Rohsenow correlation is restricted to nucleate boiling

- Does not reveal the ΔT_{sat} at which the q''_{max}
- Limiting heat flux: when nucleate boiling breaks down and an insulating vapor film forms
- For a q'' controlled surface, the ΔT_{sat} rise after q''_{max} can be very large (can be > 1000 K)
Instability of the vapor layer

The light fluid in a layer which has a heavy fluid on top of it is unstable.

The layer breaks down by the formation of waves on its surface as in the figure.

Rayleigh-Taylor Instability

During boiling, disturbances of all wavelengths are present, there will be some disturbances at small wavelength and long wavelength that will amplify and cause the interface to be unstable.
Rayleigh-Taylor Instability

Condition for the interface instability of a motionless liquid overlaying a motionless vapor region

\[\omega > \omega_c = \left[\frac{(\rho_l - \rho_v)g}{\sigma} \right]^\frac{1}{2} \]

This condition is called **Rayleigh-Taylor Instability**

Corresponding Critical Wavelength:

\[\lambda_c = \frac{2\pi}{\omega_c} = 2\pi \left[\frac{\sigma}{g(\rho_l - \rho_v)} \right]^\frac{1}{2} \]

The most dangerous wavelength, as they grow most rapidly, \(\lambda_D = \sqrt{3} \lambda_c \)

At 1 bar:

- \(\sigma = 0.058988 \ \text{N/m} \)
- \(\rho_l = 958.63 \ \text{kg/m}^3 \)
- \(\rho_v = 0.59034 \ \text{kg/m}^3 \)
- \(\lambda_c = 15.7 \ \text{mm} \)
- \(\lambda_D = 27.2 \ \text{mm} \)
A parallel sided jet is not stable.

Consider the random thinning of the jet as illustrated.

By continuity, \(u_2 > u_1 \) and therefore, from Bernoulli’s equation \(p_2 < p_1 \).

If the jet is in equilibrium at 1, then the liquid pressure at 2 will push the ‘neck’ further in and disrupt the jet completely, thus breaking it up. This is a **Kelvin-Helmholtz instability**.

This argument would imply that the vapor jet is always unstable, but the effects of surface tension, which has a stabilizing effect, have been neglected.
Zuber’s model Analysis

1. \(q''_{\text{max}} \) when the interface of columns - Helmholtz unstable.
2. Centerline spacing of columns = most dangerous \(\lambda \) of Taylor instability.
3. Columns dia. = to \(\lambda_D/2 \).
4. The Helmholtz unstable \(\lambda \) imposed on the columns = Taylor wave node spacing \(\lambda_D \).

Postulated Helmholtz instability CHF mechanisms

Vapor column spacing in the Zuber critical heat flux model
Zuber’s model Analysis: consider unit cell

Critical Helmholtz velocity for vertical vapor and liquid flow:

\[u_c = |\bar{u}_l - \bar{u}_v| = \left(\frac{\sigma \omega (\rho_l + \rho_v)}{\rho_l \rho_v} \right)^{1/2} \]

Assuming \(\rho_f << \rho_g \) and substituting \(\omega = 2\pi/\lambda \):

\[u_c = \left(\frac{2\pi \sigma}{\rho_v \lambda} \right)^{1/2} \]

Most dangerous wavelength from Taylor instability for liquid in contact with vapor:

\[\lambda_D \sim 2\pi \left[\frac{3\sigma}{(\rho_l - \rho_v)g} \right]^{1/2} \]
Zuber’s model Analysis: consider unit cell

Critical heat flux, the rate of heat supply to the area A_{surf}

$$q''_{max}A_{surf} \sim h_{lv}\rho_vu_vA_{col}$$

$$q''_{max} = \frac{\pi}{16} h_{lv}\rho_vu_v$$

- Since the downward liquid velocity is much smaller than the upward vapor velocity, due to the large density difference between the phases, $u_c \sim u_v$.

- The Helmholtz unstable wavelength imposed on the columns is equal to the Taylor wave node spacing λ_D.

$$q''_{max} = \frac{\pi}{16(3)^{1/4}} h_{fg}\rho_g^{1/2} \left[\sigma(\rho_f - \rho_g)g\right]^{1/4}$$

works well for the flat horizontal plates.
The Helmholtz unstable wavelength imposed on the columns is equal to the Taylor wave node spacing λ_D.

This Eq. works well for the flat horizontal plates.

The coefficient modified for better fit for different geometries:

$$q''_{\text{max}} = 0.149 h_{lv} \rho_v^{1/2} \left[\sigma \left(\rho_l - \rho_v \right) g \right]^{1/4}$$

$$q''_{\text{max}_{z}} = 0.131 h_{lv} \rho_v^{1/2} \left[\sigma \left(\rho_l - \rho_v \right) g \right]^{1/4}$$
Zuber’s Correlation for Critical Heat Flux

\[q''_{\text{max}} = C h_{lv} \rho_v^{1/2} [\sigma (\rho_l - \rho_v) g]^{1/4} \]

\[C = 0.149 \text{ for Flat, Horizontal heater} \]

Heat flux on a flat horizontal plate: Expt. & theory

- Anomalous points at small \(L \)
- Data (note increasing spread as \(L \) is small)
Boiling outside Horizontal cylinders

\[q''_{\text{max}} = C h_{lv} \rho_v^{1/2} \left[\sigma (\rho_l - \rho_v) g \right]^{1/4} \]

\[C = 0.116 \text{ for Boiling outside Hor. Cylns} \]

Heat Flux outside Hor. Cylns: Expt. & theory

\[C = 0.116 + 0.3 e^{-3.44 R'^{1/2}} \]
Correlations for q''_{max} for different geometries of heaters

$$q''_{\text{max}} = 0.131h_{lv} \rho_v^{1/2} \left[\sigma (\rho_l - \rho_v)g \right]^{1/4}$$

$$L_b \sim \left[\frac{\sigma}{g (\rho_l - \rho_v)} \right]^{1/2}$$
As the system pressure rises:

- h_{lv} falls slowly at first & falls steeply as the critical point is approached.
- ρ_v increases monotonically
- σ falls monotonically, and
- $\rho_l - \rho_v$ falls monotonically.

For both pool boiling and flow boiling the maximum critical heat flux occurs at about 70 bar.

$q''_{\text{max}} = 0.149h_{lv}\rho_v^{1/2} \left[\sigma(\rho_l - \rho_v)g\right]^{1/4}$

Values of Critical Heat Flux for a flat, horizontal plate using steam-water.
Rewetting of Hot Surfaces
Liquid does not wet hot surface. Ex: A drop of water on a hot, horizontal plate will ‘run’ around in a chaotic manner and evaporate only slowly.

This occurs because the liquid is separated from the plate by a thin film of vapor so that the friction for sideways motion of the drop is very small and the heat transfer across the vapor film is poor.

The vapor film, of course moves outwards, and fresh vapor is generated by evaporation at the underside of the drop due to heat conduction across the film and radiation from the plate to the drop.

If the plate is allowed to cool down, it will eventually reach a temperature at which the vapor film collapses, and then very intense boiling takes place which rapidly leads to the evaporation of all the liquid.

The surface temperature at which this sudden wetting of the plate occurs is the Leidenfrost Temperature.
Leidenfrost: q''_{min}

$$q''_{\text{min}} = C \ h_{lv} \ \frac{\sigma (\rho_l - \rho_v) g}{(\rho_l + \rho_v)^2} \left[\frac{1}{4} \right]$$

C is a non-dimensional constant which lies between 0.09 and 0.18. $C = 0.09$ provides a better fit. $C = 0.13$ is sometimes taken as an intermediate value.
Prof. Dr. Johann Gottlob Leidenfrost (1715-1794)

• Father – Minister
• Started off with Theological studies
• Professor at University of Duisburg
• Areas of influences
 • Theologian
 • Physician (Private Medical practice)
 • As a Prof. taught Medicine, Physics, and Chemistry

70 Publications
Multiphase Flow and Heat Transfer

ME546

-Sudheer Siddapureddy
sudheer@iitp.ac.in
To be precise, properties at

\[T = T_w - \frac{\Delta T_{sat}}{2} \]
Film boiling for a Horizontal Cylinder of Diameter, d

$$q''_{film\,boiling} = 0.62 \Delta T_{sat} \left[\frac{\rho_v (\rho_l - \rho_v) g h'_{lv} k_v^3}{\mu_v \Delta T_{sat} d} \right]^{1/4}$$

$$h'_{lv} = h_{lv} + 0.4 C_{pv} \Delta T_{sat}$$

To be precise, properties at $T = T_w - \frac{\Delta T_{sat}}{2}$
Radiation Effects in Film boiling

\[h_{total} = h_{filmboiling} + \frac{3}{4} h_{radiative} \]

\[h_{radiative} = \sigma \varepsilon_{sur} \left(\frac{T_w^4 - T_{sat}^4}{T_w - T_{sat}} \right) \]

\[\varepsilon_{sur} = \text{surface emissivity} \]

\[\sigma = 5.67 \times 10^{-8} \text{ W/m}^2\text{.K}^4 \]
Subcooling: In nucleate boiling as $\Delta T_{\text{sub}} \uparrow$

- $R_{\text{max}} \downarrow$ the bubble can grow
- Bubble frequency, $f \uparrow$

\[q'' \propto R_{\text{max}}^3, \quad f \quad \& \quad n' \text{ (density of active nucleation sites)} \]

A change $\sim 300\%$ in ΔT_{sub} produces $\sim 20\%$ in $\Delta q''$

Superheating: In nucleate boiling as $\Delta T_{\text{sat}} \uparrow$

- $R_{\text{max}}, f \quad \& \quad n' \uparrow$
- Critical radius, $R \downarrow$ Number of active nucleation sites \uparrow
Effect of Liquid Subcooling

Natural convection portion will shift upward as driving $\Delta T_{sub} \uparrow$

Nucleate boiling: slight influence as $\Delta T_{sub} \uparrow$

A change $\sim 300\%$ in ΔT_{sub} produces $\sim 20\%$ in $\Delta q''$

Maximum heat flux: strong influence

Vapor raises and condenses – easy pathway for liquid to flow towards the surface
\[q''_{\text{max,sub}} = 0.16 h_{lv} \rho_v^{1/2} \left[\sigma (\rho_l - \rho_v) g \right]^{1/4} \left[1 + 0.1 \left(\frac{\rho_l}{\rho_v} \right)^{3/4} \frac{C_{pl} \Delta T_{\text{sub}}}{h_{lv}} \right] \]
Augmentation of heat transfer during evaporation

• Roughening of the heating surface
• Structuring or coating the surface
• Production of artificial nucleation sites by sintering and
• Special shaping of the heating surface
• Addition of gases or liquids
• Addition of solids
Enhancement of Heat Transfer During Boiling

Data for water at atmospheric pressure on a stainless steel surface

- △ - smooth
- ♦ - smooth with Teflon spots
- ○ - pitted
- ♠ - pitted with Teflon in pits

$T_w - T_{sat}$ (°C)

Re-entrant cavity with contact angle = 100°
Doubly re-entrant cavity with contact angle = 20°
Enhancement of Heat Transfer During Boiling

- Gewa-T:
 - 740 fins/m
 - Tube ID = 8 mm
 - Tube OD = 12.29 mm
 - 1.1 mm fin height
 - 0.25 mm gap

- Thermoexcel-E:
 - Tube ID = 10.61 mm
 - Tube OD = 13.16 mm
 - 0.1 mm pore diameter
 - 0.46 mm tunnel pitch
 - 0.58 mm tunnel height

- High Flux:
 - 0.21 mm thick
 - 46% < 44 µm
 - 54% 44 to 74 µm
 - Tube OD = 13.31 mm

- Pool boiling data for P-xylene at atmospheric pressure:
 - Graph showing q' vs. (T_w - T_sat) in °C
 - Curves for different tube surfaces:
 - Plain
 - Wieland Gewa-T
 - Hitachi Thermoexcel-E
 - Union Carbide High Flux
Boiling curve for a non-wetting liquid (Linear plot)

- $q'' \uparrow$ monotonically with superheat
- Eventually merges with the “classical” film boiling curve

Hydrophobic

- Water – surface coated
- Mercury on Teflon
Influence of Smaller Heater

Length scale, $L_b << 50D_b$ (Bubble departure diameter)

- Growing bubble completely covers the heater
- ONB initiates a film-type boiling
- No Nucleating regime
- No Transition regime
- No q''_{max}
Pool Boiling curve of Benzene at 1 bar & $T_{sat} = 80^\circ C$
Saturated Water-Steamp on a Flat Horizontal Heater

$T_w = 300^\circ C$

Physical properties of water at 1 atm and 100°C:

$T_{sat} = 100^\circ C$

$h_{lv} = 2257 \text{ kJ/kg}$

$k_v = 0.0251 \text{ W/m.K}$

$\mu_v = 12.3 \times 10^{-6} \text{ Pa.s}$

$\rho_v = 0.598 \text{ kg/m}^3$

$\rho_l = 958 \text{ kg/m}^3$

$\sigma = 0.0589 \text{ N/m}$

$C_{pv} = 2.029 \text{ kJ/kg.K}$

$q''_{max} = 0.149 h_{lv} \rho_v^{1/2} \left[\sigma (\rho_l - \rho_v) g \right]^{1/4}$

$q''_{min} = 0.09 h_{lv} \rho_v \left[\frac{\sigma (\rho_l - \rho_v) g}{(\rho_l + \rho_v)^2} \right]^{1/4}$

$q''_{film} = 0.425 \Delta T_{sat} \left[\frac{\rho_v (\rho_l - \rho_v) g h'_{lv} k_v^3 (\rho_l - \rho_v) g^{1/2}}{\mu_v \Delta T_{sat}} \right]^{1/4}$

$h'_{lv} = h_{lv} + 0.5 C_{pv} \Delta T_{sat}$
So, although the plate is very hot, it is carrying only a fraction of the critical heat flux. So we are around point A on the boiling curve.

The point C, which has the same heat flux as at point B, can be found.

T_C is so high that radiative heat transfer is very important.
Different Heat Transfer Scenarios

Boiling Curve Saturated Water-Steam at 1 atm on a flat horizontal ground & polished Stainless Steel

$q''(\text{kw/m}^2)$ vs. $T_w - T_{sat} (K)$

- $q''_{Nat Conv}$
- q''_{Rosh}
- q''_{film}
- $q''_{film+rad}$
Different Heat Transfer Scenarios

Boiling Curve Saturated Water-Steam at 1 atm on a flat horizontal ground & polished Stainless Steel
Heat Transfer Coefficient in Different Scenarios

Saturated Water-Steam at 1 atm on a flat horizontal ground & polished Stainless Steel
Determine the critical heat flux for Trichlorotrifluoroethane (R113), nitrogen and water at atmospheric pressure for pool boiling from a horizontal cylinder with a diameter of 5 mm immersed in a pool of saturated liquid.

For saturated R-113 at atmospheric pressure:

\[T_{\text{sat}} = 320.7 \text{ K}, \quad \rho_l = 1507 \text{ kg/m}^3, \quad \rho_v = 7.46 \text{ kg/m}^3, \quad h_{lv} = 146.3 \text{ kJ/kg}, \quad \sigma = 0.0169 \text{ N/m} \]

For saturated nitrogen at atmospheric pressure:

\[T_{\text{sat}} = 77.4 \text{ K}, \quad \rho_l = 807.1 \text{ kg/m}^3, \quad \rho_v = 4.62 \text{ kg/m}^3, \quad h_{lv} = 197.6 \text{ kJ/kg}, \quad \sigma = 0.00885 \text{ N/m} \]

For saturated water at atmospheric pressure:

\[T_{\text{sat}} = 373 \text{ K}, \quad \rho_l = 958.598 \text{ kg/m}^3, \quad \rho_v = 0.598 \text{ kg/m}^3, \quad h_{lv} = 2256 \text{ kJ/kg}, \quad \sigma = 0.059 \text{ N/m} \]
Multiphase Flow and Heat Transfer

ME546

-Sudheer Siddapureddy
sudheer@iitp.ac.in
Liquid-Vapor Interfacial Region (Nanoscale)

In Macroscopic view, the boundary between the bulk phases

- Idealized as a surface
- Discontinuity in properties
- Net conversion of one phase into the other – Phase change

In Nanoscale view, the boundary between the bulk phases

- Actually a region
- A transition of mean molecular density exists
- This transition affects the thermophysics and transport in this region

Easy for analysis as a surface, but Nanoscale perspective gives better understanding.
Liquid-Vapor Interfacial Region (Nanoscale)

Variation of the molecular density
At longer range, two molecules exert attractive force.

- Dipole-dipole forces or Electrostatic forces
 - Opposite sides of the molecule have opposite charges
- Dipole-induced forces
 - Permanently charged particle induces a dipole in a nearby neutral molecule
 - Strength depends on ease of polarization
- London interactions or Dispersion forces
 - Stronger interactions allow solid and liquid states to persist to higher temperatures.
 - Non-polar molecules show similar behavior, indicating that there are some types of intermolecular interactions that cannot be attributed to simple electrostatic attractions.

\[\phi_{\text{Dis}}(r) = -\frac{\lambda_{\text{Dis}}}{r^6} \]
Interacting forces between two molecules

The potential function (ϕ) is the energy that must be input to bring two molecules from infinite distance apart to center-to-center spacing r.

$$d\phi \left/ dr \right. = \begin{cases} > 0, & \text{attraction} \\ < 0, & \text{repulsion} \end{cases}$$

$$\phi_{Dis} (r) = - \frac{A}{r^6}$$

A is a constant varies with the type of molecule, polarizability of the molecules.
At very short range, two molecules exert a repulsive force

- Interference of the electron orbits of one molecule with those of the other
- The energy required to bring two molecules from infinite distance apart to center-to-center spacing, r

$$\phi_R(r) = \frac{B}{r^k}, \quad 9 \leq k \leq 15$$

where B is a constant depending on the type of molecule.
Interacting forces between two molecules

\[\phi_R(r) = \frac{B}{r^{12}} \]

\[\phi_{Dis}(r) = -\frac{A}{r^6} \]
Lennard-Jones 6-12 potential

\[\phi_{LJ}(r) = 4\varepsilon \left[\left(\frac{r_0}{r} \right)^{12} - \left(\frac{r_0}{r} \right)^6 \right] \]

\[\phi_R(r) = \frac{B}{r^{12}} \]

\[\phi_{Dis}(r) = -\frac{A}{r^6} \]
Interacting forces between two molecules

1. Both balls are an infinite distance apart and are not interacting.

2. The balls are brought closer together with minimal energy input to a certain distance, \(r \). At this distance, the balls have an attractive force between them.

3. The attractive force between the two objects brings the objects even further together until they reach an equilibrium distance apart at which their minimum bonding potential is reached.

4. To further decrease the distance between both objects, additional energy is required because as the balls overlap, repulsive forces act and push both balls further apart. At these distances, the force of repulsion is greater than the force of attraction.

Source: ChemWiki
Lennard-Jones 6-12 potential

Equilibrium distance

Force between molecules, $F(r)$

Separation, r

Net forces = 0

Attraction forces

Repulsion
Lennard-Jones 6-12 potential

\[\phi_{LJ}(r) = 4\varepsilon \left[\left(\frac{r_0}{r} \right)^{12} - \left(\frac{r_0}{r} \right)^{6} \right] \]

• To bring two molecules that are initially very far apart into closer proximity, we must remove energy - **Condensation**

• If two molecules are close enough to feel attractive forces, but not so close that repulsive forces come into play, then energy must be supplied to increase the spacing of the molecules - **Vaporization**
Lennard-Jones 6-12 potential

\[\phi_{LJ}(r) = 4\varepsilon \left[\left(\frac{r_0}{r} \right)^{12} - \left(\frac{r_0}{r} \right)^6 \right] \]

\(\varepsilon\) is the depth of potential well (J)

- Energy that must be input for one molecule to escape the attractive pull of another.

- In a two-phase system, escape of molecules from a liquid phase into a vapor phase at the interface is more probable if the translational kinetic energy is larger than \(\varepsilon\).

\(r_0\) is the distance at which potential energy is zero (nm).
Lennard-Jones 6-12 potential

\[
\phi_{LJ}(r) = 4\varepsilon \left[\left(\frac{r_0}{r} \right)^{12} - \left(\frac{r_0}{r} \right)^{6} \right]
\]

\(\varepsilon\) is the depth of potential well (J) \(\phi_{LJ} = -\varepsilon\mid_{r=2^{1/6}r_0}\)

- Energy that must be input for one molecule to escape the attractive pull of another.
- In a two-phase system, escape of molecules from a liquid phase into a vapor phase at the interface is more probable if the translational kinetic energy is larger than \(\varepsilon\).

\(r_0\) is the distance at which potential energy is zero (nm).
Maxwell-Boltzmann Distribution

Number of molecules with seed in the interval c to $c + dc$:

$$dN_c = 4\pi N \left(\frac{m}{2\pi k_B T} \right)^{\frac{3}{2}} c^2 e^{-\frac{mc^2}{2k_B T}} dc$$

N is the number of molecules

c is the speed of the molecule, m/s

m is the mass of the molecule, kg

k_B is the Boltzmann constant, $1.38 \times 10^{-23} \text{ m}^2\text{kg}/\text{s}^2\text{K}$

T is the absolute temperature, K
Maxwell-Boltzmann Distribution

We are interested in knowing the number of molecules that would have kinetic energy more that the minimum potential (depth of the potential well).

Convert speed distribution to kinetic energy of a molecule.

\[K = \frac{1}{2} mc^2 \]
Maxwell-Boltzmann Distribution

We are interested in knowing the number of molecules that would have kinetic energy more than the minimum potential (depth of the potential well).

Convert speed distribution to kinetic energy of a molecule.

\[K = \frac{1}{2} mc^2 \]

\[c = \sqrt{\frac{2K}{m}} \quad dc = \sqrt{\frac{1}{2mK}} dK \]

\[dN_K = 2\pi N \left(\pi k_B T\right)^{-\frac{3}{2}} K^2 e^{\frac{-K}{k_B T}} dK \]
Maxwell-Boltzmann Distribution

The number of molecules in the gas with energies above ε, $N_{>\varepsilon}$

$$N_{>\varepsilon} = \int_{\varepsilon}^{\infty} dN_K$$

The fraction of molecules with energies above ε is $N_{>\varepsilon}/N$

$$\frac{N_{>\varepsilon}}{N} = \left(\frac{4\varepsilon}{\pi k_B T}\right)^{\frac{1}{2}} e^{-\frac{\varepsilon}{k_B T}} + \text{erfc}\left(\sqrt{\frac{-\varepsilon}{k_B T}}\right)$$

Error function term can be neglected if $\varepsilon >> k_B T$
• Molecules having energies above the threshold value (ε) increase rapidly with temperature.

• This determines chemical reaction rates and the equilibrium conditions in two-phase systems.

• Even at low temperatures some fraction of the molecules in the liquid will have sufficient energy to escape the cohesive forces of other liquid molecules at the liquid-vapor interface.

• The fraction capable of escaping in this manner will increase rapidly with temperature.
Vapor Pressure & Latent Heat of Vaporization

• A liquid with a small cohesive energy will have a higher vapor pressure than one with a large cohesive energy.

• In general, cohesive energy $\propto \varepsilon$ (Lennard-Jones potential).

• $H_{lv} \approx$ cohesive energy of the liquid

• At same temperature, a liquid with a high H_{lv} should have a lower vapor pressure than a liquid with a smaller H_{lv}.

• At 20°C: Water

\[P_{sat} = 2.34 \text{ kPa and } H_{lv} = 2454 \text{ kJ/kg} \]

• Saturated refrigerant-134a

\[P_{sat} = 572.1 \text{ kPa and } H_{lv} = 182.3 \text{ kJ/kg} \]
Latent Heat of Vaporization

For saturated nitrogen at 77 K, estimate the fraction of the molecules that have translational kinetic energies larger than, \(\varepsilon = 1.31 \times 10^{-21} \text{ J} \).

\[
\frac{N_{>\varepsilon}}{N} = \left(\frac{4\varepsilon}{\pi k_B T} \right)^{1/2} e^{-\frac{\varepsilon}{k_B T}} + \text{erfc}\left(\sqrt{\frac{-\varepsilon}{k_B T}}\right)
\]

\[k_B = 1.38 \times 10^{-23} \text{ m}^2\text{kg/s}^2\text{K}\]

\[\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt\]
For saturated nitrogen at 77 K, estimate the fraction of the molecules that have translational kinetic energies larger than, $\varepsilon = 1.31 \times 10^{-21}$ J.

$$\frac{N_{>\varepsilon}}{N} = \left(\frac{4\varepsilon}{\pi k_B T}\right)^{\frac{1}{2}} e^{-\frac{\varepsilon}{k_B T}} + \text{erfc}\left(\sqrt{\frac{-\varepsilon}{k_B T}}\right)$$

$$\frac{\varepsilon}{k_B T} = 1.23$$

$$\frac{N_{>\varepsilon}}{N} = 0.483$$
Multiphase Flow and Heat Transfer

ME546

-Sudheer Siddapureddy
sudheer@iitp.ac.in
Surface Tension

The net attractive force causes the liquid surface to contract inwards until repulsion from other surrounding molecules start dominating.

If there are no external forces, spherical interface is formed. Intermolecular attraction – Interfacial Tension.
Surface Tension

Practically, the phenomenon is comparable to a thin layer surrounding the liquid and making it hard to dip an object in and to pull it out of the liquid. Against force (F) work has to be performed to move something through this layer or to expand its surface.

Hence, σ is the amount of force (Nm) necessary to expand the surface (m2) of a liquid by one unit.
Postulate: The mean properties vary continuously across the transition region between the bulk phases:

Mean molar density, \(\hat{\rho} = \frac{\rho_n}{N_A} \)

On the liquid side of the interfacial region, \(\rho \) is lower than that in the bulk liquid.

Energy per molecule in the interfacial region > bulk liquid.

The system has an additional free energy per unit area of interface due to the presence of the interface.
Van der Waals (molecular) theory of capillarity

Interfacial tension is due to the excess interfacial free energy per unit area.

The interface surface is so chosen that the mass in the interfacial region with a distributed density profile is the same as would exist in the region with a discontinuous density step change at $z = 0$.

$$\int_{-\infty}^{0} (\rho - \rho_v) \, dz + \int_{0}^{\infty} (\rho - \rho_l) \, dz = 0$$
\[\sigma = \int_{-\infty}^{0} [A - A(\rho_v)] \, dz + \int_{0}^{\infty} [A - A(\rho_l)] \, dz \]

\(A\) is the Helmholtz free energy per unit volume

the maximum work a system can do @ constant \(V\) & \(T\)

- Apply a system held at constant \(T\) with a \(V\) that encompasses the interfacial region over a unit area of the interface.

- Equilibrium corresponds to a minimum in volumetric free energy \((A)\).

- \(\sigma\) is the property nothing but this equilibrium free energy.
Modified Redlich-Kwong model for dimensionless σ:

$$\frac{\sigma_{lv}}{P_c L_i} = 14.65 \left(1 - \frac{T}{T_c} \right)^{1.33}$$

L_i is a characteristic length associated with the size of the interfacial region.

$$L_i = \left(\frac{k_B T_c}{P_c} \right)^{\frac{1}{3}}$$
Interface properties

$$\rho_r = \frac{\rho}{\rho_c}$$

$$T_r = \frac{T}{T_c}$$

Reduced density profiles across the interfacial region predicted at various reduced temperatures
Dimensionless interfacial thickness:

\[\frac{\delta z_i}{L_i} = 0.683 \left(1 - \frac{T}{T_c} \right)^{-0.67} \]

<table>
<thead>
<tr>
<th>Material</th>
<th>(T_c) (K)</th>
<th>(P_c) (MPa)</th>
<th>(L_i) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_2)</td>
<td>126.2</td>
<td>3.400</td>
<td>0.800</td>
</tr>
<tr>
<td>(CH_4)</td>
<td>190.6</td>
<td>4.599</td>
<td>0.830</td>
</tr>
<tr>
<td>(Ar)</td>
<td>150.7</td>
<td>4.865</td>
<td>0.753</td>
</tr>
<tr>
<td>(O_2)</td>
<td>154.5</td>
<td>5.043</td>
<td>0.751</td>
</tr>
<tr>
<td>(H_2O)</td>
<td>647.3</td>
<td>22.129</td>
<td>0.739</td>
</tr>
<tr>
<td>(NH_3)</td>
<td>405.6</td>
<td>11.290</td>
<td>0.793</td>
</tr>
<tr>
<td>(C_3H_8) (propane)</td>
<td>369.9</td>
<td>4.248</td>
<td>1.063</td>
</tr>
<tr>
<td>(SF_6)</td>
<td>318.7</td>
<td>3.760</td>
<td>1.054</td>
</tr>
<tr>
<td>R-134a</td>
<td>374.3</td>
<td>4.059</td>
<td>1.084</td>
</tr>
</tbody>
</table>
Dimensionless Thickness of the Interfacial Region

For water at atmospheric pressure, estimate the surface tension and the interfacial region thickness.

$T_c = 647.3 \, \text{K}, \quad P_c = 22.1 \, \text{MPa} \quad \text{and} \quad L_i = 0.739 \, \text{nm}$

$$\frac{\sigma_{lv}}{P_c L_i} = 14.65 \left(1 - \frac{T}{T_c}\right)^{1.33}$$

$$L_i = \left(\frac{k_B T_c}{P_c}\right)^\frac{1}{3} \quad k_B = 1.38 \times 10^{-23} \, \text{m}^2\text{kg/s}^2\text{K}$$

$$\frac{\delta z_i}{L_i} = 0.683 \left(1 - \frac{T}{T_c}\right)^{-0.67}$$
Dimensionless Thickness of the Interfacial Region

For water at atmospheric pressure, estimate the surface tension and the interfacial region thickness.

\[T_c = 647.3 \text{ K}, \quad P_c = 22.1 \text{ MPa} \] and \[L_i = 0.739 \text{ nm} \]

\[
\begin{align*}
\sigma_{lv} & = 0.105 \text{ N/m} & \sigma_{lv} & = 0.07635 \text{ N/m} \\
\delta z_i & = 0.766 \text{ nm} & \delta z_i & = 0.898 \text{ nm} \\
T & = 300 \text{ K} & T & = 373.14 \text{ K}
\end{align*}
\]

Actual value, \[\sigma = 0.0712 \text{ N/m} \] @ \(T = 303.2 \text{ K} \)

\[\sigma = 0.0589 \text{ N/m} \] @ \(T = 373.14 \text{ K} \)

Effective diameter of a water molecule = 0.28 nm
Multiphase Flow and Heat Transfer

-Sudheer Siddapureddy
sudheer@iitp.ac.in
Vapor Pressure

At a given pressure, the temperature at which a pure substance changes phase is T_{sat}.

At a given temperature, the pressure at which a pure substance changes phase is P_{sat}.

Vapor Pressure (P_v) of a pure substance is defined as the pressure exerted by its vapor in phase equilibrium with its liquid at a given temperature.

For a pure substance, P_v is a Property and $P_v = P_{\text{sat}}$.
Determine the mole fraction of the water vapor at the surface of a lake whose temperature is 15°C. The atmospheric pressure at lake level is 92 kPa.

At phase equilibrium: \(P_v = P_{\text{sat at } 15^\circ\text{C}} = 1.7057 \text{ kPa}\)

Mole fraction of water vapor in air:

\[
x_v = \frac{P_v}{P} = \frac{1.7057}{92} = 0.0185
\]
Henry’s Law

The amount of a gas that dissolves in a liquid is directly proportional to the partial pressure of that gas \((P_{i,g})\) in equilibrium with that liquid.

Mole fraction of species \(i\) on liquid side,

\[x_{i,l} = \frac{P_{i,g}}{H} \]

Henry’s constant in pressure units (Pa)
1. The concentration of a gas dissolved is \(\propto H^{-1} \)

2. \(H \uparrow \) with \(T \uparrow \)

\[
x_{i,l} = \frac{P_{i,g}}{H}
\]
1. The concentration of a gas dissolved is $\propto H^{-1}$

2. $H \uparrow$ with $T \uparrow$

3. $y_{i,l} \uparrow$ with $P_i \uparrow$

\[x_{i,l} = \frac{P_{i,g}}{H} \]
Henry's Law

\[x_{i,l} = \frac{P_{i,g}}{H} \]

Henry's constant \(H \) (in bars) for selected gases in water at low to moderate pressures (for gas \(i \), \(H = \frac{P_{i,\text{gas side}}}{y_{i,\text{water side}}} \)) (from Mills, Table A.21, p. 874)

<table>
<thead>
<tr>
<th>Solute</th>
<th>290 K</th>
<th>300 K</th>
<th>310 K</th>
<th>320 K</th>
<th>330 K</th>
<th>340 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2\text{S})</td>
<td>440</td>
<td>560</td>
<td>700</td>
<td>830</td>
<td>980</td>
<td>1140</td>
</tr>
<tr>
<td>(\text{CO}_2)</td>
<td>1,280</td>
<td>1,710</td>
<td>2,170</td>
<td>2,720</td>
<td>3,220</td>
<td></td>
</tr>
<tr>
<td>(\text{O}_2)</td>
<td>38,000</td>
<td>45,000</td>
<td>52,000</td>
<td>57,000</td>
<td>61,000</td>
<td>65,000</td>
</tr>
<tr>
<td>(\text{H}_2)</td>
<td>67,000</td>
<td>72,000</td>
<td>75,000</td>
<td>76,000</td>
<td>77,000</td>
<td>76,000</td>
</tr>
<tr>
<td>(\text{CO})</td>
<td>51,000</td>
<td>60,000</td>
<td>67,000</td>
<td>74,000</td>
<td>80,000</td>
<td>84,000</td>
</tr>
<tr>
<td>(\text{Air})</td>
<td>62,000</td>
<td>74,000</td>
<td>84,000</td>
<td>92,000</td>
<td>99,000</td>
<td>104,000</td>
</tr>
<tr>
<td>(\text{N}_2)</td>
<td>76,000</td>
<td>89,000</td>
<td>101,000</td>
<td>110,000</td>
<td>118,000</td>
<td>124,000</td>
</tr>
</tbody>
</table>
Determine the concentration of dissolved air in water at ambient conditions. \(H_{N_2} = 9.2 \times 10^9 \) Pa, \(H_{O_2} = 4.3 \times 10^9 \) Pa

At phase equilibrium: \(P_v = P_{sat@30^\circ C} = 4.25 \) kPa

\[
P_{total} = P_v + P_{dry-air}
\]

\[
P_{dry-air} = 101.42 - 4.25 = 97.17 \) kPa

\[
P_{dry-air} = P_{N_2} + P_{O_2}
\]

\[
P_{N_2} = 79\% \quad P_{dry-air} = 76.7643 \) kPa

Mole fraction of \(N_2 \), \(x_{N_2,l} = \frac{P_{N_2}}{H} = \frac{76.7643 \times 10^3}{9.2 \times 10^9} = 8.34 \times 10^{-6}
\]

Mass fraction of \(N_2 \), \(y_{N_2,l} = x_{N_2,l} \times \frac{M_{N_2}}{M_{H_2O}} = 13 \times 10^{-6}
\]

Solubility of \(N_2 \) in water, \(S_{N_2} = 13 \times 10^{-3} \) g/kg
\[P_{O_2} = 21\% \quad P_{dry-air} = 20.4057 \text{ kPa} \]

Mole fraction of \(O_2 \), \(x_{O_2,l} = \frac{P_{O_2}}{H} = \frac{20.4057 \times 10^3}{4.3 \times 10^9} = 4.75 \times 10^{-6} \]

Mass fraction of \(O_2 \), \(y_{O_2,l} = x_{O_2,l} \times \frac{M_{O_2}}{M_{H_2O}} = 8.5 \times 10^{-6} \)

Solubility of \(O_2 \) in water, \(S_{O_2} = 8.5 \times 10^{-3} \text{ g/kg} \)

\[\text{i.e., 8.4 ppm of dissolved } O_2 \text{ in water} \]
Solubility with Temperature

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>P_{sat} (kPa)</th>
<th>S_{N_2} (g/kg)</th>
<th>S_{O_2} (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>4.247</td>
<td>13×10^{-3}</td>
<td>8.4×10^{-3}</td>
</tr>
<tr>
<td>50</td>
<td>12.325</td>
<td>12×10^{-3}</td>
<td>7.7×10^{-3}</td>
</tr>
<tr>
<td>70</td>
<td>31.202</td>
<td>9.4×10^{-3}</td>
<td>6.1×10^{-3}</td>
</tr>
<tr>
<td>80</td>
<td>47.416</td>
<td>7.2×10^{-3}</td>
<td>4.7×10^{-3}</td>
</tr>
<tr>
<td>90</td>
<td>70.183</td>
<td>4.2×10^{-3}</td>
<td>2.7×10^{-3}</td>
</tr>
<tr>
<td>100</td>
<td>101.42</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Henry’s constant is considered not to vary with temperature
Solubility of \(\text{in Water} \)

Henry’s constant is considered to vary with temperature.
Degassing Techniques

1. By boiling or superheating
2. Vacuum degasification
3. Freeze-pump-thaw cycling
4. Membrane degasification
Degassing Techniques

1. **By boiling or superheating**
 - Low purity limits
 - Significant fluid is lost while pulling vacuum
2. Vacuum degasification (Assuming only v & g are evacuated)
2. Vacuum degasification

- Non-condensable gas (g)
- Liquid-vapor (v)

Wait for some time and shake the chamber.

x_{g1} to x_{g2}
2. Vacuum degasification
2. Vacuum degasification

 Degassing Techniques

- Non-condensable gas (g)
- Liquid-vapor (v)

Wait for some time and shake the chamber

\[x_{g2} \]

\[X_3 \approx 0 \]

\[x_{g3} = 0 \]
Imagine an insulated chamber with negligible thermal mass where the volume of the vapor and nitrogen space is equal to the volume of the liquid space (1 liter). Start with 70°C, and 101.325 kPa total pressure. Compute the number of moles of N2 dissolved in the chamber after 3 cycles of vacuum degasification. \(H_{N_2} = 9.2 \times 10^9 \) Pa

\[P_{\text{sat}@70^\circ C} = 31.176 \text{ kPa} \]

Hint: Calculate the number of moles of N\(_2\) and water on gas side and also on liquid side for each cycle.

Assume that no other gas exists other than N\(_2\) and H\(_2\)O.
At phase equilibrium: \(P_v = P_{\text{sat} @ 70^\circ C} = 31.176 \text{ kPa} \)

\[
P_{\text{total}} = P_v + P_{N_2}
\]

\[
P_{N_2} = 101.325 - 31.176 = 70.149 \text{ kPa}
\]

By definition \(P_{N_2} \) is the pressure exerted if the whole volume is filled with \(N_2 \). Here the \(V \) is 1 liter = 0.001 m\(^3\).

\[
n_{N_2,v} = \frac{P_{N_2} \cdot V}{RT} = \frac{70149 \times 0.001}{8.314 \times 343.14} = 0.0246 \text{ moles}
\]

Similarly for water in vapor state:

\[
n_{H_2O,v} = \frac{P_{H_2O} \cdot V}{RT} = \frac{31176 \times 0.001}{8.314 \times 343.14} = 0.0109 \text{ moles}
\]
On liquid side

Number of moles of H₂O in 1 liter of volume:

$$n_{H_2O, l} = \frac{V_{H_2O, l}}{M_{H_2O}} = \frac{1 \text{ kg}}{18 \text{ g/mol}} = 55.55 \text{ moles}$$

From Henry’s law, mole fraction of N₂ in liquid water:

$$x_{N_2, l} = \frac{P_{N_2}}{H_{N_2}} = \frac{70149}{9.2 \times 10^9} = 7.62 \times 10^{-6}$$

By the definition of mole fraction:

$$x_{N_2, l} = \frac{n_{N_2, l}}{n_{H_2O, l} + n_{N_2, l}} \Rightarrow n_{N_2, l} = n_{H_2O, l} x_{N_2, l} = 0.424 \times 10^{-3} \text{ moles}$$
We started with a chamber containing:

\[n_{\text{H}_2\text{O}, l} = 55.55 \text{ moles} \quad n_{\text{N}_2, l} = 0.424 \times 10^{-3} \text{ moles} \]

\[n_{\text{H}_2\text{O}, v} = 0.0109 \text{ moles} \quad n_{\text{N}_2, v} = 0.0246 \text{ moles} \]

During the first cycle of vacuum degasification, we removed all the vapor, i.e., 0.0109 moles of H\(_2\)O and 0.0246 moles of N\(_2\) from the chamber.

Number of molecules left in the chamber are:

55.55 moles of H\(_2\)O and 0.424 \(10^{-3}\) moles of N\(_2\).

The chamber is now allowed to settle:

Phase equilibrium: Part of H\(_2\)O (\(l\)) evaporates

Dissolved N\(_2\) in H\(_2\)O (\(l\)) comes-out following Henry’s law.
The molecules in l have to be distributed in l and g.

Diagram:

- Initially, the chamber is closed.
- After waiting for some time and shaking the chamber, the molecules are redistributed.

Legend:

- Red dots: Non-condensable gas (g)
- Blue dots: Liquid-vapor (v)

Symbols:

- x_{g1}
- x_{g2}
- X_{g2}
After First Cycle

At phase equilibrium: \(P_v = P_{sat} @ 70{}^\circ C = 31.176 \text{ kPa} \)

55.55 moles of H\(_2\)O has to be distributed as \(n_{H_2O, l} \) and \(n_{H_2O, v} \)

\(\therefore n_{H_2O, l} \ll n_{H_2O, v} \), Change in volume of H\(_2\)O (\(l \)) is negligible,

\(i.e., V_{H_2O, v} = 1 \text{ liter} = 1 \text{ kg} = 0.001 \text{ m}^3 \).

\[\Rightarrow n_{H_2O, l} = 55.55 \text{ moles} \]

\(n_{H_2O, v} = 0.0109 \text{ moles} \)

Similar to previous calculation

In a strict sense, they should be computed iteratively

\(P_{N_2} \) and \(P_{total} \) are not known at this stage.
First Cycle

\[x_{N_2, l} = \frac{P_{N_2}}{H_{N_2}} \]

\[P_{N_2} = \frac{n_{N_2, v} \ RT}{V} \]

\[x_{N_2, l} = \frac{n_{N_2, l}}{n_{H_2O, l} + n_{N_2, l}} \Rightarrow n_{N_2, l} = n_{H_2O, l} \times x_{N_2, l} \]

\[n_{N_2, l} = \frac{n_{H_2O, l} \ RT}{H_{N_2} V} \times n_{N_2, v} \]

0.424 \times 10^{-3} \text{ moles of N}_2 \text{ is distributed as } n_{N_2, l} \text{ and } n_{N_2, v}

\[n_{N_2, l} + n_{N_2, v} = 0.424 \times 10^{-3} \text{ moles} \]
In one cycle of vacuum degasification, we observe reduction by 59 times of dissolved N\textsubscript{2} in liquid H\textsubscript{2}O.
End of Second Cycle

\[n_{\text{H}_2\text{O}, l} = 55.55 \text{ moles} \]
\[n_{\text{H}_2\text{O}, v} = 0.0109 \text{ moles} \]
\[n_{\text{N}_2, l} = ??? \text{ moles} \]
\[n_{\text{N}_2, v} = ??? \text{ moles} \]

We started with

\[n_{\text{N}_2, l} = 0.424 \times 10^{-3} \text{ moles} \]
\[n_{\text{N}_2, v} = 0.0246 \text{ moles} \]

In two cycles of vacuum degasification, we observe reduction by ??? times of dissolved N\textsubscript{2} in liquid H\textsubscript{2}O.
In three cycles of vacuum degasification, we observe reduction by $$???$$ times of dissolved $$\text{N}_2$$ in liquid $$\text{H}_2\text{O}$$.
2. **Vacuum degasification**

- Some liquid is lost while pulling vacuum
- The chamber temperature needs to be controlled
- Needs 3 cycles to get high purity limits
Degassing Techniques

3. Freeze-pump-thaw cycling
 - Very small amount of fluid is lost
 - Needs 3 cycles to get high purity limits
 - Less hazardous
Degassing Techniques

4. Membrane degasification

Pull vacuum through a membrane such as Gore-Tex
Multiphase Flow and Heat Transfer

ME546

-Sudheer Siddapureddy
sudheer@iitp.ac.in
Surface Tension

The free surface between air and water at a molecular scale.

Molecules sitting at a free liquid surface against vacuum or gas have weaker binding than molecules in the bulk.

Surface tension is analogous to a negative surface pressure.
Surface Tension

Rubber membrane at the end of a cylindrical tube

An inner pressure P_i can be applied, which is different than the outside pressure P_a.
Surface tension acts along the circumference and the pressure acts on the area, horizontal force balances for the droplet.

Young-Laplace Equation

\[(2\pi R) \sigma_s = (\pi R^2) \Delta P_{\text{droplet}} \]
Consider a differential increase in the radius of the droplet due to the addition of a differential amount of mass.

Surface tension is the increase in the surface energy per unit area.

The increase in the surface energy of the droplet during the differential expansion process:

\[
dW_{\text{surface}} = \sigma \, dA
\]

\[
\delta W_{\text{expansion}} = FdR = \Delta PAdR = \Delta PdV
\]

\[
\Delta P = P_1 - P_2 = \frac{2\sigma}{R}
\]

\(P_1 - P_2\) is positive and so \(P_1 > P_2\)
A liquid meniscus with radii of curvature of opposite sign between two solid cylinders.
Young-Laplace Equation

\[dA = (x + dx)(y + dy) - xy = xdy + ydx \]

\[dW_{\text{surface}} = \sigma \ dA = \sigma(xdy + ydx) \]

\[dW_{\text{expansion}} = \Delta PAdz = \Delta Pxydz \]

\[\Delta P = P_1 - P_2 \]

\(P_1 \) is on concave side
Young-Laplace Equation

\[\Delta P \ xy \ dz = \sigma \left(xdy + ydx \right) \]

\[\Delta P = \sigma \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]

Capillary pressure difference,

\[\Delta P = P_1 - P_2 \]

Pressure on the concave side is higher
The planes defining the radii of curvature must be perpendicular to each other and contain the surface normal.

For a cylinder of radius R a convenient choice is $R_1 = R$ and $R_2 = \infty$ so that the curvature is $1/R$.

For a sphere with radius R we have $R_1 = R_2$ and the curvature is $2/R$.
Compare a spherical bubble with a diameter of 1 mm and a bubble of 10 nm diameter in pure water. \(\sigma = 0.072 \text{ N/m} \)

\[
\Delta P_{1\text{mm}} = 288 \text{ Pa}
\]

\[
\Delta P_{1\text{nm}} = 288 \text{ MPa}
\]

\[
P_{\text{inside, 1nm}} = 288 \text{ MPa} + 0.1 \text{ MPa} = 288.1 \text{ MPa}
\]
If we know the shape of a liquid surface we know its curvature and we can calculate the pressure difference.

In the absence of external fields (e.g., gravity), the pressure is same everywhere in the liquid; otherwise there would be a flow of liquid of regions of low pressure.

Thus, ΔP is constant and Young-Laplace equation tells us in this case the surface of the liquid has the same curvature everywhere.

It is possible to calculate the equilibrium shape of a liquid surface.

If we know the pressure difference and some boundary conditions (such as volume of the liquid and its contact line) we can calculate the geometry of the liquid surface.
Capillary Rise or Depression

Why makes the liquid column to rise/fall?
Why makes the liquid column to rise/fall?

To satisfy Young-Laplace equation.
Capillary Rise or Depression

Why makes the liquid column to rise/fall?
To satisfy Young-Laplace equation.

Let us assume that the meniscus is of spherical of radius, a.

$$P_1 - P_2 = \frac{2\sigma}{a}$$

From hydrostatics:

$$P_2 = P_1 + \rho_v gh - \rho_l gh$$

$$P_1 - P_2 = (\rho_l - \rho_v)gh$$
Capillary Rise or Depression
Capillary Rise or Depression
Capillary Rise or Depression

\[\cos \theta = \frac{R}{a} \]

Radius of the meniscus:

\[a = \frac{R}{\cos \theta} \]

\[P_1 - P_2 = \frac{2\sigma}{a} = \frac{2\sigma \cos \theta}{R} = \left(\rho_l - \rho_v \right) gh \]

Height of the capillary rise:

\[h = \frac{2\sigma \cos \theta}{\left(\rho_l - \rho_v \right) gR} \]
Capillary Rise or Depression

\[h = \frac{2 \sigma \cos \theta}{(\rho_l - \rho_v)gR} \]

• It suggests that every point on the meniscus is at the same height \(h \) from the surface of the liquid reservoir, or in other words, the meniscus is flat!

• A more accurate derivation should consider the deviation of meniscus spherical shape in view of the elevation of each point above the flat surface of the liquid. This involves the solution of the general Young-Laplace equation using the expressions for \(R_1 \) and \(R_2 \).

Characteristic length scale:

\[L_c = \sqrt{\frac{\sigma}{(\rho_l - \rho_v)g}} \]
Capillary Rise or Depression

Compare a capillary rise with the tube diameters of 5 mm, 1 mm (laboratory test tube) and 200 nm (capillary diameter of a Redwood tree) in pure water at 20°C. The contact angle of the interface with the tube wall is 20°.

\[\sigma = 0.0728 \text{ N/m} \]

\[h = \frac{2 \sigma \cos \theta}{(\rho_l - \rho_v)gR} \]

- \(d = 5 \text{ mm}, \ h = 5.6 \text{ mm}, \ P_{\text{water}} = 101.3 \text{ kPa} \)
- \(d = 1 \text{ mm}, \ h = 0.03 \text{ m}, \ P_{\text{water}} = 101 \text{ kPa} \)
- \(d = 200 \text{ nm}, \ h = 140 \text{ m}, \ P_{\text{water}} = -1.3 \text{ MPa} \)

Negative Pressure?
Multiphase Flow and Heat Transfer

ME546

-Sudheer Siddapureddy
sudheer@iitp.ac.in
Wettability

Usually, a liquid-vapor phase change is accomplished by transferring energy through the walls of a container or channel into or out of a two-phase system.

The vaporization or condensation process ultimately takes place at the liquid-vapor interface.

However, the contact through which the energy is transferred will strongly affect the resulting heat and mass transfer in the system.

The performance of heat transfer equipment in which vaporization or condensation occurs may depend strongly on the way that the two phases contact the solid walls.
Liquids with weak affinities for a solid wall will collect themselves into beads while those with high affinities for solid will form film to maximize the liquid-solid contact area.

The affinity of liquids for solids - wettability of the fluid.
Neumann’s Formula or Young’s Equation

\[\sigma_{sv} = \sigma_{sl} + \sigma_{lv} \cos \theta \]

Vertical force \(\sigma_{lv} \sin \theta \) must be balanced by a vertical reaction force in the solid.

Small and also modulus of elasticity of solid is high

No deformation occurs

\(\sigma_{sl} \) and \(\sigma_{sv} \) are not available easily
As $\theta \to 180^\circ$ (if g is negligible)

Liquid droplet – sphere

one point of contact on solid

Completely non-wetting

As $\theta \to 0^\circ$

A thin film configuration

Completely wet the solid

Wetting liquid: As $0^\circ < \theta < 90^\circ$

Non-wetting liquid: As $90^\circ < \theta < 180^\circ$

one point of contact on solid
Neumann’s Formula or Young’s Equation

\[|\cos \theta| \geq 1 \]

At equilibrium:

\[\left| \frac{\sigma_{sv} - \sigma_{sl}}{\sigma_{lv}} \right| < 1 \]

If \(\frac{\sigma_{sv} - \sigma_{sl}}{\sigma_{lv}} < -1 \) \(\sigma_{sl} \) pulls the contact line \(\theta \to 180^\circ \)

Never happens for a droplet surrounded by its vapor, but could happen for a liquid droplet in another immiscible liquid

If \(\frac{\sigma_{sv} - \sigma_{sl}}{\sigma_{lv}} > 1 \) \(\sigma_{sv} \) pulls the contact line \(\theta \to 0^\circ \)

Until the film becomes so thin that molecular interactions come into play.
Spreading Coefficient

\[S_{ls} = \sigma_{sv} - (\sigma_{lv} + \sigma_{sl}) \]

\(S_{ls} \) measures the difference between the surface energy \(\sigma_{sv} \) and its value in the case of complete wetting.

\[S_{ls} = \sigma_{lv} (\cos \theta_{ls} - 1) \]

\(S_{ls} > 0 \), the liquid will wet the solid and spontaneously spread into a thin film.
\(S_{ls} < 0 \), the liquid will partially wet the solid and establish an equilibrium contact angle.

These results are theoretical and no lack of \(\sigma_{sv} \) and \(\sigma_{sl} \).
Cylindrical column formed by l, s and low density gas, g.

The net reversible work required per unit of interface area:

$$w_{sl} = \sigma_{lg} + \sigma_{sg} - \sigma_{sl}$$

Essentially,
Forming 2 new interfaces
Breaking on interface

Adhesion: due to the minimum reversible work required to rear the liquid off the solid surface.
Now consider, instead of solid-liquid column there is only one liquid column.

To tear a single liquid column in half:

\[w_u = 2\sigma_{lg} \]

Essentially, two new interfaces are formed without breaking any interface.

Cohesion: work required to break internal bonds of the material.

Adhesion – for dissimilar particles
Cohesion – for similar particles
Now let's march further. Let's say there is a liquid column of length A, and height δ. We are making it into a liquid column of length $2A$ and height of $\delta/2$.

\[\delta \ll \sqrt{A} \]

\[w_{sp} = \sigma_{lg} + \sigma_{sl} - \sigma_{sg} \]
Adhesion and Cohesion

\[w_{sp} = \sigma_{lg} + \sigma_{sl} - \sigma_{sg} = -S_{ls} \]

Work interaction is negative \((S_{ls} \text{ is positive for spreading})\)
Work could be extracted if we can \((= S_{ls})\)

\[S_{ls} = -w_{sp} = w_{sl} - w_{ll} \]

Spreading coefficient = difference between the work of adhesion and the work of cohesion.

\(S_{ls} \) indicates the tendency of the liquid to adhere to the solid relative to its internal cohesive forces.
Surface Tension

\[w_{sl} = \sigma_{lg} + \sigma_{sg} - \sigma_{sl} \]

Applying it to any two solid or liquid phases \(a\) and \(b\), and a low density gas or vapor phase \(g\),

\[w_{ab} = \sigma_{bg} + \sigma_{ag} - \sigma_{ab} \]

\[\sigma_{ab} = \sigma_{bg} + \sigma_{ag} - w_{ab} \]

The work of adhesion is approximately given as:

\[w_{ab} \approx 2 \left(\sigma_{ag} \sigma_{bg} \right)^{\frac{1}{2}} \]

\[\sigma_{ab} = \sigma_{bg} + \sigma_{ag} - 2 \left(\sigma_{ag} \sigma_{bg} \right)^{\frac{1}{2}} \]
Surface Tension

For water and hexane in contact with air at 20°C, σ_{wg} is 0.0728 N/m and σ_{hg} is 0.0184 N/m respectively. Use these data to estimate the interfacial tension between hexane and water. Compare this value to experimentally determined value of $\sigma_{wh} = 0.0511$ N/m.
For water and hexane in contact with air at 20°C, \(\sigma_{wg} \) is 0.0728 N/m and \(\sigma_{hg} \) is 0.0184 N/m respectively. Use these data to estimate the interfacial tension between hexane and water. Compare this value to experimentally determined value of \(\sigma_{wh} = 0.0511 \) N/m.

\[
\sigma_{wh} = \sigma_{wg} + \sigma_{hg} - 2 \left(\sigma_{wg} \sigma_{hg} \right)^{\frac{1}{2}}
\]
Surface Tension

\[\sigma_{wh} = \sigma_{wg} + \sigma_{hg} - 2 \left(\sigma_{wg} \sigma_{hg} \right)^{\frac{1}{2}} \]

\[\sigma_{wh} = 0.0180 \text{ N/m} \]

\[S_{hw} = \sigma_{wg} - \sigma_{hg} - \sigma_{wh} = 0.033 \text{ N/m} \]

\(S > 0 \), hexane would spontaneously spread over the surface of water. However, close to zero and so tendency is weak. Hexane is unlikely to form lens-shaped droplets. Spread out into a film, not aggressively covers the entire liquid surface.
Spread Thin Films

Spontaneous spreading of liquid helium over the walls of a Dewar flask
Multiphase Flow and Heat Transfer

ME546

-Sudheer Siddapureddy
sudheer@iitp.ac.in
Contact Angle Hysteresis, \(\text{CAH} = \theta_a - \theta_r \)

The immersion and removal sequence illustrating advancing and receding contact angles
Three Different Contact Angles

1. Static contact angle
2. Receding contact angle
3. Advancing contact angle

For a real surface

$$\theta_{rec} < \theta_{stat} < \theta_{adv}$$
Contact Angle Hysteresis, CAH = $\theta_a - \theta_r$

Generally acknowledged to be a consequence of three factors:

1. Surface inhomogeneity
2. Surface roughness
3. Impurities on the surface

For an idealized solid surface that is perfectly smooth, clean and homogeneous in composition, $\theta_a = \theta_r$
Applications of Contact Angle Hysteresis

- Coating processes (dynamic hysteresis)
- Digital microfluidics and evaporation of droplets - leading to the well-known coffee stain
- Immersion **lithography**
- Fiber coatings
- Ink-jet printing

Lithography works on the principle that grease and water repel each other. There is no carving involved. The artist draws on a stone with a greasy crayon (hydrophobic) and then covers the stone with a thin film of water. The oily ink (rolled over the surface) will stick to the greasy image but not to the water-covered areas.
Applications of Contact Angle Hysteresis

In some cases, hysteresis is a problem (immersion lithography) while in others it is essential (dip-coating).

Determining and controlling contact angle hysteresis are critical for the operation of these industrially relevant systems.
Apparent Contact Angle

Effects of surface inhomogeneity and roughness on the apparent contact angle for advancing and receding liquid fronts.
Liquid Droplet to Resist Downward Motion
Contact angle hysteresis can allow a liquid slug in a small vertical tube to resist downward motion.
Contact angle hysteresis can allow a liquid slug in a small vertical tube to resist downward motion.

\[P_1 - P_2 = \frac{2\sigma}{r_{\text{top}}} \]

\[P_4 - P_3 = \frac{2\sigma}{r_{\text{bottom}}} \]
The length of a slug depends on contact angle hysteresis.
Coffee Stain Effect
Coffee Stain Effect

- Coffee stain phenomenon - real undesired nuisance and a limiting physical factor in: inkjet printing of circuits, OLED displays, or drying of paint, and so on.
- For optimal efficiency the molecules should be distributed homogeneously, but in practice predominant at rim.

Illustration of coffee stain formation in Panel (a) and a microscope image of a coffee stain formed by fluorescently labeled 5 μm particles in Panel (b)
Coffee Stain Effect

- Suppressed by applying electrowetting (EW) with an alternating voltage.
- Electric force that disturbs the force balance at contact line.
- EW with AC frequency alternatively increases and decreases the apparent contact angle essentially depinning the contact line, i.e., not allowing it to get struck to intrinsic roughness features on the surface.

Suppression of Coffee stain effect using electro wetting
(a) Without EW leading to a pronounced coffee stain effect
(b) Treated with EW – leading to almost homogeneous residue
Hydrophilic and Hydrophobic Surfaces

Hydrophilic – Water loving!

When the solid has a high affinity for water
$\theta < 90^\circ$, water spreads
High surface energy e.g. glass, metals
Superhydrophilic, $\theta < 5^\circ$

Hydrophobic – Water repelling!

$\theta > 90^\circ$, Water does not spread
A spherical cap resting on the substrate with θ
Low energy e.g. teflon
Superhydrophobic, $\theta > 150^\circ$
Effect of Surface Roughness

\(\theta_E \) = Equilibrium contact angle of an ideal surface
\(\theta^* \) = Apparent contact angle of a rough surface

Two models:

- Wenzel state
- Cassie-Baxter state
In this state
- There are no air bubbles,
- The droplet is in good contact with the surface.
- Pinned droplet.
In this state

- There are no air bubbles,
- The droplet is in good contact with the surface.
- Pinned droplet.

\[
r = \frac{\text{Real surface area}(A_{3D})}{\text{Projected surface area}(A_{2D})}
\]

\[
\because \text{there are no real surfaces, } r > 1
\]
In this state
- There are no air bubbles,
- The droplet is in good contact with the surface.
- Pinned droplet.

\[r = \frac{\text{Real surface area}(A_{3D})}{\text{Projected surface area}(A_{2D})} \]

\[\cos \theta^* = r \cos \theta_E \]
Consequences of the Wenzel Equation

\[\cos \theta^* = r \cos \theta_E \]

\[\therefore \text{there are no real surfaces}, \quad r > 1 \Rightarrow \cos \theta^* > \cos \theta_E \]

Hydrophilic: \(\theta_E < 90^\circ \)

Say, \(\theta_E = 45^\circ \) and \(r = 1.2 \),

Then, \(\theta^* = \)

Hydrophobic: \(\theta_E > 90^\circ \)

Say, \(\theta_E = 135^\circ \) and \(r = 1.2 \),

Then, \(\theta_E = \)
Consequences of the Wenzel Equation

\[\cos \theta^* = r \cos \theta_E \]

\[\therefore \text{there are no real surfaces, } r > 1 \Rightarrow \cos \theta^* > \cos \theta_E \]

Hyrdrophilic: $\theta_E < 90^\circ$

Say, $\theta_E = 45^\circ$ and $r = 1.2$,
Then, $\theta^* = 32^\circ$

$\theta^* < \theta_E$

Hyrdrophobic: $\theta_E > 90^\circ$

Say, $\theta_E = 135^\circ$ and $r = 1.2$,
Then, $\theta_E = 148^\circ$

$\theta^* > \theta_E$

Roughness makes a hydrophilic surface more hydrophilic and a hydrophobic surface more hydrophobic.
In this state:

Water sits on top tiny air bubbles
Heterogeneous surface
Adhesive force (water-solid) is extremely low
Water droplets roll-off
Self cleaning
Generally for highly rough surfaces
A special case:

\[
\cos \theta^* = -1 + \Phi_s (\cos \theta_E + 1)
\]

\(\Phi_s\) - % of solid in contact with liquid
Cassie–Baxter State

A special case:

\[
\cos \theta^* = -1 + \Phi_s (\cos \theta_E + 1)
\]

\(\Phi_s\) - % of solid in contact with liquid

If no solid in contact, \(\Phi_s \to 0\)

\[
\begin{align*}
\cos \theta^* &\to -1 \\
\theta^* &\to 180^\circ
\end{align*}
\]
Petal Effect vs Lotus Effect

Water droplets on Lotus

Water droplets on Rose Petal
Multiphase Flow and Heat Transfer

ME546

-Sudheer Siddapureddy
sudheer@iitp.ac.in
Pendant and Sessile Drops

Pendant droplet detachment sequence

Pendant drop: Drop suspended

Eg: Droplets formed by the condensation of vapor

Sessile water droplet immersed in oil and resting on a brass surface
• Consider a sessile drop sitting on a smooth solid surface inside another fluid.
• In the absence of gravity, the drop takes spherical shape with least surface area.

• The drop is deformed by gravity. The center of mass of the drop is forced to be lowered by gravity.

• This increases the surface area, which is opposed by surface tension force.

• Assume there are no external forces acting on the drop.
Interface Shape at Equilibrium

• Origin of the coordinate system is O, located at the apex of the surface. The drop is assumed to be axisymmetric.

• At O: Radii of curvature: \(r_1 = r_2 = r_0 \)

• At any P: Radii of curvature are \(r_1 \) and \(r_2 \)
At origin using Young-Laplace:

\[(P_I - P_{II})_0 = \frac{2\sigma}{r_0} \]

At point P:

\[(P_I - P_{II})_p = \sigma \left(\frac{1}{r_1} + \frac{1}{r_2} \right) \]

Hydrostatic pressure heads at any point (P) on interface as seen from fluids I and II:

\[P_{Ip} = P_{I0} + \rho_I g z \]

\[P_{IIp} = P_{II0} + \rho_{II} g z \]

\[r_2 = \frac{x}{\sin\alpha} \]
Bashforth-Adams Equation

\[\sigma \left(\frac{1}{r_1} + \frac{\sin \alpha}{x} \right) = \frac{2\sigma}{r_0} + \left(\rho_I - \rho_{II} \right)g z\]

\[\frac{1}{(r_1/r_0)} + \frac{\sin \alpha}{(x/r_0)} = 2 + \left[\frac{(\rho_I - \rho_{II})gr_0^2}{\sigma} \right] \frac{z}{r_0}\]

Bashforth-Adams Equation

\[\text{Bo} = \frac{(\rho_I - \rho_{II})gr_0^2}{\sigma}\]

\[\frac{1}{(r_1/r_0)} + \frac{\sin \alpha}{(x/r_0)} = 2 + \text{Bo} \frac{z}{r_0}\]
Bashforth-Adams Equation

\[
\frac{1}{(r_1/r_0)} + \frac{\sin \alpha}{(x/r_0)} = 2 + \text{Bo} \frac{z}{r_0}
\]

\[
\text{Bo} = \left(\frac{\rho_l - \rho_{II}}{\sigma} \right) g r_0^2
\]

\[r_1 = f \left(\frac{dz}{dx}, \frac{d^2z}{dx^2} \right)\]

Numerically solvable with appropriate BCs.

Solution in tabular form (Bashforth and Adams in 1883)

- Variation of \(z/r_0 \) and \(x/r_0 \) with \(\alpha \) at a given \(\text{Bo} \)
Profile of drop predicted by Bashforth-Adams equation at Bo = 25

\[\alpha = \theta \bigg|_{z_{\text{max}}} \]

\[\alpha = \frac{\pi}{2} \bigg|_{x_{\text{max}}} \]

\[\text{Bo} = 25 \]

\[z/r_0 \]

\[x/r_0 \]
Bond Number

\[\text{Bo} = \frac{(\rho_I - \rho_{II})gr_0^2}{\sigma} \]

Ratio of the gravity force to the force due to surface tension.

- \(\text{Bo} \ll 1 \) \hspace{1cm} \text{Drop will not deform significantly}
- \(\text{Bo} \gg 1 \) \hspace{1cm} \text{Large deformation of the drop}

\(\text{Bo} \ll 1 \), if

- the drop is small
- or the interfacial tension is large
- or the density difference between the two liquid is low
\[\text{Bo} = \frac{(\rho_I - \rho_{II})g r_0^2}{\sigma} \]

\(\rho_I > \rho_{II} \)

Bo > 0, drop shape is oblate
Weight of the drop flattens the surface
Eg: Rain drop, drop on a surface

\(\rho_I < \rho_{II} \)

Bo < 0, drop shape is prolate
Buoyancy elongates shape vertically
Eg: Vapor bubble in liquid
Shape of Raindrops

\[\text{Bo} = \frac{(\rho_I - \rho_{II}) g r_0^2}{\sigma} \]

\[L_c = \sqrt{\frac{\sigma}{(\rho_I - \rho_v) g}} \]

\[\text{Bo} = \left(\frac{r_0}{L_c} \right)^2 \]

\[r_0 << L_c \quad \Rightarrow \quad \text{Gravity is negligible} \]

\[L_c \simeq \text{? mm, air-water interface at 25°C} \]
Shape of Raindrops

\[\text{Bo} = \left(\frac{r_0}{L_c} \right)^2 \]

\(L_c \approx 2.7 \text{ mm}, \text{ air-water interface at 25°C} \)

\(r_0 \approx 2 \text{ mm}, \text{ Nearly perfect sphere} \)

\(r_0 \gg 2 \text{ mm}, \text{ increasingly flattened} \)

\(r_0 > 4.5 \text{ mm}, \text{ Raindrop breaks into smaller drops due to interaction with air.} \)

Falling raindrops are deformed by the interaction with the air and never take the familiar teardrop shape with a pointed tail and a rounded bottom head.
Steadily falling raindrops are subject to the combined effects of surface tension, gravity, friction, and air currents.

Small raindrops are dominated by surface tension (nearly spherical)

Here r_0 is slightly greater than L_c (2.7 mm) and the drop is slightly oval

Larger raindrops assume a typical “hamburger” shape
Liquid Climbing the wall

Shape of a free liquid surface meeting a plane vertical wall.

If the liquid wets the wall ($\theta < 90^\circ$), the liquid level will rise as the wall is approached, meeting the wall at θ.

Consider a 2D configuration:
Liquid Climbing the wall

\[P_I - P_{II} = \sigma \left(\frac{1}{r_1} + \frac{1}{r_2} \right) \]

\[P_I = P_0 - \rho_v g z \]

\[P_{II} = P_0 - \rho_l g z \]

\[\frac{(\rho_l - \rho_v) g z}{\sigma} - \frac{1}{r_1} = 0 \]

\[z = z_{\text{climb}} \]

\[z = 0 \]

\[\frac{1}{r_2} = 0 \]

\[\frac{dz}{dx} \bigg|_{x=0} = -\cot \theta \]
Radius of Curvature

\[(x-a)^2 + (z-b)^2 = R_c^2\]

Differentiating w.r.to \(x\)

\[\frac{dz}{dx} = -\frac{x-a}{z-b}\]

However

\[\tan \phi = -\frac{dz}{dx}\]

\[\tan \phi = \frac{x-a}{z-b}\]
Radius of Curvature

\[\cos \phi = \frac{1}{\sqrt{1 + \tan^2 \phi}} = \pm \frac{z - b}{R_c} \]

\[\frac{d \cos \phi}{dz} = \pm \frac{1}{R_c} \]

\[\frac{d \cos \phi}{dz} = \frac{d}{dz} \left[1 + \left(\frac{dz}{dx} \right)^2 \right]^{-\frac{1}{2}} = \frac{dx}{dz} \frac{d}{dx} \left[1 + \left(\frac{dz}{dx} \right)^2 \right]^{-\frac{1}{2}} \]

\[\pm \frac{1}{R_c} = \pm \frac{d^2 z / dx^2}{\left[1 + \left(\frac{dz}{dx} \right)^2 \right]^{\frac{3}{2}}} \]
\[
\frac{1}{r_1} = \frac{z''}{\left[1 + (z')^2\right]^{\frac{3}{2}}}
\]

\[
z' = \frac{dz}{dx} \quad z'' = \frac{d^2z}{dx^2}
\]

\[
\frac{(\rho_l - \rho_v)gz}{\sigma} - \frac{1}{r_1} = 0
\]

\[
\frac{(\rho_l - \rho_v)gz}{\sigma} - \left[1 + (z')^2\right]^{-\frac{3}{2}} z'' = 0
\]

Multiplying by \(z'\)

\[
\frac{(\rho_l - \rho_v)g}{\sigma} z(z') - \frac{1}{2} \left[1 + (z')^2\right]^{-\frac{3}{2}} (2z'z'') = 0
\]
Integrating

\[
\frac{(\rho_l - \rho_v)g}{\sigma} \int z(z') - \frac{1}{2} \int \left[1 + (z')^2\right]^{-\frac{3}{2}} (2z'z'') = 0
\]

Since,

\[-\frac{1}{2} \left[1 + (z')^2\right]^{-\frac{3}{2}} (2z'z'') = \frac{d}{dx} \left\{ \left[1 + (z')^2\right]^{-\frac{1}{2}} \right\}
\]

\[
\frac{(\rho_l - \rho_v)g}{2\sigma} \int z^2 + \left[1 + (z')^2\right]^{-\frac{1}{2}} = C
\]

BCs: \(z, z' = 0 \) as \(y \to \infty \) \(\Rightarrow \) Integral constant, \(C = 1 \)
Liquid Climbing the wall

\[
\frac{(\rho_l - \rho_v)g}{2\sigma} z^2 + \left[1 + (z')^2 \right]^{-\frac{1}{2}} = 1
\]

\[
z'|_{x=0} = -\cot \theta
\]

The height to which the liquid climbs at the vertical wall

\[
z|_{x=0} = z_{\text{climb}} = \left[\frac{2\sigma(1-\sin\theta)}{(\rho_l - \rho_v)g} \right]^{\frac{1}{2}}
\]
Liquid Climbing the wall

The shape of the interface:

\[
\frac{x}{L_c} = \cosh^{-1}\left(\frac{2L_c}{z}\right) - \cosh^{-1}\left(\frac{2L_c}{z_{\text{climb}}}\right) - \left(4 + \frac{z^2}{L_c^2}\right)^{1/2} + \left(4 + \frac{z_{\text{climb}}^2}{L_c^2}\right)^{1/2}
\]

\[
L_c = \left[\frac{\sigma}{(\rho_l - \rho_v)g}\right]^{1/2}
\]
Liquid Climbing the wall

Figure 5.7. Flat-wall meniscus (in units of $L_c = 1$) for all contact angles in steps of 10°. Close to the wall the menisci are linear and far from the wall they approach the x-axis exponentially.
A cylindrical container is filled with saturated liquid R-134a and its vapor at 32°C. Determine the height to which the liquid will climb the vertical walls of the container if the contact angle with the walls is 5°.

At 32°C, $\sigma = 0.0072 \text{ N/m}$, $\rho_v = 39.8 \text{ kg/m}^3$, $\rho_l = 1180 \text{ kg/m}^3$.

$$z_{\text{climb}} = \left[\frac{2\sigma(1-\sin \theta)}{(\rho_l - \rho_v)g} \right]^{\frac{1}{2}}$$

$z_{\text{climb}} = 1.1 \text{ mm}$
Marangoni Forces

Any variation in surface tension along an interface will create tangential (shear) forces, known as Marangoni Forces.

This variation can arise from inhomogeneous material properties, or from temperature variations.

Unless balanced by other forces, these shear forces cannot be sustained in a liquid at rest - will set it into motion.
Multiphase Flow and Heat Transfer

ME546

-Sudheer Siddapureddy
sudheer@iitp.ac.in
Vapor that is supercooled below its equilibrium saturation temperature and liquid that is superheated above its equilibrium saturation temperature exist in a non-equilibrium condition referred to as a **metastable state**.
Metastable State

![Diagram showing the metastable state with isotherm for $T = T_o$.](image)
Compressing water (l) isothermally

$P_{sat}(300K) = 3.5 \text{ kPa}$

$P_{sat}(500K) = 2.7 \text{ MPa}$

$P_{F}(300K) = 3.3 \text{ MPa}$

$P_{E}(300K) = -101 \text{ MPa}$

$P_{F}(500K) = 269 \text{ MPa}$

$P_{E}(500K) = -13 \text{ MPa}$
Metastable Regions – Spinodal Points

![Diagram showing various regions and points in a phase diagram, labeled with points A, B, C, D, E, F, G, and annotations such as "Isotherm for T < T_c", "Critical Point", "Saturation Curve", "Metastable Supersaturated Vapor", "Stable Liquid", "Liquid Spinodal", "Stable Vapor", "Vapor Spinodal", "Metastable Superheated Liquid".]
Homogeneous and Heterogeneous Nucleation

• Bubble nucleation completely within a superheated liquid or subcooled vapor is called homogeneous nucleation.
• Nucleation at the interface between a metastable phase and another phase that it contacts is called heterogeneous nucleation.
Trapped Vapor or Liquid Pocket

Groove Angle = 2\(\gamma\)
Trapped Vapor Pocket

Vapor

Liquid

2γ

θ
Trapped Vapor Pocket

Vapor

Liquid

θ

2γ
Bubble r as Bubble Grows within and out of Cavity
Initial r of Vapor Embryo with Cavity Cone Angle (γ), θ
Heterogeneous Nucleation

1. A certain minimum value of wall superheat must be attained before any cavities on the surface will become active nucleation sites.

2. Above the superheat required to initiate nucleation, a finite range of cavities can become active sites. The extent of this range depends on the fluid properties, thermal boundary layer thickness (δ_t) and the subcooling of the bulk fluid.
Heterogeneous Nucleation

Saturated Water at Atmospheric Pressure

\[\delta_l = 0.2 \text{ mm} \]

Range of Active Cavity Sizes

Cavity Mouth Radius (mm)

Wall Superheat \(T_w - T_{sat} \) (°C)
1. **Ebullition cycle**: The steady cyclic growth and release of vapor bubbles at any active nucleation site

2. **Bubble departure** (d_d) at departure

3. **Waiting period** (t_w): The portion of the bubble growth and release cycle

4. **Frequency** at which bubbles are generated and released

Time period (τ) associated with the growth of each bubble, must equal the sum of the waiting period and the time required for the bubble grow to its departure diameter.

$$\frac{1}{f} = \tau = t_w + t_{2R(t)=d_d}$$
Bubble Growth in a Superheated Liquid

Assumption
A single bubble of spherical shape

Growing Bubble in the bulk of a Liquid
Some characteristics of Bubble Growth

- Initially, the interface temperature close to superheated liquid temperature.
- Vapor generated at interface at pressure nearly equal to $P_{sat} (T_\infty)$.
- As the temperature of the superheated liquid near the interface reduces with time (Thermal energy is consumed to generate vapor) the liquid temperature reduces towards $T_{sat} (P_\infty)$.
- Pressure inside the bubble is high initially, drops gradually.
- As the radius increases & capillary pressure difference decreases.
Some characteristics of Bubble Growth

Temperature & Pressure ranges during growth period are:

\[P_\infty \leq P_v \leq P_{sat}(T_\infty) \]

\[T_{sat}(P_\infty) \leq T_v \leq T_\infty \]
Rate of Bubble Growth Dictated by

1. Fluid momentum & Pressure difference
2. Rate of Vaporization which depends on rate of heat transfer
3. Local thermodynamic equilibrium which is assumed to exist at the interface

\[P_v = P_{sat}(T_v) \]
Two Limiting Cases of Bubble growth

1. Inertia Controlled Bubble Growth
 • Initial stage of growth
 • Pressure has the Maximum value
 • $P_{sat}(T_\infty)$ & $T_v \cong T_\infty$
 • Growth rate dictated by momentum transfer, not by rate of heat transfer
 • Faster rate of growth

2. Heat transfer controlled Bubble growth
 • Later stage of Bubble growth
 • T_v approaches Minimum value
 • $T_v \rightarrow T_{sat}(P_\infty)$ and $P_v \cong P_\infty$
 • Growth is dictated by heat transfer (Energy eq.)
 • Slow process
Bubble Radius in Inertia Controlled Growth

Initial stage (Inertia controlled):

\[R(t) = \left\{ \frac{2}{3} \frac{\left[T_\infty - T_{sat}(P_\infty) \right]}{T_{sat}(P_\infty)} \frac{h_{lv} \rho_v}{\rho_l} \right\}^{\frac{1}{2}} t \]

Later stage (heat transfer controlled):

\[R(t) = 2 \sqrt{\frac{3}{\pi}} \alpha_t \, t \, \text{Ja} \]

Jakob number, \(\text{Ja} = \frac{\rho_l c_{pl}(T_\infty - T_{sat})}{\rho_v h_{lv}} \)
Bubble Departure Diameter Correlations

Departure diameter in terms of Bond number

$$\text{Bo}_d^{0.5} = 0.04 \text{Ja}$$

Jakob number, \(\text{Ja} = \frac{\rho_l c_{pl} (T_w - T_{sat}(P_\infty))}{\rho_v h_{lv}} \)

Bond number, \(\text{Bo}_d = \frac{g(\rho_l - \rho_v) d_d^2}{\sigma} \)

Zuber suggested

$$f d_d = 0.59 \left[\sigma g (\rho_l - \rho_v) \right]^{0.25}$$
Assuming inertia-controlled growth, estimate the interface velocity of a 0.2 mm diameter bubble growing in water at atmospheric pressure and 120°C.

\[T_{\text{sat}} = 100^\circ \text{C}, \quad h_{lv} = 2257 \text{ kJ/kg}, \quad \rho_l = 958 \text{ kg/m}^3, \quad \rho_v = 0.598 \text{ kg/m}^3 \]

\[R(t) = \left\{ \frac{2}{3} \left[T_\infty - T_{\text{sat}}(P_\infty) \right] \frac{h_{lv} \rho_v}{T_{\text{sat}}(P_\infty) \rho_l} \right\}^{\frac{1}{2}} t \]

\[V = 7.1 \text{ m/s} \]
Bubble Departure Frequency

Estimate the bubbling frequency for saturated water at atmospheric pressure for a wall superheat of 20°C.

\[T_{\text{sat}} = 100^\circ \text{C}, \ h_{\text{lv}} = 2257 \ \text{kJ/kg}, \ \rho_{\text{l}} = 958 \ \text{kg/m}^3, \ \rho_{\text{v}} = 0.598 \ \text{kg/m}^3, \ \sigma = 0.0588 \ \text{N/m} \]

\[\text{Bo}^{0.5}_d = 0.04 \ \text{Ja} \]

\[\text{Ja} = \frac{\rho_{\text{l}} c_{\text{pl}} (T_w - T_{\text{sat}} (P_{\infty}))}{\rho_{\text{v}} h_{\text{lv}}} \]

\[\text{Bo}_d = \frac{g(\rho_{\text{l}} - \rho_{\text{v}})d_d^2}{\sigma} \]

\[f_d = 0.59 \left[\frac{\sigma g (\rho_{\text{l}} - \rho_{\text{v}})}{\rho_{\text{l}}^2} \right]^{0.25} \]

\[\text{Ja} = 60 \]
\[d_d = 6 \ \text{mm} \]
\[f = 15.4 \ \text{Hz} \]
\[\tau = 0.065 \ \text{s} \]
Estimate the interface velocity of a 0.2 mm diameter bubble growing in water at atmospheric pressure and 120°C.

Estimate the departing diameter and bubble frequency.

\[T_{\text{sat}} = 100°C, \quad h_{lv} = 2257 \text{ kJ/kg}, \quad \rho_l = 958 \text{ kg/m}^3, \quad \rho_v = 0.598 \text{ kg/m}^3 \]

\[R(t) = \left\{ \frac{2}{3} \frac{[T_\infty - T_{\text{sat}}(P_\infty)]}{T_{\text{sat}}(P_\infty)} \frac{h_{lv} \rho_v}{\rho_l} \right\}^{\frac{1}{2}} t \]

\[\text{Bo}^{0.5}_d = 0.04 \text{ Ja} \]

\[\text{Bo}_d = \frac{g(\rho_l - \rho_v) d^2_d}{\sigma} \]

\[\text{Ja} = \frac{\rho_l c_{pl}(T_w - T_{\text{sat}}(P_\infty))}{\rho_v h_{lv}} \]

\[f d_d = 0.59 \left[\frac{\sigma g(\rho_l - \rho_v)}{\rho_l^2} \right]^{0.25} \]

\[V = 7.1 \text{ m/s} \]
• There is an upper limit to the heat flux that can be attained in a phase-change process
• For a vaporization process, the maximum heat flux conceivable would result if molecules were emitted from the interface and no molecules were allowed to return to the liquid.
• Assuming Maxwellian ideal gas,

\[q^"_{mkv} = \rho_v h_{lv} \left(\frac{R T_v}{2\pi M} \right)^{\frac{1}{2}} \]
Measured burnout data obtained in different boiling experiments normalized with the corresponding maximum heat flux suggested by kinetic theory.
Reasons for Deviation

1. Many molecules leaving the liquid at the interface will return to the liquid by molecular collisions.

2. Wall temperatures required to deliver even 10% of q''_{mkv} would result in wall temperatures that exceed the melting point of the material.

3. The tendency for more of the heat to find single-phase convection and conduction paths at higher pressures.

- Same tendency is applied for condensation but with a different constant.

$$q''_{mkv} = 0.741 \rho_v h_{lv} \left(\frac{\bar{R} T_v}{2 \pi M} \right)^{\frac{1}{2}}$$
Multiphase Flow and Heat Transfer

ME546

-Sudheer Siddapureddy
sudheer@iitp.ac.in
Condensation

- Condensation is a process in which the removal of heat from a system causes a vapor to convert into liquid.
- Important role in nature:
 - Crucial component of the water cycle
 - Industry
- The spectrum of flow processes associated with condensation on a solid surface is almost a mirror image of those involved in boiling.
- Can also occur on a free surface of a liquid or even in a gas
- Condensation processes are numerous, taking place in a multitude of situations.
Classification of Condensation Process

1. Mode of condensation: homogeneous, dropwise, film, or direct contact
2. Conditions of the vapor: single-component, multicomponent with all components condensable, multicomponent including non-condensable component(s), etc.
3. System geometry: plane surface, external, internal, etc.

There are overlaps among different classification methods. Classification based on mode of condensation is the most useful.
Homogeneous Condensation

- Can happen when vapor is sufficiently cooled $< T_{sat}$ to induce droplet nucleation.
- It may be caused by:
 - Mixing of two vapor streams at different temperatures
 - Radiative cooling of vapor-noncondensable mixtures
 - **Fog formation**
 - Sudden depressurization of a vapor
 - **Cloud formation** – adiabatic expansion of warm, humid air masses that rise and cool
 - Cloud - water or ice? -30°C
- Although homogeneous nucleation in pure vapors is possible, in practice dust, other particles act as droplet nucleation embryos
Heterogeneous Condensation

- Droplets form and grow on solid surfaces
- Significant sub-cooling of vapor is required for condensation to start when the surface is smooth and dry.
- The rate of generation of embryo droplets in heterogeneous condensation can be modeled by using kinetic theory
- Heterogeneous condensation leads to:
 1. dropwise condensation
 2. film condensation
Film Condensation Dropwise Condensation
Dropwise vs Film

- **Film:** The surface is blanketed by a liquid film of increasing thickness. “Liquid wall” offers resistance.
- **Dropwise:** The droplets slide down when they reach a certain size, clearing the surface and exposing it to vapor.
- No resistance to heat transfer in dropwise. Hence, h is 10 times higher than in film.
Dropwise Condensation

- Drop condensation on the underside of a cooled horizontal plate or on a vertical surface is very analogous to nucleate boiling. Ex: misting up of windows or mirrors.
- The condensate forms droplets that stick to the surface.
- The population of droplets becomes large, run together to form films – transition to film condensation.
Dropwise Condensation

- Poorly wetted surface: on a solid surface cooled below T_{sat}
- At locations of well-wetted: contaminant nuclei exist.
- Poorly-wetted surface condition: contamination or coating with a hydrophobic substance.
- Droplets grow, fall off, new droplets on freshly exposed surface.
- Sweeping and renewal of the droplet growth process is responsible for the high h.
Dropwise Condensation

• In practice, this can be achieved from steam condensation by
 1. Injecting a non-wetting chemical into the vapor which subsequently deposits on the surface
 2. Introducing a non-wetting (θ > 90°) substance such as a fatty acid or wax onto the solid surface
 3. By permanently coating the surface with a low-surface-energy polymer or a noble metal.
• The effects of 1 & 2 are temporary.
Dropwise Condensation

- Providing and maintaining the non-wetting surface characteristics can be difficult.
- The condensate liquid often gradually removes the promoters.
- Furthermore, the accumulation of droplets on a surface can eventually lead to the formation of a liquid film.
Dropwise Condensation

- It has been postulated that heat transfer occurs at the smaller droplets due to higher thermal resistance in larger drops.
- Rose et al., (1999) recommended an empirical correlation:

\[h_{dc} = T_v^{0.8} [5 + 0.3(T_{sat} - T_w)] \]

where \(T_v \) is in Celsius, and \(h_{dc} \) is in kW/m²K

For a surface subcooling of 8 K, determine the dropwise heat transfer coefficient of saturated steam at atmospheric pressure.

\[h_{dc} = 295 \text{ kW/m}^2\text{K} \]
• Temperature of the liquid-vapor interface is the saturation temperature that corresponds to T_{sat}
• Vapor in the descending jet is colder than the vapor reservoir and warmer than the liquid in the film attached to the wall
Film Condensation on a Flat Vertical Surface

• The wall could be flat or outside surface of a vertical tube
• Consider a vertical wall exposed to a saturated vapor at pressure p and $T_{sat} = T_{sat}(p)$
• $T_w < T_{sat}$ vapor will continuously condense on the wall
• If the liquid wets the surface, liquid flows down the wall in a thin film
• Provided the condensation rate is not too large, there will be no discernable waves on the film surface, and the flow in the film will be laminar
 • Fluid dynamics of the flow of a thin liquid film
 • Heat transfer during the flow of a thin liquid film
Film Condensation on a Flat Vertical Surface

Laminar film of condensate

T_{sat}

T_{∞}

$x = \delta(y)$ Interface

H

$d\Gamma$

$h_v d\Gamma$

From reservoir of saturated vapor

$T_{\infty} = T_{\text{sat}}$

$T_{\infty} = T_{\text{sat}}$

Zero shear, $\frac{\partial u}{\partial y} = 0$
Nusselt Integral Analysis: Assumptions

- Laminar flow and constant properties
- Inertia effects are negligible in the momentum balance
- Gas is assumed to be pure vapor and at an uniform T_{sat}
 - This assumption allows us to focus exclusively on the flow of the liquid film and neglect the movement of the nearest layers of vapor
- Shear stress at the liquid-vapor interface is negligible
- With no temperature gradient in the vapor,
- Heat transfer to the liquid-vapor interface can occur only by condensation at the interface and not by conduction from the vapor
Steady State 2D Incompressible Flow

Continuity
\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad \frac{\partial v}{\partial y} = 0
\]

Momentum in \(x\)
\[
\rho_l \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{\partial P}{\partial x} + \mu_l \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right]
\]

\[
\frac{\partial P}{\partial x} = 0 \Rightarrow P = P(y)
\]

Momentum in \(y\)
\[
\rho_l \left(u \frac{\partial v}{\partial x} + \frac{\partial v}{\partial y} \right) = -\frac{dP}{dy} + \mu_l \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right] + \rho_l g
\]

\[
dP/dy = \text{Pressure imposed from the inviscid portion}
\]
\[
= \rho_v g = \text{Hydrostatic pressure in vapor}
\]
\[
\mu_l \frac{\partial^2 v}{\partial x^2} + (\rho_l - \rho_v) g = 0
\]

Integrate for \(v \)

\[
v = \frac{(\rho_l - \rho_v) g}{\mu_l} \delta^2 \left[\frac{x}{\delta} - \frac{1}{2} \left(\frac{x}{\delta} \right)^2 \right]
\]

Boundary Conditions

\[
x = 0, v = 0
\]

\[
x = \delta, \frac{\partial v}{\partial x} = 0
\]

However, film thickness is an unknown function \(\delta(y) \)

The local mass flow rate of the condensate at a location \(y \), where the boundary layer thickness is \(\delta \), is determined from:

\[
\dot{m}(y) = \int_{x=0}^{\delta} \rho_l v b dx = \frac{\rho_l (\rho_l - \rho_v) gb \delta^3}{3 \mu_l}
\]

The rate of condensation of vapor over a vertical distance \(dy \)

\[
\frac{d\dot{m}}{dy} = \frac{\rho_l (\rho_l - \rho_v) gb \delta^2}{\mu_l} \frac{d\delta}{dy}
\]

Flow rate is proportional to sinking effect, inversely proportional to \(\mu \)
Steady State 2D Heat Transfer

Film velocity is low.

$\frac{dT}{dy}$ in y is negligible since both wall and film surface are isothermal

\[
\frac{\partial^2 T}{\partial x^2} = 0
\]

Boundary Conditions

\[
x = 0, T = T_w \\
x = \delta, T = T_{sat}
\]

$$T = (T_{sat} - T_w) \frac{x}{\delta} + T_w$$

This is a linear temperature profile similar to the conduction in a plane wall

Heat flux into the wall (k_l) = Heat flux across the film (h)

\[
k_l \frac{dT}{dx} \bigg|_w = h(T_{sat} - T_w)
\]

\[
h = \frac{k_l}{\delta}
\]

Heat transfer across the film is by conduction alone.
Film Thickness, δ

Rate of heat transfer from vapor to the plate through the liquid film dy

= Heat require to condense the vapor

$$k_1(b dy)\frac{T_{sat} - T_w}{\delta} = d\dot{m} h_{lv}$$

$$\therefore \frac{d\dot{m}}{dy} = \frac{\rho_l (\rho_l - \rho_v) gb \delta^2}{\mu_l} \frac{d\delta}{dy}$$

Solving for δ and integrating $\delta = (0,\delta)$ with $\delta = 0$ at $y = 0$

$$\delta(y) = \left[\frac{4\mu_L k_1(T_{sat} - T_w)}{\rho_L g (\rho_L - \rho_v) h_{lv}} y \right]^{\frac{1}{4}}$$
\[h = \frac{k_l}{\delta} = \left(\frac{\rho_l g (\rho_l - \rho_v) h_{lv} k_l^4}{4 \mu_l k_l (T_{sat} - T_w) y} \right)^{\frac{1}{4}} \]

\[\bar{h}_L = \frac{1}{L} \int_0^L h dy = \left(\frac{g \rho_l (\rho_L - \rho_v) h_{lv} k_l^3}{4 \mu_l (T_{sat} - T_w)} \right)^{\frac{1}{4}} \frac{1}{L} \int_0^L y^{-\frac{1}{4}} dy \]

\[\bar{h}_L = 0.943 \left(\frac{g \rho_l (\rho_L - \rho_v) h_{lv} k_l^3}{4 \mu_l (T_{sat} - T_w) L} \right)^{\frac{1}{4}} \]

\[\dot{m} = \frac{b \rho_l g (\rho_l - \rho_v)}{3 \mu_l} \left[\frac{4 \mu_l k_l^4 (T_{sat} - T_w)}{\rho_l g (\rho_l - \rho_v) h_{lv}} y \right]^{\frac{3}{4}} \]

All the properties are evaluated at: \[T_f = \frac{T_{sat} + T_w}{2} \]
Effect of subcooling

Rohsenow refined
• Avoided linear temperature profile
• Integral analysis of temperature distribution across the film
• Temperature profile whose curvature increases with the degree of subcooling $C_{p,l} (T_{sat} - T_w)$

$$h'_{lv} = h_{lv} + 0.68 C_{p,l} (T_{sat} - T_w)$$

All liquid properties evaluated at T_f

h_{lv} and ρ_v are evaluated at T_{sat}

$$h'_{lv} = h_{lv} (1 + 0.68 Ja)$$

$$Ja = \frac{C_{p,l} (T_{sat} - T_w)}{h_{lv}}$$
Reynolds Number

\[\text{Re} = \frac{\rho_l u_m D_h}{\mu_l} ; \quad u_m = \frac{\dot{m}}{\rho_L \delta} ; \quad D_h = \frac{4A_c}{P} = \frac{4\delta b}{b} = 4\delta \]

\[\text{Re} = \frac{4\dot{m}}{\mu_l} \]

\[\therefore \rho_L \gg \rho_v \]

\[\text{Re} = \frac{4\rho_l^2 g \delta^3}{3\mu_l^2} = \frac{4g \delta^3}{3v_l^2} \]

\[h_{avg} = 1.47k_l \text{ Re}^{-\frac{1}{3}} \left(\frac{g}{v_l^2} \right)^{\frac{1}{3}} \]
Hydraulic Diameter

\[P = L \]
\[A_c = L \delta \]
\[Dh = \frac{4A_c}{P} = 4\delta \]

\[P = \pi D \]
\[A_c = \pi D \delta \]
\[Dh = \frac{4A_c}{P} = 4\delta \]

\[P = 2L \]
\[A_c = 2L \delta \]
\[Dh = \frac{4A_c}{P} = 4\delta \]
Wavy Laminar flow over vertical plates

At Reynolds number greater than about 30, it is observed that waves form at the liquid vapour interface although the flow in liquid film remains laminar. The flow in this case is Wavy Laminar

Kutateladze (1963) recommended the following relation for wavy laminar condensation over vertical plates

$$h_{vert, wavy} = \frac{Re \, k_l}{1.08 Re^{1.22} - 5.2 \left(\frac{g}{\nu_l} \right)^2} \left(\frac{1}{3} \right)$$

$$30 < Re < 1800, \quad \rho_v << \rho_l$$

$$Re_{vert, wavy} = \left[4.81 + \frac{3.70 L k_l (T_{sat} - T_w)}{\mu_l h'_{fg}} \left(\frac{g}{\nu_l} \right)^{1/3} \right]^{0.82}$$
Turbulent flow over vertical plates \((Re > 1800)\)
Labuntsov proposed the following relation

\[
h_{\text{vert,turbulent}} = \frac{Re k_l}{8750 + 58 Pr^{-0.5}(Re^{0.75} - 253)^2 \left(\frac{g}{\nu_l^2}\right)^{\frac{1}{3}}} \]

Film condensation on an inclined Plates

\[
h_{\text{inclined}} = h_{\text{vert}} \cos \theta
\]

\[
\bar{h}_L \left(\frac{\nu_l^2}{g}\right)^{\frac{1}{3}} = \left(Re^{-0.44}_L + \left(5.82 \times 10^{-6}\right)Re^{0.88}_L Pr^{3}_L\right)^{\frac{1}{2}}
\]
Non-dimensionalised heat transfer coefficients for the wave-free laminar and turbulent flow of condensate on vertical plates.
Problem: Saturated steam at atmospheric pressure condenses on a 2 m high and 3 m wide vertical plate that is maintained at 80°C by circulating cooling water through the other side. Determine (a) the rate of heat transfer by condensation to the plate (b) the rate at which the condensate drips off the plate at the bottom.

Solution: saturated steam at 1 atm condenses on a vertical plate. The rates of heat transfer and condensation are to be determined.

Assumptions: 1. steady operating conditions exist 2. The plate is isothermal. 3. The condensate flow is wavy laminar over the entire plate (will be verified). 4. The density of vapour is much smaller than the density of the liquid \(\rho_v << \rho_l \)

Properties: The properties of water at the saturation temperature of 100°C are \(h_{fg} = 2257 \times 10^3 \text{ J/g} \) and \(\rho_v = 0.6 \text{ kg/m}^3 \). The properties of liquid water at the film temperature 90°C are

\[
T_f = \frac{T_{sat} + T_w}{2} = \frac{100 + 80}{2} = 90
\]

\[\rho_l = 965.3 \text{ kg/m}^3 \]

\[\mu_l = 0.315 \times 10^{-3} \text{ Pa.s} \]

\[\nu_l = \frac{\mu_l}{\rho_l} = 0.326 \times 10^{-6} \text{ m}^2/\text{s} \]

\[C_{pl} = 4206 \text{ J/kg.K} \]

\[k_l = 0.675 \text{ W/m.K} \]

\[Pr = 1.9628 \]

\[h'_{fg} = h_{fg} + 0.68 C_p L (T_{sat} - T_w) \]

\[h'_{fg} = 2257 \times 10^3 + 0.68 \times 4206 \times (100 - 80) \]

\[h'_{fg} = 2314 \times 10^3 \text{ J/kg} \]
\[
\bar{h}_L = 0.943 \left(\frac{g \rho_L (\rho_L - \rho_v) h_{fg} k_l^3}{4 \mu_L (T_{sat} - T_w) L} \right)^{\frac{1}{4}} = 0.943 \left(\frac{9.81 \times 965.3 \times (965.3) (2314 \times 1000) 0.675^3}{4 \times 0.315 \times 10^{-3} (100 - 80) 4} \right)^{\frac{1}{4}}
\]

\[
\bar{h}_L = 26562 \frac{W}{m^2 K}
\]

\[
\dot{Q} = \bar{h}_L A_s (T_{sat} - T_w) = 25622 \times 2 \times 3 \times (100 - 80) = 307464 W
\]

\[
\dot{Q} = \dot{m} h_{sf} \Rightarrow 307464 = \dot{m} \times 2314 \times 10^3 \Rightarrow \dot{m} = 0.1329 \text{ kg/s}
\]

\[
Re = \frac{4 \Gamma}{\mu_L} = 4 \left(\frac{\dot{m}}{b} \right) = \frac{4}{0.315 \times 10^{-3} } \left(\frac{0.1329}{3} \right) = 5625
\]
\[
\frac{\bar{h}_L}{k_l} \left(\frac{\nu_l^2}{g} \right)^{\frac{1}{3}} = \left(Re_{L}^{-0.44} + \left(5.82 \times 10^{-6} \right) Re_{L}^{0.88} Pr_{L}^{3} \right)^{\frac{1}{2}}
\]

\[
\frac{\bar{h}_L}{0.675} \left(\frac{\left(0.326 \times 10^{-6} \right)^2}{9.81} \right)^{\frac{1}{3}} = \left(562.5^{-0.44} + \left(5.82 \times 10^{-6} \right) \times 562.5^{0.88} \times 1.9628^{3} \right)^{\frac{1}{2}}
\]

\[
\bar{h}_L = 76914 \frac{W}{m^2 K}
\]

\[
\dot{Q} = \bar{h}_L A_s \left(T_{sat} - T_w \right) = 7691.4 \times 2 \times 3 \times (100 - 80) = 2307420 \text{ W}
\]

\[
\dot{Q} = \dot{m} h_{sf} \Rightarrow 2307420 = \dot{m} \times 2314 \times 10^3 \Rightarrow \dot{m} = 0.9972 \text{ kg / s}
\]

\[
Re = \frac{4\Gamma}{\mu_L} = \frac{4}{\mu_L} \left(\frac{\dot{m}}{b} \right) = \frac{4}{0.315 \times 10^{-3}} \left(\frac{0.9972}{3} \right) = 4221
\]

This confirms that condensation is in turbulent region

Comments: This Reynolds number confirms that condensation is in Wavy laminar domain.
Multiphase Flow and Heat Transfer

ME546

-Sudheer Siddapureddy
sudheer@iitp.ac.in
Reference:
http://dx.doi.org/10.1017/CBO9780511619410
Two Phase Flow - Introduction

- Two phase flows are commonly found in ordinary life and in industrial processes
- Gas-liquid flow also occurs in boiling and condensation operations
- Inside pipelines which carry oil or gas alone, but which actually carry a mixture of oil and gas.
Two Phase Flow – How They Differs

Single phase flow
Laminar, transition, and turbulent
When the flow regime changes from laminar to turbulent
the personality of the fluid completely changes
the phenomena governing the transport processes change
Two Phase Flow – How They Differs

Single phase flow

Laminar, transition, and turbulent
When the flow regime changes from laminar to turbulent
the personality of the fluid completely changes
the phenomena governing the transport processes change

Two phase flow

Similar situation
However, there is a multitude of flow regimes
Two Phase Flow – How They Differs

Single phase flow
Laminar, transition, and turbulent
When the flow regime changes from laminar to turbulent
the personality of the fluid completely changes
the phenomena governing the transport processes change

Two phase flow
Similar situation
However, there is a multitude of flow regimes
The behavior of a gas–liquid mixture depends strongly on the flow regimes.
Two Phase Flow – How They Differ

Single phase flow

Laminar, transition, and turbulent
When the flow regime changes from laminar to turbulent the personality of the fluid completely changes the phenomena governing the transport processes change

Two phase flow

Similar situation
However, there is a multitude of flow regimes
The behavior of a gas–liquid mixture depends strongly on the flow regimes.
Methods for predicting the major flow regimes are required, for the modeling and analysis of two-phase flow systems
Two Phase Flow Patterns

Morphological variations

1. $\Delta \rho$ between phases. Respond differently to gravity and centrifugal forces
Two Phase Flow Patterns

Morphological variations

1. $\Delta \rho$ between phases. Respond differently to gravity and centrifugal forces
2. The deformability of the gas-liquid interphase that often results in incessant coalescence and breakup processes
Morphological variations

1. $\Delta \rho$ between phases. Respond differently to gravity and centrifugal forces
2. The deformability of the gas-liquid interphase that often results in incessant coalescence and breakup processes
3. Surface tension forces, maintains one phase dispersal
Two Phase Flow Patterns

Morphological variations

1. $\Delta \rho$ between phases. Respond differently to gravity and centrifugal forces
2. The deformability of the gas-liquid interphase that often results in incessant coalescence and breakup processes
3. Surface tension forces, maintains one phase dispersal

Flow regimes and their ranges of occurrence are sensitive to
• fluid properties, system configuration/and orientation, size scale of the system, occurrence of phase change, etc.
Two Phase Flow Patterns

Morphological variations

1. $\Delta \rho$ between phases. Respond differently to gravity and centrifugal forces

2. The deformability of the gas-liquid interphase that often results in incessant coalescence and breakup processes

3. Surface tension forces, maintains one phase dispersal

Flow regimes and their ranges of occurrence are **sensitive** to

- fluid properties, system configuration/and orientation, size scale of the system, occurrence of phase change, etc.
- Most widely used: steady-state and adiabatic air-water and steam-water in uniform-cross-section long vertical pipes, or large vertical rod bundles with uniform inlet conditions
Vertical, Co-current, Upward Flow
Vertical, Co-current, Upward Flow
Vertical Co-current Flow (Adiabatic)
Vertical Co-current Flow (Adiabatic)

Bubbly – bubbles are of uniform size. Least interaction at very low Q_G, but increase in number density with Q_G. At higher Q_G, bubbles interact, leading to their coalescence and breakup.

Plug/Slug – Forms very large bubbles. Bullet-shaped (Taylor bubbles) with hemispherical caps and are separated by liquid slugs (contains small bubbles). The maximum $L_s/D \sim 16$,

Churn – highly unstable/chaotic motion flow of an oscillatory nature, for example the liquid near the tube wall continually pulses up and down.
Vertical Co-current Flow (Adiabatic)

Wispy annular - The liquid in the film is aerated by small gas bubbles and the entrained liquid phase appears as large droplets which have agglomerated into long irregular filaments or wisps.

Annular – liquid travels partly as an annular film on the walls of the tube and partly as small drops distributed in the gas which flows in the center of the tube.
Vertical Co-current Flow (Boiling Channels)

Inverted-annular – This flow regime takes place in channels subject to high wall heat fluxes and leads to an undesirable departure from nucleate boiling.

Dispersed-droplet – superheated vapor containing entrained droplets flows in a dry channel. Occurs when massive evaporation has already caused the depletion of most of the liquid.
Flow regimes of air-water flow in a 2.6 cm diameter vertical tube
Horizontal, Co-current

Liquid, Q_L → Mixer → Gas, Q_G → Camera
Horizontal, Co-current – Low Liquid Flow Rate

(a) Stratified Smooth
(b) Stratified Wavy
(c) Slug
(d) Annular/Dispersed
Horizontal, Co-current – High Liquid Flow Rate

(a) Bubbly

(b) Dispersed Bubbly

(c) Plug/Elongated Bubble

(d) Annular/Dispersed
Horizontal Co-current Flow (Adiabatic)

- **Bubbly** – bubbles flows on top
- **Plug** – Small bubbles have coalesced to produce long plugs
- **Stratified** – interface is smooth. This doesn’t occur usually
- **Wavy** – wave amplitude increases as the gas velocity increases
- **Slug** – wave amplitude is so large that the wave touches top of tube
- **Annular** – similar to vertical annular flow except that the liquid film is much thicker at the bottom of the tube than at the top.
Horizontal, Co-current
Various instruments like gamma ray densitometry, capacitance probe and resistance probes give the distribution of void fraction.

Results are rarely so conclusive.
Summary

1. Flow regimes and conditions depend on:
 - geometry: size, shape, aspect ratio of channel, flow disturbances
 - liquid properties: $\sigma, \mu, \rho_l/\rho_g$
Summary

1. Flow regimes and conditions depend on
 - geometry: size, shape, aspect ratio of channel, flow disturbances
 - liquid properties: σ, μ, ρ_l/ρ_g

2. Basic regimes occur in all system configurations.
Summary

1. Flow regimes and conditions depend on
 • geometry: size, shape, aspect ratio of channel, flow disturbances
 • liquid properties: $\sigma, \mu, \rho_l/\rho_g$

2. Basic regimes occur in all system configurations.

3. There could be multitude of subtle flow regimes.
1. Flow regimes and conditions depends on
 - geometry: size, shape, aspect ratio of channel, flow disturbances
 - liquid properties: σ, μ, ρ_l/ρ_g
2. Basic regimes occur in all system configurations.
3. There could be multitude of subtle flow regimes.
4. The regime change boundaries are generally difficult to define due to the occurrence of extensive “transitional” regimes
Summary

1. Flow regimes and conditions depends on
 • geometry: size, shape, aspect ratio of channel, flow disturbances
 • liquid properties: \(\sigma, \mu, \frac{\rho_l}{\rho_g} \)
2. Basic regimes occur in all system configurations.
3. There could be multitude of subtle flow regimes.
4. The regime change boundaries are generally difficult to define due to the occurrence of extensive “transitional” regimes
5. Bubbly, plug/slug, churn, annular flows also occur in minichannels \((100 \ \mu m \leq D \leq 1 \ mm)\)
1. Flow regimes and conditions depend on:
 - geometry: size, shape, aspect ratio of channel, flow disturbances
 - liquid properties: $\sigma, \mu, \rho_l/\rho_g$
2. Basic regimes occur in all system configurations.
3. There could be multitude of subtle flow regimes.
4. The regime change boundaries are generally difficult to define due to the occurrence of extensive “transitional” regimes.
5. Bubbly, plug/slug, churn, annular flows also occur in minichannels ($100 \, \mu m \leq D \leq 1 \, mm$)
6. Regimes in phase change are significantly different from adiabatic
Flow pattern maps are 2D graphs to separate the space into areas corresponding to the various flow patterns

Hewitt and Roberts Map – Vertical upflow in a tube
Baker Map – Horizontal flow
Taitel and Dukler Map – Horizontal flow
Vertical, Co-current: Hewitt and Roberts

\[G_g = \frac{\text{Gas Mass Flow Rate}}{\text{Tube Crosssectional Area}} \]

\[G_l = \frac{\text{Liquid Mass Flow Rate}}{\text{Tube Crosssectional Area}} \]

This map works reasonably well for water-air and water-steam systems over a range of pressures, again in small diameter tubes.
Baker’s Map (1954) - Modified Scott (1963)

• One of the earliest flow pattern maps for horizontal adiabatic flow
• Developed based on air-water data
• Identifies stratified, plug, slug, wavy, annular, bubbly flow patterns
Procedure to Use Baker’s Map (1954)

Determine ass velocities of the liquid \(G_l \) and vapor \(G_g \)

Calculate gas-phase parameter \(\lambda \) and liquid-phase parameter \(\psi \)

\[
\lambda = \left(\frac{\rho_g \rho_l}{\rho_{air} \rho_{water}} \right)^{0.5}
\]

\[
\psi = \frac{\sigma_{water}}{\sigma} \left[\frac{\mu_l}{\mu_{water}} \left(\frac{\rho_{water}}{\rho_l} \right)^2 \right]^{\frac{1}{3}}
\]

\[
G_g = \frac{\text{Gas Mass Flow Rate}}{\text{Tube Crosssectional Area}}
\]

\[
G_l = \frac{\text{Liquid Mass Flow Rate}}{\text{Tube Crosssectional Area}}
\]

- Properties of air and water are evaluated at standard atmospheric pressure and room temperature
- Standard dimensionless parameters \(\lambda \) and \(\psi \) take into account the variation in the properties of the fluid
Horizontal, Co-current: Baker (1954)

Works for R12 in 8 mm diameter horizontal tube
Taitel and Dukler Map, 1976

• Proposed in 1976 for horizontal flow in tube
• Originally developed for adiabatic flow with no phase change
• The map uses Martinelli parameter (X_{tt}) the gas Froude number (Fr_G) and the parameters T and K

Procedure
Taitel and Dukler Map, 1976

- Proposed in 1976 for horizontal flow in tube
- Originally developed for adiabatic flow with no phase change
- The map uses Martinelli parameter (X) the gas Froude number (Fr_g) and the parameters T and K

Procedure
- If (Fr_g, X) falls in **annular flow regime**, then the flow is
- If (Fr_g, X) falls in the lower left zone
 - Using (K, X), identify **stratified-wavy or fully stratified**
- If (Fr_g, X) falls in the right zone
 - Using (T, X), identify **bubbly or intermittent (plug/slug)**

The map was tested for condensation with water, methanol, propanol, R113, N-pentane in 24.4 mm tube
\[Fr_g = \frac{G_g}{\left[\rho_g (\rho_l - \rho_g) D_g \right]^{\frac{1}{2}}} \]

\[T = \left[\frac{|(dp/dz)_L|}{g(\rho_l - \rho_g)} \right]^{\frac{1}{2}} \]

\[K = Fr_g Re_l^2 \]

\[X = \left[\frac{(dp/dz)_l}{(dp/dz)_g} \right]^{\frac{1}{2}} \]

\[Re_f = \frac{G_f D}{\mu_f}, \ f \text{ is either } g \text{ or } l \]

\[(dp/dz)_f = \frac{2f_f G_f^2}{\rho_f D} \]

\[\frac{16}{Re_f}, Re_f \leq 2000 \]

\[f_f = \frac{0.079}{Re_f}, Re_f > 2000 \]
Find the flow pattern when 4 kg/s of steam-water mixture of quality 20% at 20 bar flows in a 0.1 m circular tube.
\[\rho_l = 850 \text{ kg/m}^3, \rho_g = 10 \text{ kg/m}^3, \mu_l = 128 \times 10^{-6} \text{ Pa s}, \mu_g = 16 \times 10^{-6} \text{ Pa s} \]
Find the flow pattern when 4 kg/s of steam-water mixture of quality 20% at 20 bar flows in a 0.1 m circular tube.

\[\rho_l = 850 \text{ kg/m}^3, \rho_g = 10 \text{ kg/m}^3, \mu_l = 128 \times 10^{-6} \text{ Pa s}, \mu_g = 16 \times 10^{-6} \text{ Pa s} \]

Quality, \(x = \frac{G_g}{G} \)
Find the flow pattern when 4 kg/s of steam-water mixture of quality 20% at 20 bar flows in a 0.1 m circular tube.

\(\rho_l = 850 \text{ kg/m}^3, \rho_g = 10 \text{ kg/m}^3, \mu_l = 128 \times 10^{-6} \text{ Pa s}, \mu_g = 16 \times 10^{-6} \text{ Pa s} \)

Quality, \(x = \frac{G_g}{G} \)

Vertical Upflow:

\[
G = \frac{4}{\pi 0.1^2 / 4} = 509 \text{ kg/m}^2 \text{s}
\]

\[
G_g = xG = 102 \text{ kg/m}^2 \text{s}
\]

\[
G_l = (1 - x)G
\]
Find the flow pattern when 4 kg/s of steam-water mixture of quality 20% at 20 bar flows in a 0.1 m circular tube.

\[\rho_l = 850 \text{ kg/m}^3, \rho_g = 10 \text{ kg/m}^3, \mu_l = 128 \times 10^{-6} \text{ Pa s}, \mu_g = 16 \times 10^{-6} \text{ Pa s} \]

Quality, \(x = \frac{G_g}{G} \)

Horizontal flow:

\[G = \frac{4}{\pi 0.1^2/4} = 509 \text{ kg/m}^2\text{s} \]

\[G_g = xG = 102 \text{ kg/m}^2\text{s} \]

\[G_l = (1 - x)G \]