Gravity Scaling Parameter for Pool Boiling Heat Transfer – IMECE2009-12624

Rishi Raj¹, Jungho Kim¹ and John McQuillen²
¹University of Maryland, College Park, MD
²NASA Glenn Research Center, Cleveland, OH

Introduction

Boiling under different gravity conditions and various heater sizes is important for design of space based hardware.

• Parabolic flight experiments were performed to simulate the variable gravity condition (0.01 g < g < 1.7 g)
• Constant temperature microheater array was used for heat flux measurements and for varying heater sizes

Gravity Effect

Nucleate boiling correlations are of the form:

\[\dot{q}_{\text{w},*} = f \left(\dot{m}, c_p, h_l, \rho, \alpha, \sigma, \Delta T_{\text{w}} \right) \]

Is it physical to correlate earth and low gravity data?

Ebullition Cycle

1) Nucleation
2) Growth
3) Departure
4) Rewetting

Earth gravity, 1g

Low-gravity, ~10⁻³ g

Variable Gravity Experiment

98.9 % n-perfluorohexane, P = 1 atm, \(\Delta T_{\text{sub}} = 26 \, ^\circ\text{C} \).

48th ESA Parabolic Flight Campaign, 3/08
• 20 sec. hypergravity (>1.5g)
• 20 sec. low-g (<0.01g)
• 3-5 sec. transition (0.01-g < g < 1.5 g)

Variable Gravity Boiling Curve

Observations

• Slope m is not constant
• \(m = f \left(T_{\text{ONB}} \right) \)
• Jump in heat flux at transition between regimes (~0.1g)

High-g regime

• Bubble departure diameter decreases with gravity
• Departure frequency increases with gravity
• Heat transfer by bubble growth, departure and rewetting

Development of Scaling Parameter

Slope \(m \) is not constant and increases with superheat.

\[q_{\text{w}} = q_{\text{w,*}} \left(\frac{\Delta T_{\text{w}}}{\Delta T_{\text{ONB}}} \right)^m \]

\(q_{\text{w}} \) vs. \(\Delta T_{\text{w}} \)

\(m \) vs. non-dimensional temperature \(T^* \)

\[\Delta T_{\text{ONB}} = \left(\frac{\dot{q}_{\text{w,*}}}{\dot{m}} \right) \left(\frac{\rho_l c_p \Delta T_{\text{ONB}}}{\Delta T_{\text{sub}}} \right) \]

\[q_{\text{w}} = q_{\text{w,*}} \left(\frac{\Delta T_{\text{w}}}{\Delta T_{\text{ONB}}} \right)^{m-1} \left(\frac{\Delta T_{\text{w}}}{\Delta T_{\text{sub}}} \right) \]

Scaling Parameter

Given the \(q_{\text{w,*}} \) at one gravity level and a superheat \(\Delta T_{\text{w}} \), heat flux at any other gravity level \(q_{\text{w}} \) can be predicted.

Earth gravity correlations can also be used to get \(q_{\text{w,*}} \).

Results

• Good agreement at various gravity levels (Errorrms < 0.35 w/cm²).
• Scaling parameter is independent of gas concentration \(c_g \).

Conclusions

A gravity scaling parameter for pool boiling was developed for high-g buoyancy dominated boiling regime \((L_h/L_v > 2.1) \).

The scaling parameter is independent of:
• Gas concentration
• Heater surface morphology
• Subcooling
• Heater size

Acknowledgements

This work was supported by NASA Grant No. NNX08AI60A.

The above data was collected during the ESA 48th Parabolic Flight Campaign in March, 2008, and NASA FAST Reduced Gravity Flight Campaign in August, 2009.